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Abstract. The dihedral angle of the wing, even if it
gives its name to the derivative Cy, = 0C1/08, Dihe-
dral Effect, (which actually only explains the fact that
the aircraft is subjected to a rolling moment L when
it is invested by a sideslip angle 8) is only one of the
elements contributing to Cj,.

Even if a straight wing is invested by a sideslip an-
gle, it can produce a rolling moment. Actually, two
wing sections which are equidistant from the symmet-
rical plane have different distances from the global U-
vortex wing system and particularly from the vortices
of the tip wing. This is the reason why the induced
speed and therefore the induced angle of attack are
mostly different on the two semi-wings. This different
aerodynamic induction causes a lift difference of the
two semi-wings and, therefore, generates a rolling mo-
ment. In this case the contribution to Ci, 1s positive
together with a positive sideslip angle.

We have determined the circulation along the wing
span and so the induced angle of attack distribu-
tion. For this aerodynamic induction we have used
a method which allows for the different mutual aero-
dynamic induction of the two semi-wings each with
a different flow situation, again in the presence of a
side-slip angle, always through integration along the
span.

The results are presented as curves as a function
of lift coefficient, and this contribution to Ci, depends
on the angle of attack.

Introduction

The derivative Ci, = 8C;/08, that is the derivative
of the rolling moment coefficient with respect to the
sideslip angle, goes under the name of Dihedral Effect.
This aerodynamic derivative is important, as widely
known, in the study of the side- directional motion of
the aircraft, and in particular in the determination of
its dynamic characteristics concerning Dutch roll and
spiral mode.

Among the wing contributions to the Cj,, besides
dihedral angle v, that gives its name to its derivative,
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we must consider the swept angle A contribution and
the different aerodynamic induction contribution of
the two semi-wings.

Another wing element contribution to Cj, is the
shape of the tip of the wing. Anyway, this contribution
can be omitted even when the wing has winglets.

Besides the wing, the vertical tail contributes con-
siderably, as we know, to the Cj,, as well as the wing-
body relative position, but at a lower degree.

If external bodies, like nacelles or floats, which dif-
fer from the fuselage, are fastened to the aircraft, when
a sideslip angle is present, they are subjected to a side
force. If it has a lever arm with a certain entity from
the x-axis, even in this case a rolling moment will be
generated. However, these contributions are usual-
ly omitted, except when the aircraft has a particular
shape.

Among these contributions, three of them have the
same order of size: swept wing angle, dihedral wing
angle and vertical tail, which can reach at the most
same tenth (obviously with angles of a certain entity
and conventional vertical tail). The wing aerodynam-
ic induction contribution is of a smaller size (and in
any case it depends on the Cp of flight), while the
wing-body relative position contribution is of two or-
der smaller, and the contribution of the shape of the
tip of the wing is even of three order smaller.

Various authors 4 6 8 have worked out simple for- -
mulas in order to estimate some of these contributions
to Ci, and in particular the most important ones,
but among ones however important they have almost
always disregarded the contribution of the different
aerodynamic induction of the two semi-wings.

A previous study ¥ (presented at 19th ICAS
Congress in Anaheim), was designed to fine tune a
method for evaluating the contribution of the sweep-
back angle and of the aerodynamic induction of the
wing on the dihedral effect. We evaluated these two
contributions to Cj, in two different ways. For the
sweep-back angle contribution, we have used a sim-
ple integration method along the span of the single
infinitesimal wing element, obviously evaluating the
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different influences on the two semi-wings when the
aircraft is invested by a sideslip angle. For the aero-
dynamic induction we have used a method which takes
into account, also through integration along the span,
the different circulation of the two semi-wings, each
one with a different situation, again in the presence of
a sideslip angle. This method is Anderson’s method
1} modified by us for wings of whatever plant form
and with any geometric twist. The induced angle of
attack a; has been calculated by using the Anderson
relation, and its distribution along the wing span has
been simply changed because of the presence of 8, by
means of a suitable translation along y and a suitable
wing tips adjustment, depending on the form of the
said wing tip.

In this work, the Anderson method is simply used
to define an easy-to-use expression of the I circulation
of the Prandtl integral-differential equation. T, as al-
ready known, is expressed by introducing the Fouri-
er series expression, whose coefficients (which are the
same for the two semi-wings) have been defined by
Anderson. So the different aerodynamic induction on
the two semi-wings is calculated while considering the
contributions of the wake vortices, as will be further
detailed, and adapting the usual Biot and Savart for-
mulas. If we have the distribution of C}, along y, the
single infinitesimal wing element contributions must
be added to the Cj: this way the Cj, will be easily
evaluated as a function of lift coefficient Cp, being this
contribution to Cj, dependent on the different circu-
lation of the two semi-wings and therefore depending
on the angle of attack.

Problem Formulation

The following method is based on the study of
wings with finite aspect ratio, according to Prandtl
classic model. When the wing geometry is known,
all the other aerodynamic quantities can be deduct-
ed from the I circulation in every wing section. The
T function can be determined by solving the Prandtl
integral-differential equation:

I(y) = k(@) Voo c(v) - [@a(v) — ai(y)] (1)

where the k coefficient, which adjusts the theoretical
value 27 of the lift angular coefficient, will be a funec-
tion of y if the wing has a variable section. The other
‘terms, which can be easily understood, can be found
in the List of symbols.

. a; is the value of the induced angle of attack, which
has the following expression:

R
L) — ;o
@i(y) 47 Voo /_b/2 y—y 4y @

Figure 1: Reference system used by Anderson.

where the y co-ordinate is referred to the point where
the induction is calculated and the y' is relative to the
inducting vortex.

This equation is not easy to be solved, so that dif-
ferent methods of calculations have been devised, and
they have led to the solution of the problem with ex-
cellent results, even if with some approximations. In
this work, the method which has been used follows
the Anderson process in its initial part, as modified in
my previous work (see *¢si'%) to eliminate some limi-
tations and to adapt it to any shape of wings and to
any twist laws.

The Anderson method replaces the I' function with
its series development and stops the series at a certain
N value. The variable must be changed:

v = 3 cos(t) 3)

As shown in the Fig.1, the I'(y) circulation changes as
it follows:

T(8) = 20V g(8) (4)
For a wing with any lift distribution, we can put:
o
g(8) = Z A, sin(nf) (5)
n=13,5... :

with the condition: g(0) = g(x) = 0.

The lift being generated from an elementary seg-
ment dy of wing, which is linked to the circulation T
by the following relation:

dL = pVeIdy (6)

the local Lift coefficient can be defined in the following
way:

4b h S .
a=— g(®) = = Z Ap sin(nf)  (7)

n=13,5...
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where ¢ is the local chord (connected with the co-
ordinate y).
If the twist has a linear flow, this will be the proper
relation:
o = ags + €74 | cos(8) | (8)

Notice that o, is the apparent angle of attack with
which the flow invests the section, and the induced
angle of attack must be subtracted from it in order to
obtain the effective angle of attack a., according to
the following relation:

Ci
aizaa—-ae:aa—-;{; 9)
By applying the Prandtl equations, with all proper
replacements, the equation (8) can be rewritten in the
following way:

4b
cm

fe o]
3" Ansin(nd) {ﬁg + ] = age+e | cosd |
n=1,3,5... °
(10)
This equation can be solved by cutting off the series
at a certain number N of terms, the corresponding
values of 4 being known. This way the result will be
a system of N equations in N unknown values like the

following ones:
Ajcii + Ascio + o+ A(ZN—I) CiN =

= ags + €% |cos(8;)| con:i=1,N (11)

where the coefficients ¢;; are nothing but a function
of the parameters m,, b/c and §. By performing the
following replacement:

A, = Bnaas + Cn{':rad (12)

you will obtain two systems of N equations in N un-
known values, where the unknown values are now B,
and Cy,:

Bicii + Bacig + ...+ Bay_1eiy = 1
Ciciy + Cacia + ... + Can—icin = | cos(8;) | (13)
with: i=1,N

Then, the first problem we have faced has been
the determination of the N value, in order to obtain
good results avoiding lengthy calculations. After few
experiments, the number of the N sections and the
criterion of angle subdivision have been defined. This
criterion provides an increase of the subdivisions of
the wing tips, which are the areas where the biggest
calculation problems occur. Once the B,, and C,, are
known, it’s time to calculate A,, and then all the other
requested parameters.

The aim of this research being the calculation of
the dihedral effect on any type of wings, some calcu-
lation programs have been formulated. They had to
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Figure 2: Wing tip shape.

allow for the geometrical shape of the wing and partic-
ularly the tapering, the aspect ratio, the twisting and
the wing tip shape; moreover, it might have been pos-
sible to prolong the treatment and also discuss about
swept angles wings and dihedral angles wings.

The wing tips can be rounded in any way: an ex-
ponential trend can be linked to the rectilinear trend
of the trailing and of the leading edge, beginning from
a given point along the span. The point at issue is
defined as a percentage of the span: B = Ay/(b/2) or
as a percentage of the mean geometric chord: B’ =
Ay/en = AB/2 (Fig.2). cp is the chord connected
with the point where the rounding begins, and it will
be known once B or B’ have been defined.

This program can consider any type of wing tip
geometry. By changing the wing geometry, the value
of the coefficients of the N system of N equations in
N unknown values also changes, because these coefli-
cients are a function of 8, m, and of b/c, as noticed
above. Consequently the value of the other parame-
ters which have been calculated will also be modified:
for example, the wing lift coeflicient and the rolling
moment coefficient.

In the following examples of calculation we have
also considered the effect of the wing tip rounding: it
will be clear that this parameter seem to affect the
aerodynamic features concerned and particularly the
Cig-

Calculation Process

The calculation process which has been adopted al-
lows for the fact that the induction of the wake vortices
affects the lift coefficient, and therefore the rolling mo-
ment coeflicient. For the calculation of the induced
angle of attack, we have allowed for the Biot-Savart
formula, which provides the induced speed value on a
generic point P from a stream vortex whose intensity

is dT: .
- dl' AT
Vp = lmads (14)
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Figure 3: Aerodynamic induction in P point.

About a generic wing, we must consider the contri-
bution of the wake vortices as well as of the adherent
vortices to the induction. If the wings are straight, the
adherent vortices will result to be ”"packaged” on the
quarter line chord on the basis of Prandtl scheme, so
that there will be no contribution of this type of vor-
tices to the total induction. About the swept wings
and/or wings with dihedral angle and/or wings whose
quarter line chord is not linear, it must be said that
this contribution is present, but the following treat-
ment will not allow for it. In fact, because of the
symmetry between the two semi-wings, the adherent
vortices of any semi-wing induce one another in the
same way, apart from the fact that the wing is invest-
ed or not by a sideslip angle. Therefore, the contribu-
tions of the two semi-wings to the rolling moment are
both equal and opposed, and consequently there is no
global contribution to the dihedral effect.

If we consider a linear vortical segment with ele-
mentary circulation dI', the induced speed on a point
P will be the following one:

dr
4y

dV; =

(cosa’ + cos ') (15)

whose terms are clearly defined on drawing of Fig.3.
Allowing for the equation (4), we will write as fol-
lows:

> nA,cos(nf)dd  (16)

n=135...

dr(8) = 2b Ve

Once the induced speed on a point is known, the
induced angle of attack can be calculated as follows:

dV:
do; = —

while considering that the sine can be confused with
the angle in small angles.

The trend of a; being known on any point of the
quarter line chord, the lift coefficient and the rolling
moment coefficient can be calculated by using the fol-
lowing formulas:

o = my (g — a;) ' (18)

and

1
C, = ;11/ tc,—g—dt (19)

~-1 Cm

where t = y/(b/2) = cos b, as shown in the equation
3).

About the calculation of o;, we must consider 3
contributions for every semi-wing:

1. Induction of a semi-wing on the other one.

2. Induction of a semi-wing on itself => con-
tribution of the vortices on the right of the
point concerned.

3. Induction of a semi-wing on itself = con-
tribution of the vortices on the left of the
point concerned.

Before illustrating the calculation process, it is nec-
essary to examine the conventional signs which are
used for the sense of the vortices. The sense is pos-
itive when is counterclockwise, and is negative when
clockwise. Therefore the wake vortices of the left semi-
wing will have an intensity of —dI', while the vortices
of the right semi-wing will be of +dT.

The calculation process of the induction on the
two semi-wings is the same, but we can find some
differences on those equations that have be applied
because of the different aerodynamic conditions of the
two semi-wings when they are invested by a lateral
wind (B # 0). These differences are only of geomet-
rical type, so that the considerations about the right
semi-wing can be easily applied to the left one: it is
only necessary to give great care in calculating angles
and distances.

Induction of a Semi-Wing on the Other Semi-Wing

In referring to the Fig.4 and applying the equations
above, the result will be as follows:

s .
o = 3 +B8 = cosa = —sinf

r=(y—y)cosp = g(cosé’ — cos ') cos B

o (1 ~sing) 2%31 nA /" cos(nd’) ,
! meosf | &= " Jxj2 cosf’ — cos @
(20)

In this case the vector dV; is positive, according to z,
and that is why it gives a positive contribution to the
total induction on the right semi-wing.
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Figure 4: Induction of the vortices of the left semi-
wing on the right semi-wing.
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o

Figure 5: Induction of the vortices of the right semi-
wing on itself. Contribution of the vortices on the
right of the point concerned.

Induction of a Semi-Wing on Itself = Contribution
of the Vortices on the Right of the Point Concerned

In referring to the Fig.5 and applying the equations
above, the result will be as follows:

T
,a/:__ﬂ:

5 +sin g3

cosa’ =
/ b ,

r=(y —y)cosp = —(6059 — cosf) cos

_ (1+sinp) 2”

T 7mcosf

1
_cos(nf’)
nAn / cos 0’ — cos 8 d9

n:=l 3 5.
(21)
In this case the vector dV; is positive, according to z,
and that is why it gives a positive contribution to the
total induction on the right semi-wing.

Induction of a Semi-wing on Itself = Contribution
of the Vortices on the Left of the Point Concerned

In referring to the Fig.6 and applying the equations
above, the result will be as follows:
!

a=z+ﬁ =

5 cosa’ = —sinf

= (Y~ y)cosp = g(cos0 — cosf') cos B

x4

&
<v

—

dar

Figure 6: Induction of the vortices of the right semi-
wing on itself. Contribution of the vortices on the left
of the point concerned.

2N-1 x/2 !
(1 —sin ) / cos(nf’) y
A ——df
T wcosf :123:5 nsin g cosf —cosf
(22)

In this case the vector dV; is negative, according to z,
and that is why it gives a negative contribution to the
total induction on the right semi-wing,.

Infinite Induced Speeds Problem

During the calculation of the integrals, which have
been illustrated in the previous paragraphs, we had to
avoid that the induction would assume an infinite val-
ue when calculating the induction of a vortex on itself,
that is when # = ¢’. This condition is unacceptable
on a physical point of view, therefore, as suggested
by many texts and, as already applied in some other
cases (Bl it has been decided to replace the hyperbolic
function with a straight line, starting from a given val-
ue of the integrating function up to the abscissa which
corresponds to the vortex axis, as shown in the Fig.7.

Up to the v which corresponds to the maximum
value chosen, the Biot-Savart relation is correct, as
follows:

1
dVix — ifr—0 = dV; -
r ,
From 7/ up to r, (vortex axis):

dV? .
dVi o« —MAX (p— 1)) ifr—r, = dVi—0

7
r—r,

Results and Numerical Examples

Cy, Trends

Starting from the relations above, we have done a
numerical example based on a wing and having an as-
pect ratio equal to 7 as well as a taper ratio r = ¢;/c,
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Figure 7: Trend of the vortex induced speed as a func-
tion of the distance from the vortex itself.

induced angle of attack (radius) oi
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Figure 8: Induced angle of attack along the wing span.

equal to 1.0 and 0.5 (that means that the rectangular
wing has been used as comparison). For our wing is
€™ = 0° so that oy = @, and €7 = ~3° (wing
tip pitched negatively). These are the angles of at-
tack o which have been considered: 3°, 6°, 9° and 12°
and the sideslip angles 8 have been as follows: 4°, 87,
12° and 16°, and also, obviously, the situation of the
symmetrical flow g = 0°.

Here we have some of our results. In the Fig.8 we
have reported the induced angle of attack a;, for the
two semi-wings, as a function of y, where the different
sideslip angles @ have been marked, for o = 3° and
for a wing with the reported features. The different
trends on the two semi-wings, because of § # 0 and
growing, will be found again, under the form of the
lift coefficient Cp, in the Fig.9. These trends also
emphasize the rolling moment which is produced and
increases with 3, just because of the different lift of
the two semi-wings.

In the Figs. 10, 11 and 12 the effects, respectively,
of the different angle of attack, twist angle and taper
ratio have been emphasized by means of the trends
of the lift coefficient, which have been compared with
the two semi-wings. The other main aerodynamic and

Lift coefficient

4 ¢ T ; }
,

o2 ‘

°

oz

04 i 0=3°, A=7, r=.5, £=0°
i $=0°, 4°, 8°, 12°, 16°

i L]

08 & 04 02 o 02 04 06 08 1
Function along wing span

Figure 9: Lift coefficient along the wing span.
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e N
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1
i

-% 08 06 04 02 [ 02 04 06 os 1
Function along wing span

Figure 10: Lift coefficient trend for different o.

geometrical features of the wing are specified in the
drawings. The importance of these parameters will
be further emphasized on the trends of C;,(CL).

The effects of the different wing tip shape is evident
in the Fig.13: of course the trend of the lift coefficient
on the wing tips will only change. The effect of this
parameter will be even more evident in the summariz-
ing drawing of the Ci,(B’).

The C;, Derivative

Among the several examples which have been
shown, we refer now to a particular wing (A =7, r =
0.5, ¢ = 0°). In the Fig.14 we can show the Ci(f)
trends for the four values of & above mentioned. As
we can see, the function C; = Ci(B) is linear. In con-
sideration of our necessity to obtain a constant value
of Cj, = 0C;/3p, this situation makes our task easier.
It is clear that the coeflicient of the rolling moment in-
creases both in dependence of « that of § (see Fig.14).
Of course, the values of Ci(3) are all positive.

The Fig.15 has been reported as a summarizing
result: the dihedral effect C;, has been diagramma-
tized here as a function of Cy,, for three configurations
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Figure 11: Lift coefficient trend for different e.
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Figure 12: Lift coefficient trend for different r.
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Figure 13: Lift coefficient trend for different B’'.

Rolling moment coefficient Ci

.08

i
A=7
st . r/
004 £=0° (1—12/|
003 o=0 —
o - Y s
| =30
00t ’ﬁ — ﬁ o= I
o é’//
) 2 “ s s 10 12 1 16
B

Figure 14: C) as a function of g for different a.

Dihedral effect Cl 8

1
02 ~ia=3°, 6°,9° 12° | 8
l / 2
02 / -
0.15 e /
o1 P ,l//
e .‘4 1
i
3
¢
0 .1 02 03 04 05 08 (X4 [.X ] 09 1
Lift coefficient CL

1: A=7, =1, e=0° 2: A=7, r=.5, £=0° 3: A=7, r=1, £=-3°

Figure 15: Final results: relation between Ci, and CL
for various configurations.

which differ for one parameter at a time: r or €. Each
curve is formed by four points which refer to the four
« above mentioned: the tapering mostly causes the
decrease of the C, (at a parity of Cr) while the twist
translates the curve in parallel as to itself. We have
found a perfect linearity of Cy, with Cf.

In the Fig.16 we have reported the effect of the
wing tip shape for a tapered wing at two angles of
attack: o = 3°, 9°. The effect is present, but not so
evident.

Dihedral effect Cl B
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m"‘\\ 5
0.14 oz
0.12
0.1
oos L |A=7, =5, £=0° |
0.0 gy =3
0.04
002
o
0 °2 04 06 08
B'=Ayfem

Figure 16: Variatioh of Cy, for different wing tip shape
at two angles of attack.
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Conclusions

It is now possible to use a calculation program in
order to determine the contribution to Cj, for every
straight wing, which are anyway tapered, twisted and
rounded at the tip. The results above are quite satis-
factory, though the references are too few to be com-
pared. In fact, in 119 the diagrams are provided in
order to determine the contribution to Cj, for swept-
tapered wings, which are relative to different aspect
ratios and sweep-back angles, but this is not our case;
moreover, on [? the wing contribution to the Cj, con-
cerns an aircraft with very special features.

We intend to carry out a test in the wind tunnel
of our Department at the Polytechnic of Turin on a
isolated straight and swept-tapered wing. In this way
we will obtain an immediate confirmation of the ac-
curacy of our results, as well as an indication of the
possible variation range of the involved parameters,
in such a way to provide a constant precision of the
results. We also intend to carry out tests on the same
type of wings and with the same purposes: we will
also use the whirling arm of the Study Center for the
Fluid Dynamics of the CNR, which is guest in our
Department.

The next development of this work will consist in
the attempt to extend this method to swept wing with
dihedral angle. This way we will be able to determine
all the contributions of the wing to the dihedral effect
and to consider wings of any shape and geometry.

List of Symbols

A Aspect ratio

b Wing span

¢(y) Local chord

Section lift coefficient
Mean geometric chord
Wing root chord

Wing tip chord

Rolling moment coefficient
Dihedral effect = 8C,/803
Wing lift coefficient
Rolling moment

Wing section lift curve slope [1/rad]
Wing taper ratio = ¢; /e,
Distance of P from vortex
Vortex co-ordinate

Wing area

Wind speed = V
Induced air speed

Body axes

QQeege

STme w3 ~Q
: S b

@ 8
&
™

Generic co-ordinate of a wing section = /2 cos @

y Vortex co-ordinate

ag Section apparent angle of attack

a,s  Absolute wing angle of attack measured from
the zero lift direction of the root section

e Section effective angle of attack

o Section induced angle of attack

B Sideslip angle

Dihedral wing angle

I'(y) Circulation alon the wing span

2

€™*?  Twist in radiants from root to tip
g Anomaly

A Swept wing angle

P Air density

o Vortex section
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