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Abstract

The governing equations of motion for a flexible air-
craft are derived based on a combination of Newtonian and
energy approaches. Typically, these equations are devel-
oped using the energy approach alone since the compli-
cated motion of an unrestrained elastic body in three
dimensional space is more easily captured in the form of
kinetic and potential energy. However, it is difficult to cap-
ture the details that rationalize the final set of equations of
motion which are widely used for analysis and design. On
the other hand, combined use of Newtonian and energy
approaches provides a clearer exposition of the excellent
rationale behind these equations. The complete set of equa-
tions of motion, which are kinematically decoupled but
kinetically coupled, can be grouped into two sets. These
equations are valid only if certain assumptions and con-
straints are satisfied. The objective of this paper is to pro-
vide a clear understanding of these equations - necessary
assumptions, constraints, limitations - by deriving them via
a combined use of Newtonian and energy approaches in a
textbook fashion. For the explicit illustration of the com-
plete modeling process, acrodynamic quasi-steady strip the-
ory and small perturbation theory are employed to obtain a
state-space form of linearized longitudinal equations of
motioRn.

1.0 Introduction

Many modern aircraft make use of advanced compos-
ite material and active control technology in order to
increase the overall aircraft performance and/or cost effec-
tiveness. Those technologies result in weight and stiffness
reduction and less inherent stability requirement through
the changes in structural material and aircraft geometry, but
the airframe flexibility effect in the overall aircraft dynam-
ics must be substantial. Traditional treatment in terms of
independent flight dynamic and aeroelastic analysis may
cause erroneous results due to the strong inferactions
between those two regimes. In order to carry out necessary
dynamic analysis and successful control law synthesis for
such aircraft, a single integrated mathematical model which
simultaneously reflects both rigid-body and elastic motions
must be sought.

Schmidt and his co-workers used the energy approach
throughout the process of deriving the integrated equations
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of motion for a general elastic airplane!?, and applied them
to develop numerical models of a forward-swept wing
aircraft?, and an elastic hypersonic aircraft. The energy
approach is advantageous because the motion of an unre-
strained elastic body in inertial space undergoing large and
high ratesf of displacement is rather easily captured in
kinetic and potential energy expressions. However, to get
down to the equations that are widely used for the analysis
and design several assumptions have to be made and a
mean axis system is required in advance. Furthermore, ref-
erences 1 and 2 did not mention the vehicle angular veloc-
ity and acceleration terms that contribute to the generalized
forces in structural equations. Although they disappear in
the final set of linear equations for steady rectilinear flight
case, they are important for non-rectilinear flight cases
because they introduce inertial coupling effects. These
terms are very important in case nonlinear flight simulation
is needed to study more general motion such as turning
flight.

In this paper, the newtonian approach is used in con-
junction with the energy approach to develop the integrated
equations of motion for a flexible aircraft. Reference 4 very
briefly treats this subject. The purpose of present paper is to
provide a comprehensive treatment on the dynamic mode-
ling of flexible aircraft, so that one can delineate necessary
assumptions, constraints and limitations of resultant mathe-
matical models.

For convenience, the motion is sub-divided into ‘Gross
Motion’ and ‘Fine Motion’ where the former encompasses
the translation of the vehicle mass center and the rotation of
aircraft as a whole, and the latter encompasses the motion
relative to the moving aircraft such as motion of articulated
subsystems and structural components.

Consider a general deformable body, and introduce
two reference frames, namely an inertial reference frame
F\ and a body reference frame Fp which is moving in
inertial space (refer to Figure 1). Special care is necessary
when introducing a body reference frame because of the
structural displacement. In the typical rigid-body dynamic
analysis*, one usually attaches the origin and axes of the
body reference frame to a set of material points and intro-
duces the constraint that the coordinates of each mass ele-
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ment are constant in the body reference frame. However,
thhis is not possible for a deformable body since the struc-
tural distortion results in displacements of material parti-
cles relative to any triadic orthonormal based reference
frame. In addition, the inertial position of F; in general
may contain not only the mean displacement, but also con-
tributions from the structural displacement. Consequently,
the governing dynamic equations can be highly coupled by
the rigid and deformation variables. Subsequent analysis
and design, based on such equations, may be unnecessarily
complicated as significant simplifications are obtainable
by imposing certain constraints on the chosen body refer-
ence frame and by assuming structural deformations which
are sufficiently small. Such a body reference frame is a
kind of ‘Mean Reference Frame’ and will be discussed
shortly. In the meantime, introduce a fictitious body refer-
ence frame whose origin, Oy and coordinates are not
attached to a material point but fixed at a particular point of
interest in the body. Consider an infinitesimal mass ele-
ment, pdV located at P, in the undeformed body configu-
ration as shown in Figure 1.

Figure 1 Flexible Body Motion in 3D Space

As deformation begins, the position of the mass element
changes. Letting P be the position of the mass element of
the deformed body configuration and denoting t_)\¥ IISXY a
position vector from a point X to a point Y, then R ©° rep-
resents the structural displacement vector. It is easy to see

ROSP _ ROsPo , RPoP

R (1.2)

B B B
dso,p _ “d30,p, d3pp

HER = a;R o+a?R ° (lb)

where %d/dt represents the time derivative of a vector rel-
ative to the body reference frame. It must be noticed that
the first term in the right-hand side of equation (1.b) may
not be zero due to the relative motion of articulated sub-
systems, such as engine compressors, fans, rotors, etc.
These relative motions appear simply as additional contri-
butions to the angular momentum. Further development
disregards the effects of such articulated motion, and only
the structural distortion is considered as relative motion.
Now, the translational motion of mass element pdV in
inertial space acted upon external force of dF , is described

using Newton's equation,
ES Nd2.\ P
f

where Vd/dt represents the time derivative of a vector rel-
ative to the inertial reference frame. Using the vector rela-

tion R = RONOs +R%" and the Coriolis vector
differentiation rule,

N B

d ~ d = g A

5(R) = (R + e xR 3

equation (2) can be expressed as

2 NdN-\o PaPdso.p 2B ap.p
dF = [3; 14 "+a;(3;R ? )+(Noc XR")

B N a a
+ (ZNmB x a‘;RO”P) + (NcoB x Noo® x RO"P)}pdV 4

NyOs N8B N B . .
where V7% Yo, Yo~ represents the linear velocity, angu-
lar velocity and angular acceleration of the body reference
frame relative to the inertial reference frame. Integrating
over the entire volume results in a force equation for the
whole body, i.e.

N B ’
A d Y d2_\ B -
[aF = fpdv(m“’v"”) + IE;ZROEP pdV + (Na x [R5 pdVJ
14 \'4 |4 1%

B S S N
+ (2”(08 x jagk\o”}’pdv) + (No)B x Voo x IRO"de V] )
v v

If the origin of the body reference frame is constrained to
coincide with the mass center B* for every instant, i.e. the
instantaneous center of mass of the deformed body, (Con-
straint 1) then by definition

[RE"Ppav = 0 v (6.2)
v
and by consequence
B B
A ok d>
Ia‘?iRB Podv = [ 2R pdv = 0 (6.b)
v v
Applying (6) to (5) results in
a Ng Sps > p
F= MT(H;NV ) = MPa )

where F = Idl-:" and M, = IpdV.
v 14

Equation (7) governs the translational motion of a deform-
able body moving in inertial space. Notice that the defor-
mation terms vanish by virtue of choosing the
instantaneous mass center as the origin of the body refer-
ence frame. This result appears in many standard texts and
herein simply establishes the notation and context for what
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follows.

Next, the rotational motion of the body is considered by
takmg the cross product of (2) with the position vector
R N

30 N7
O dF = RO x (d—zRo”P dev ®)
f
which yields the moment of the external force about the
origin of the inertial reference frame which acts on the
infinitesimal mass element pdV . Integrating (8) over the
entire volume yields

=0 =0 Ndz
MO = [ROWF x(d—zRONP )pdV 9)
t
14

where

MO jRo”an’F
v

(10)

is the resultant external moment applied to the body about
Oy . Next, the angular momentum of infinitesimal mass
element about Oy, is defined as

d(“H) = (11)

Nas
ONP (ZT ONP)pdV
Similarly, integrating (11) over the entire volume yields
the total angular momentum of the body about 0,

NEOw

N
=y a d~
= Ja"Bo"pav = [RO x R pav  (12)
\4

1%

Now, differentiating (12) relative to the inertial reference
frame results in

=0, dy=o

M= ZH (13)
which implies that the time rate of change of angular
momentum of the body about a point fixed in inertial space
is equal to the resultant moment applied to the body about
the same inertially fixed point. However, it is referenced to
a point fixed in inertial space, and the computation of
angular momentum is dependent upon the current inertial
position of the body. This could be avoided if a body fixed
reference point were chosen. If a body fixed point such as
Oy is considered, then using the vector equation

S0P

R RONOs , ROsF

=R R

the angular momentum of the body about O, can be
expressed as

NEON _ ﬁONOB N s 20,0, j-‘o,,P Nd—\o,,P
= X MT;TR R X H;R pdV
%

UR"” pavx 2 ""0”) [f "
qi +| JR

O"deV) (14)

Again, letting Oy be the instantaneous center of the body

as in the translational motion, then (14) becomes

N
by d > nx
Ny - (RONB x M -J—RO”B ) Ny® (15)

o
where MH®" represents the ‘Central Angular Momentum’
which is defined as

N dA
- j’RB P a_RB Podv
v

Ni®* (16)
It must be noted that (16) only holds for the instantaneous
mass center of the body. Differentiating (16) relative to the
inertial reference frame leads to

e Vs
M” = NP a7
Equation (17) is similar to (13) but the reference point is
the instantaneous mass center so that the computation of
angular momentum of the body is less demanding. Now, to
complete the rotational motion of the body, the central
angular momentum must be evaluated. Starting from (17),
one can obtain
Ba Basp
- % " P .\ o
= +sz ox R "pav+ [RFF x 2R (Ig;iv
v

where IB* represents the ‘Central Inertia Dyadic’ of the
deforméd body defined as

7 = [{(RE"P . REPYU-RETRE P }pav (19)
- v -

where U is unit dyadic. It must be noted that the central
inertia dyadic is time dependent in the body reference
frame due to structural deformation. Unlike the expression
for rigid-body angular momentum, additional terms are
present which produce substantial couplings between the
rigid-body and structural motion variables. However, such
coupling effects can be eliminated by imposing an addi-
tional constraint on the body reference frame and some
assumptions on the characteristics of structural deforma-
tion. In order to eliminate the second term from (19) an
additional constraint is imposed on the chosen body refer-
ence frame (Constraint 2) such that

B
2 dsp p
JREPex 2R pav = 0 i (20)
\'4

For small structural deformations, it can be assumed that
the rate of structural displacement is collinear with its posi-
tion vector (Assumption 1). Thus, the third term in (18)

may be dropped. Therefore, the central angular momentum
equation becomes

Y
B
B Ne

NgB* = 1)
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and finally the rotational equations of motion may be
expressed as

O N
M" = INH = a-t-({B M) (22)
Equations (7) and (22) along with the body reference frame
constraints (6.a) and (20) provide a basis for computing the
gross motion of a flexible aircraft. In order to carry out the
analysis and numerical study, it is necessary to write these
vector equations into their component forms in the body
reference frame. Let Xy be the general notation for the
component form ong\ vector X in a reference frame Fy,
then Fp, ME", Nyg , op and are the component forms
of external force, moment, velocny, angular velocity and
central inertia dyadic in the body reference frame. Let
these component forms be denoted by

B L Nap* v P

u
, Mp = (M|, Vg =|v|,
w

;‘B= Y|
VA N

Moving on, the component form of gross motion can be
obtained as

NdN-\B* NaB* N-BNaB*
Fs =My Vs = MT( AN VB) 23)
v
A B* ds g N-B
i - 35 )
N @4)
*N->B AN, N-B * N->B
={§ wp+ Iy g+ (?B({g 0)3)

where Nm§ represents the skew symmetric form of the
angular Velocity. However, structural deformation still
contributes to the time varying components of the central
inertia dyadic. By assuming that the structural deformation
is sufficiently small to ignore the time-varying components
of the central inertia dyadic (Assumption 2), the first term
on the right-hand side of (24) disappears and becomes a
typical set of euler equations for a rigid-body. Along with
(23) and (24), the inertial orientation of the body reference
frame is related to the body axis angular velocity compo-
nents by the kinematic relations,

1 0 -sin® ||®
0 cos¢ cos@sind||g
0 sin¢ cosBcosd

p
q = (25)
r

where y, 6, ¢ are the Euler angles which are the present
choice of variables to define the vehicle’s rotational posi-
tion. These are referred to as yaw or azimuth angle, pitch
or elevation angle and roll or bank angle, respectively. It is

emphasized that there is no contribution from structural
motion to the equations for the gross motion, and the gov-
erning equations motion become identical to those of the
rigid-body aircraft case. However, this is possible only
when the chosen body reference frame satisfies the con-
straints of (6.a) and (20). From the theory of structures®,
the structural displacements can be expressed by superim-
posing the product of a spatial function and a time func-
tion,

oo

P = Y @itxy 080

j=1

(26)

Then, the constraints, expressions (6.a) and (20), can be
written as

oo

—\B*P

pav = X, [®in y, pdve 27.0)
14 j= LV
B
= pk d> Ak -
J‘RB an?RPodeV = Z fRB PoXCDj(x, ¥, z)pdvgj(1127b)
v j=1V

2.1 Free Vibration ina V

The natural modes and frequencies of free vibrations
are important physical parameters for a flexible aircraft
study. When the natural modes and frequencies of free
vibrations are used to represent the structural displacement,
the constraint equations (6.a) and (20) are automatically
satisfied. By definition, free vibrations mean that no exter-
nal forces act on the body and its center of mass is not
accelerating. The equations of free vibration are

deziE” Podv = 0 28
Vt-i? pdV = 7 (28.2)
EN de_\

[RE* P x —k"pav = 0 (28.b)

1%

Substituting (26) into (28) leads to

J@itx. 3 23pav = 0
v

IﬁB Pox aj(x, y,.2)pdV = 0

v
where ®@j(x,y,z) is an eigenfunction in vector form which
represents the j’h mode shape of free vibration, and in turn
they guarantee the constraint conditions from the previous
section. In addition to (28), there are the equations for the
internal force equilibrium of the free vibrations. These
equations may be in the form of vector integral equations
derived from stress-strain-displacement relations, or using
approximation methods such as Galerkin’s method, the
Rayleigh-Ritz method or the Finite Element method. The
equations may be expressed as
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M[]+ K4 = [ 29)
where [:M] [K] are the generalized mass matrix and the
stiffness matrix, and is the generalized displacement
vector. After finding such matrices, one can obtain a solu-
tion for (29) by solving the generalized eigenvalue prob-
lem,

o*[o][o] = [K][o]

which gives the free vibration frequencies a)? and mode
shapes |9,| . There exist zero frequencies corresponding to
rigid-body modes and an infinite number of deformation
modes. The natural modes of free vibration are orthogonal
to each other and therefore provide great simplicity in
deriving the aircraft structural equations of motion.

2.2 Mean Reference Frame

In section 2.0, an arbitrary body reference frame is
introduced first and constraints and assumptions are made
on the body reference frame and structural deformation to
inertially decouple the governing equations between the
rigid and structural motion. In other words, a body refer-
ence frame can be chosen in such a way that it is very sim-
ilar to standard reference frames attached to rigid aircraft
representations.

Now, it is shown that such a body reference frame is a
special kind of mean reference frame. The mean reference
frame is defined as a set of body reference frames which
satisfy

B
ds
_‘.WRO”deV =0 Vit (30.a)

I o”an-Ro”deV =0 W (30.b)

In other words, the mean reference frame is a body refer-
ence frame in which the resultant linear and angular
momentum of the relative motion vanish at every instant.
Again, only structural motion is considered as relative
motion. Unlike the chosen body reference frame in the pre-
vious section, the origin of the mean reference frame does
not necessarily coincide with the instantaneous mass
center. If the chosen body reference frame is regarded as a
mean reference frame whose origin doesn't coincide with
the instantaneous mass center then

SB*P,

»0sP 2p P
B +R” "°+R°

R - I‘EOBB*

(31

Substituting into (30.a) results in
B B B
d>0,P d20,8* d>pp
[ 7RO pav = [ RO pav + [ 2RFFpav =0
v v v

B
d—\ 23
For a deformable body, HERO"B does not vanish. How-

ever, if structural deformation is assumed to be small
enough to ignore the time varying components of the iner-
tia dyadic due to structural motion then that is the same as
assumption 2 in the previous section and the first term can
be dropped. This may be proved using the parallel axis the-
orem,

1% = 13+ M(R%®" . RO*")u (32)
and differentiating with respect to time relative to the body
reference frame

B4 B4 so g Cdag pe
10 = H;IB*+2M,(RO"B . RO )U

B B
d d .
By assumption 2, 3;10 5 and 3;13* are zero and this leads

B
dAOBB*

ZZR =0

which implies that any point which is a fixed distance from
the instantaneous mass center qualifies as the origin of the
mean reference frame. Therefore, the mean reference
frame constraints (30.a) are simplified to

Pdsp p
[ 7R pav =0 (33.2)
v
Similarly, the mean reference frame condition (30.b) is
also simplified to

“""BP

Thus far, the origin of the mean reference frame does not
coincide with the instantaneous mass center. When the ori-
gin does not coincide with the instantaneous mass center,
but is a fixed distance from it, the translation equation (5)
may not be simplified to (7). Similar arguments also apply
to the rotational equation. Therefore, to further simplify the
dynamic equations, as in the previous section, the origin of
the mean reference frame must be constrained to coincide
with the instantaneous mass center of the body. For such a
case,

R pdV 0 (33.b)

[REPepav = [RFFpav = 0 (34)

v 14
which serves as an additional condition for the mean refer-
ence frame in addition to equations (30). However, this
additional constraint becomes identical to (30.a) when
expressed in terms of free vibration modes. Therefore, the
conditions for a mean reference frame whose origin coin-
cides with the instantaneous mass center are simplified to

f Sj(x, »2)pdV =0 (35.2)
\'4
SBP, _
[R® Pex @j(x, y, 2)pdV = 0 (35.b)

14
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Note that these constraints are identical to (27) in the pre-
vious section, so that the body reference frame used in
section 2.0 is regarded as a mean reference frame with its
origin at the instantaneous mass center.

A ic Equati i ion

In section 2.0, the dynamic equations which govern the
gross motion of a flexible aircraft were derived. In section
2.1, results from free vibration theory was stated and uti-
lized as a basis for choosing coordinates to describe struc-
tural deformation. In this section dynamic equations which
govern the aircraft structural motion in more general cir-
cumstances are derived. Due to the infinite dimensional na-
ture of the structural motion, these additional dynamic
equations are conveniently derived using the Lagrangian
dynamic formulation,

d iT iT —a—‘U = A, fi i =1 36
T aéj rel —(ag] rel)-l-agj = A or 1= 1, ,oo( )
where T,,, is the kinetic energy of the structural motion
relative to the body reference frame,

B

B
T = (@) (" oav
\ 4

U is the strain energy and A; is the generalized external
force. Substituting (26) into the kinetic energy expression
(37) leads to

o0 oo

1 - - . .
T, =3 IO I (Pilx, y, 2) - Dj(x, ¥, 2))pdVE()Ej()

i=1j=1V

(37

If free vibration modes are used to express the structural
displacement then by the orthogonality condition of free
vibration modes the kinetic energy becomes

1 -2
Trel =3 2 Migi

i=1

(38)

where M, is the i generalized mass which is defined as

-2
M, = [/ (x,y, 2)pdV
v
Again from the theory of structures the strain energy is
conveniently expressed using free vibration modes,
1 2.2
Us=»52 MoE (39
i=1
where w; is the i undamped natural frequency of struc-
tural modes. Substituting the kinetic and strain energy
expression into Lagrange's equation results in

. 1
Ei(r) + 02E,(1) = A fori=1, e (40)

In case the structural damping is included, then

§,-(t)+2§iwi§,-(t)+o)i2§i(t) = ]‘-}rAi fori =1,..,0 (41)

where Ci is structural modal damping factor which must
be determined from an experimental measurement. Equa-
tion (41) governs the motion of the aircraft structure rela-
tive to the body reference frame.

As equation (41) indicates, there are an infinite num-
ber of equations which govern the structural motion. This
set of equations appears to be uncoupled, but the general-
ized force remains to be evaluated in more detail. Some
judgement and experience is needed to select a finite
number of equations for practical usage such as flight
simulation and control system design.

4 omen

This section discusses the external forces and the gen-
eralized forces appearing in the equaitions for fine motion
for a flexible aircraft flying in the atmosphere. In general,
the net external forces in atmospheric flight are aerody-
pnamic (including propulsive reaction) and gravitational.
The aerodynamic force acts on the vehicle surface, an can
be categorized into two types. The first, denoted by- fM T
the vehicle’s motion dependent aerodynamic force per unit
area which depends not only on the instantaneous motion
of the vehicle but also on all previous conditions of
motion. Theisecond is the aerodynamic force per unit area,
denoted by 77, which arises from an atmospheric distur-
bance or a reactive source. Therefore, the total aerody-
namic force on the vehicle may be expressed as

A= J.(;M +}D)dS
N

The total external force must include the gravitational
force, and hence

;' = Z+MT§

Since the component form of the gravitational force is
expressed easily in a vehicle-carried vertical frame F, it is
convenient to introduce the transformation matrix from Fy
to Fp, denoted by Ly, . Then the component form of total
external force in body reference axes is

Fp = Ap+Mgp = Ap+ MLy gv (42)

a T s T
where Ap = [XYZJ , 8V = [OOg] and
cosOcosy cosOsiny —sin®
sin¢sinBcosy sin¢sinOsiny
Lgy = —cos¢siny + cosPcosy singcosd

cos¢sinBcosy cos@sinOsiny

+singsiny  —singpcosy cosdcosd

The external torque acting about the aircraft center of mass
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is evaluated by taking the cross product of all sources of
external force with the position vector R® 7,

ME = jﬁB*PxGM+}D)pdS+J§B*Px§pdV
s v

which can be further simplified as

M® = [REPx (M 4+ Pypds 43)
N

It can be exprgssed in body axis component form as
Mg = [L M N] where L, M, N are rolling, pitching and
yawing moment, respectively.

The aerodynamic forces and moments are strictly
functions of the modal amplitudes, rates, and accelerations
appearing in the fine motion description as well as the
motion variables of the mean axes. The strongest of these
dependencies are the principal sources of coupling
between the fine and gross motion.

Next, the generalized external force must be deter-
mined for the structural equations. This may be evaluated
from the principle of virtual work,

NG
)

where W is work done by all the external forces through a
virtual displacement. It must be emphasized that the struc-
tural equations are based on the body reference frame
which is non-inertial so that the external forces must
include the inertial force associated with non-uniform
motion of the body reference frame as well as the aerody-
namic and gravitational forces. Consequently, the total vir-
tual work may be written as

SW = 8W1nertia + SWGravity + SWMT

44)

(45)

where SW"""% sWO®" ™ and $W*" are the virtual work
done by inertia force, gravitational force and aerodynamic
force, respectively. Let d(d8W "“""'*) be the virtual work

done for an infinitesimal mass element by the inertia force.
Then,

: EYi -
d(SW™eT%y = gF . RE*P (46)
=Y . . . . Lo
where dF is the inertial force acting on the infinitesimal
mass element, and 5R%*% is a virtual displacement. Taking
the gross motion of the aircraft into account, the inertia
force is given by
B2 N
d = px d2 P
dF' = | —RE'P - SRV |pav 47)
dt dt
After necessary substitution and algebraic manipulations

among equations (4), (26), (46) and (47), the virtual work
done by the inertia f(gcel)ecomes

erti N-B - =
8Wl ertia _ o - 2 z J¢i(X, y, 2) X Dj(x, y, Z)Pdng&i
i=tj=1Y

N-=B RN Y .
"'2 o - Z Z Jl(pi(x9 Y, Z) X q)j(x! Y, Z)pdvglagx
i=1j=1V

The virtual work done by gravitational force vanishes since
SWOTaVin _ jg . 5§B*deV - 2 2 quh.(x, ¥, 2)pdVeE; = 0
14 i=1V

Similarly, the virtual work done by aerodynamic force and
moment is

Wi = Y I(}M +f)- <_I\>i(x, ¥, 2)pdS&;

°° i=18

+ ZJI'EB*PXG‘MJD) L Bi(x, ¥, 2)pdSSE,

i=18

Substituting each virtual work expression into (45) leads to
the total virtual wugrkn

NB = >
sw=o 3 Y [®ixy X0y, 2)pdVE;8E,
d=y=1v

NaB PN - .
2o -y ZJd),'(x, ¥, ) X Dj(x, y, 2)pdVE;dE,;
i=1j=1V

+ E j(}M +;p) : ai(x9 Y, z)pdS&';,

i=15

+ Z JﬁB*PX (}M +;p) : ai(xr s Z)pdSSE.u

i=1S

(48)

and using (48) to evaluate generalized forces with (44)
results in

o oo

NaB — -
Aj=—o -2 Y Jd),—(x, ¥, 2) X ®j(x, y, 2)pdVE,
i=l=17
N-2B - - .
20 Y Y [@ixy, 2 xDix, y, )pdVE;
i=1j=1V

+I(;M ) i(x, y, 2)pdS
< _

+J§B*P><(;M+}D)~$i(x, y,2)pdS
N

As indicated by the first two terms of equations (49), the
aircraft structural motion couples inertially with the angu-
lar motion of the body reference frame. In general, as the
angular velocity increases the aircraft structural modes
become more stiff®. The last two terms of equations (49)
are the aerodynamic contributions to the generalized
forces. These terms indicate aerodynamic coupling
between the gross and fine motions.

(49)

0 _Small P rbati heor

In the preceding sections, the governing equations
were derived for the general motion of a flexible aircraft.
Carrying out the matrix-vector multiplication of (23), (24)
and (25) with structural equations (41) results in six scalar
equations for gross motion, three equations for attitude of
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the aircraft and an infinite number of structural equations
of motion. These equations contain the products and tran-
scendental functions of motion variables and are therefore
generally nonlinear equations. However, they can be
greatly simplified by considering the motion of aircraft as
the composite of a steady motion at an equilibrium and a
dynamic motion which accounts for small perturbation
about the equilibrium. Denoting the equilibrium values by
a subscript e and changes from them by the prefix A. For
example, u=U,+Au, ¢ =®,+A¢, p=P,+Ap,
X =X+AX, §; = E;+ AL, etc. If a specific equilibrium
condition of interest is steady, straight symmetric with
wings-level flight, then the governing dynamic equations
for gross motion about the equilibrium point, provided a
plane of symmetry C,, exists, are simplified and grouped
into longitudinal and lateral/directional equations of
motion. These equations are summarized as following.

Longitudinal Equations of Motion

AX = M {Au+ W, Aq+(gcos®,)AB} (50.a)
AZ = M {Aw-U,Aq +(gcos©,)A8} (50.b)
AM = I, Aq (50.c)
Ag = A® (50.d)

Lateral Equations of Motion
AY = M{Av + U,Ar—(gcos®,)Ad} (51.a)
AL = I Ap-1 Ar (51.b)
AN = I Ar—1_Ap (51.c)
Ap = Adp- sin@e.A\V (51.d)
Ar = cos© Ay (5le)

Next, the structural equations of motion are considered for
the same flight condition. Since the aircrafthgl}n a steady
flight condition, the angular acceleration, a , and the
angular velocity , P, = 0, = R, = 0, is zero. The small
perturbational angular velocity terms are multiplied by
structural modal amplitudes which are also assumed to be
small so that the products of these two quantities are to b e
neglected. Consequently the contribution of the angular
motion of the aircraft (body reference frame) to structural
motion vanishes, and only aerodynamic forces remain as
generalized forces acting on the structure. Therefore, (49)
becomes

A = I(;M +}D) . ai(x, ¥, z)pdS

Aok s a x -
+JREPX P4 Py Bi(x,y, 2)pdS

(52)
. s
For symmetric flight, (52) can be written as
A= JEM+ 2P0k 3. 20+ BM +FP)0lx 3 2)
s .
+ m),(p;,(x, ¥, 2) }dS (53)

by substituting
PPy = R G AP
R\B*Px(}M+}D) = mj
®i(x,y,2) = G405, i+ 94(x ¥, 27 + (%, ¥, DR

Dividing the aerodynamic force into steady and perturba-
tional terms leads to the perturbational structural equations
of motion for symmetric flight,

AE; + 28,0,A8; + 07AE; = AA, (54)

where

AN, =[(AFM + A7P)9lds + [(AFM + AFP )¢ dS + [Am. ol ds

s s s
in which Am is a perturbational moment per unit area
on the plane of symmetry. It is reemphasized that the
aerodynamic forces and moments are dependent upon the
general motion of the aircraft which includes not only the
gross motion, but also the structural motion. Therefore,
these equations are strongly coupled through the aerody-
namic forces even though they are inertially uncoupled.
Furthermore, motion dependent aerodynamic forces, as
will be seen in the next section, introduce damping
effects on the structural equations as well as coupling
effects.

6.0 Evaluation of Forces and Moments

Typically, the aerodynamic forces on the aircraft are
expressed in the wind axes as drag D, side force C and lift
L. Using the transformation matrix Fy, to Fp,

cosocosP —cosasinP —sina
sinf cosP 0
sing  -sinasinf cosa

Lpy =

where o, B are the angle of attack and sideslip angle which
are defined as

R

it i v <ax< 7t< <
(x—atan;,B—aSlﬂjﬁ,*n_a_n,—z_B_z
u +v +w

Then, the aerodynamic forces in body axis components can
be expressed as

A B = LBWZw+ -7"3
a T a T
where Aw = [—D -C -l] and Tp = [Tx T, T;I . For a
truly symmetric condition, the sideslip angle and side force
are zero, so that the longitudinal forces in the body refer-
ence frame become

X = Lsinot~Dcosa+ T,

Z = —Lcosa~Dsina+7,
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The perturbational forces are obtained in a similar manner
as in the previous section. Assuming no thrust perturba-
tion, they are

AX = (L cosa, + D, sino,)Ao + (ALsino, — ADcosa,§55.a)
AZ = (L,sina,~D, cosa,)Aa + (ALcoso, + ADsina,)(55.b)

where

Ao = Aw/U, (55.0)

The perturbational thrust force is assumed to be zero.
Using nondimensional coefficients,
L=gS

refCL’ D= qsre D M= qsrejch

where is ¢ dynamic pressure, S, is the aerodynamic ref-
erence area and C,, Cp, C,, are the lift, drag and moment
coefficients. Again, the perturbational quantities can be
expressed as

Aq = p_U,(Au+W,A0) (56.2)
AL = (geS,,AC, +AgS,,,Cp ) (56.b)
AD = (c}es,efAcDm(}S,e]cD!) (56.c)

where p_, is the free stream air density. Now, the nondi-
mensional force and moment coefficients in body axes can
be defined as

CXC = C, sino, - CDecosoze (57.a)
CZ, = —(CLtcosoce + CDesinae) (57.b)
and the perturbational quantities are expressed as
ACy = AC;sina, - ACpcosa, (58.a)
ACy = —(ACjcosa, + ACpsina,) (58.b)

Then the perturbation forces and moments in body axes
become

AX =q.S, AACx ~ C; A0) +p U (Au + W,A0)S,, Cy (59.2)
AZ =S, (AC; + Cy A) +p_U,(Au+ W,A0)S,,.C; (59.b)

AM = g.S,,cAC, (59.0)

where ¢ is the wing mean aerodynamic chord. The gener-
alized forces in structural equations can be also expressed
as

A; = —F;coso. - G;sina + H, (60)

where -F;, -G;, -H; are defined as generalized lift, gener-
alized drag and generalized moment, respectively. Again,

using nondimensional coefficients,

- - o
F; = 45,,Cr » G; = 45,,/C; » H; = 45,,Cyy

where C'F, C'G s C'H are defined as generalized lift, general-
ized drag, generalized moment coefficients, respectively.
Expressing motion variables as the sum of the steady value
and perturbational dynamic values, then the steady gener-
alized forces for a symmetric steady flight condition are

Af = (}esref(—C;,zcos(xe - Ci;e sinat, ) + (;esrefz'c;]e (61)

and the perturbational generalized forces are expressed as

AA; = S, AACs+ Cp Ac+cACy) +

p.U(Au+ W, Aw)S,,Cs (62)

where
C;?, = (.—C;esinote— Ci;ecosoce)(_]esref
Cge = (—Cincosae—Ci;esinae)t-]es,ef

AC = (—AC}cosoce-AC'Gsinoze)qu,ef
Evaluation of aerodynamic force and moment on a flexible
aircraft is complicated due to their dependence on the
structural motion as well as the rigid-body motion. Com-
puting generalized forces is similarly demanding. In this
paper, quasi-steady strip theory1'2’7, which is a relatively
simple and crude approximation method, is adopted to
illustrate the complete modeling process. Although it is a
rough appoximation, the strip theory is very informative
because analytical expressions are avaiable for the aerody-
namic coefficients. It should also be mentioned that the air-
flow over an elastic wing is almost always unsteady in
nature so that more sophisticated treatment is necessary,
especially when aircraft flutter is of interest. Treating this
subject is beyond the scope of this paper, and interested
readers are directed to further references?, and a paper in
preparation by the present authors.

6.1 Quasi-Steady Strip Aerodynamic Theo

For a lifting surface such as an aircraft wing or tail, it is
possible to obtain analytical approximations for the aero-
dynamic lift and moment as well as the generalized force
by the strip theory approximation. For such a case, the total
lift from the lifting surface is the sum of the lift produced
by each section of the lifting surface which can be com-
puted from two dimensional airfoil theory. The angle of
attack at a particular spanwise location is treated as inde-
pendent of that at other locations. Figure 2 shows a typical
strip with a unit spanwise length. Assuming that the lifting
surface is modeled as an engineering beam which is flexi-
ble in torsion with no spanwise displacement, then the free
vibration modes are expressed as
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¢ 6% =0, 9[xy2) =0, , eixn) = ¢l

Now, the angle of attack of a strip can be expressed as

w W, q(l;+e) ¢q w
“s=;;+‘ﬁf"“‘_u‘_”‘f+9 +0, +z+—g (63)
where
w, : structural displacement rate in vertical motion

q, : structural displacement rate in angular motion

6, : angular structural displacement

i, : section incidence angle

of ° angular structural displacement of base at the
e junction point (jp)

w, : atmospheric gust

Using free vibration modes and the frequencies equation,
structural displacements and rates are expressed as

3

z,= 2, 0,0E . w,= X 0Lk

i=1 i=1
%=2@om,%=2@um
i=1 i=1

Then the equation (63), i.e. the section angle of attack, can
be written as

q(l +e) oW,
O = 00— ——— i +—
(i S»-eie. dolip)
> ((p;'(y)§i+ - u —t+ (zix gij (64)
i=1
Figure 2. Strip Theory
/
. Aircraft CG
AN

.2L'tMo

Dra

The lift of a section is given by

1 1
l= meVzc, = zpmvz(clo+clu(xs+c188)

where ¢, is the section lift coefficient, ¢, is the section lift
at zero angle of attack, <, is the section lift curve slope,
€y is the lift coefficients due to trailing edge device deflec-
uon 8. Substituting section angle of attack expression (64),
integrating over the span, b, of the lifting surface, and add-
ing the contribution from non-lifting surfaces such as fuse-
lage and nacelle result in total aerodynamic lift

1
L= 5. VS,
of is the aerodynamic reference area, the total lift

where S,
coefficient C, is defined as

C,=Cp +CLaa+CL_d+CLq+C w

oo

+}§(CL§ +Cr )+}5cr 5,

i=1
where m is the number of control surfaces available for air-

craft motion control and 3, are the deflections of corre-
sponding control surfaces. The coefficient definitions are
listed in the Appendix. In order to account for some of the
three dimensional finite wing effects, the actual lift coeffi-
cients are modified to

8

(65)

c, = _ (G

@ (Crap

1+(1+ T)—'ZR——
where 1 and AR represent the Glauert correction factor and

aspect ratio, respectively. The section moment about the
aircraft c.g. is also given by

1
m = zpszcm

where ¢, is the section moment coefficient given by

_ C/4+ I +e . C/4+ ls+ea+ C/4+ L +e
m = Cm,, Cla c Cmu Clm c s Cm5 cls c

Substituting the section angle of attack expression, inte-
grating over the span and adding the contributions from
fuselage and nacelle result in the total aerodynamic
moment about the aircraft c.g.,

1 -
M= prV2cS,efCM
where ¢ is the wing mean aerodynamic chord (MAC) and
the total lift coefficient C,, is defined as

Cy —CM+CMa+CMoz+CMq+CM f

+Z(CM§+CM ) ZCMS (66)
i=1 re=}
The coefficient definitions are listed in the Apendix. The
aerodynamic drag on the aircraft is modeled by a drag
polar which is given by
2
Cr

b = Cb,* 7e AR
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where C, is the parasite drag coefficient, e, is the
Oswald efﬁmency factor and AR is the wing aspect ratio.
The drag polar model is a quadratic function of C;, and can
be approximated using the Taylor series expansion about
the equilibrium condition. Denote the drag coefficients at
equilibrium flight as C p, then the drag coefficient C;, can
be written as

Cp=Cp +CD o+ Cp a+Cqu+CDwgwg

m
+ Z(CDEF; +Cp g) +¥.Cp. 8,
i=1 r=1

where coefficients, listed in the Apendix, are defined using
the first order terms in the Taylor series expansion of drag

polar model. Finally, the total aircraft drag can be written
as

(67)

1
D = »p, V'S,

6.3 Generalized Forces

The generalized force can be obtained from (52) by
applying strip theory. Substituting free vibration modes
leads to

0.5b
[ (@7¥ + a7P)g () + m 0l )3y
-0.5b
Now, it is possible to express Af;M + Af;D
tion lift and drag, i.e.

(68)

in terms of sec-

jf-q-f’z” = —Jcos0 —dsina (69)

Replacing (69) into (68) and adding contributions from
fuselage and nacelle gives the total generalized force as in
the form of (60) and F; , G; and H; are now defined as

0.5b,, 0.5b,

= | "e¥ay+ [ roPay+ ™! |
055, 055,
05b 0.5b,

b b

= [ dqtaye [ dolayeo™e?|,
-05b, ~0.5b,
05by 0.5b,

bb

[ miefays2 | m ofay+ s y— ”
7]

-0.5b,, -0.5b,
where
I d : section lift, drag with superscript for
corresponding lifting surface
L. 0™ : Liftand Drag contribution from fuse-
lage and Nacelle
m : section moment about elastic center

ec
with superscript for corresponding lift-

ing surfaces

" : Moment contribution from fuselage and

wbjp . )
nacelle about wing/body junction

(p;Vb, (p;b : bending mode shpae of wing and tail
(p;”, (p? : torsion mode shpace of wing and tail

; ‘ y : fuselage bending at wing/body junction

whjp

do??

M : fuselage bending slope at the wing/body |

whjp junction

The generalized moment is about the elastic axis of the lift-
ing surface, and hence the moment coefficient term must
be modified such that

ea c/4 € c/4 € c/4 €
¢,y = (C'"o +cl,,5)+(cmu +Cl,,5)as+(cm5 +C1z S
and
1 ea
ec = prvzcm

Now, generalized lift and moment can be evaluated by sub-
stituting section lift and moment coefficents, and expressed
in the form of

i i i i i i
Cr =CF0+CFaa+CF_oc+CFq+C e
o

2. Cp3,  (702)
r=1

+ Z(c&]& +cF )
j=1
cl, =c, +c§,aa+c§,,&+c§,q+cj,, w

o0

+ (c,, &+ c,, )
j=1

Generalized drag depends on the aerodynamic drag contri-
bution of the aircraft which is a quadratic function of aero-
dynamic lift, so that generalized drag can be assumed as a
quadratic function of generalized lift. For such a case, the
generalized drag can be obtained using the Taylor series
appoximation and can be written as

8

+2,Cy 8, (70b)
r=1

CG -CG +CGa+CG a+CGq+CG We

+ Z(CG 3 +Cc ) 2 .8, (100
j=1 r=1

where the coefficients are the first order terms in the series.
Definitions of coefficients in equation set (70) are listed in
the Apendix.

7.0 State- m of D ic K io

Equations (50), (54), (59), (62) constitute a complete
set of longitudinal equations of motion for a flexible air-
craft in steady rectilinear flight. In this section, these equa-
tions are expressed in the first order state variable form

x(t) = Ax(t) + Bu(t) + ry(zj (71)
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where x, u, v, A, B, and I’ are called state vector, input
vector, disturbance vector, system matrix, input matrix and
disturbance matrix, respectively. The dimension of x, 4, B,
and T are determined by how many structural equations
are included in the model. If N structural equations are
included, then

4+ 2N

2
x€R ,ue R",ve R

Ae R(4+2N)x(4+2N),BG R(4+2N)><m’l.,E R(4+2N)x2

where

x= [Au Ao Ag AB AE, AE ... AL, A&N]T
w=[8, .8

v= ["g WJT

To compute the matrices of (71) the aerodynamic and
generalized force coefficients must be computed first,
which can be represented as the sum of the values at the
equilibrium flight condition (steady, symmetric wings
level flight) and perturbational terms from the equilibrium
state. These can be evaluatgd from the relations given by

Cp = Cp +Cro+ 2,C. 8, (72.2)
r=
2
o
Cp, = Cp,* 54k (72.b)
a
m
Cy, = 0=Cpy +Cp 0, + 2, Cpy. 8, (T2.c)
r=1
m
Cp, = Cp +Cp 0+ 2, Cp. 8, (72.d)
r=
2¢, "
'] € ] i
Cq, = 72 ARCrF, * Ci %+ Y Cg, 5, (72.e)
m r=
i i i i
Cy, = Coy +Cyy 0+ 2, Cpy 8, (72.9

r=1

Note that the static aeroelastic contribution terms

2 CLUE‘j’ 2 CMEJEj

j=1 j=1
are taken as zero by assuming that the static incidence
angle includes these effects. The perturbational coeffi-
cients are computed by

(ACy = AC 0+ CrAo+ CAg +Cp A,
oo m
£y (CLE',A; + cLé_Ag,.) + ¥C, A8, (T32)

i=1 r=1

ACy, = CMéSa + CM‘;Aoc + CMqu + CngAWg

oo m

+ Y (cMgiAa,. ¥ CMé'AEi) + 3.Cyy, 88, (73)
i=1 . r=1
ACp = Cpho+Crho+ CD{;‘\q + CDngwg
oo « m
+ 2 (Cp a8+ cDE_Ag',.)\» S Cp, 88, (T3.0)
i=1 ' r=1
ACy = Cyhu+ Cpho+ CpAq + Cr A,
o « m
+ 2 (Cp 0+ Cr 88 )+ 3, Cp 08, (13.4)
i=1 ¥ r=1
ACG = Cgho+ cgisa +Cghq+ Cg Aw,
=3 m
+ 2 (Co, 08+ c"G&.Agj)Jf > C; A8, (T3e)
j=1 ' r=1
ACy = Cpyln + CyAt+ Cyg + Cy Aw,
oo « m
+ Y (C;EiA§j+ cﬁ,é.Agj) + 3 Ch AB, (73)

j=1 r=1
Using equation set (72) and (73), the aircraft equations of
motion (50), (54), (59) and (62) are written as

Au+W,Aq = X, Au + X Ac + XdA(;c +X,Aq+Xp0 +
N m
Y (XUAE_V- + Xé.iAZ;\;) + Y, X508, + X, Aw, + X, Au,

j=1 r=1

A0-U,Aq = Z,Au+Z A0+ Z&A& +Z,Aq+Zoh0 +
I} m

> (nggj + Zé.’,Aéj) + X Zs A8, +Z,, Aw, + Z, Au,
j=1 r=1

A = M,Au+MyAc+ M. AG+ M Aq + Mgh +
N o m

) (MUA@ + M&Aéj) + D M5, A8 + M, Aw, + M, Au,
j=1 r=1

A® = Ag

MiAéi + 2M,.§i0),.Aé:;i + MimfAﬁi =
N
E,Au+ E Ao+ E;Aa +EAq+ E;;;se + Y (E’QAQJ. + E'é.iAij) +
Jj=1 . .
I
Y E5, A8, +E, Aw, +E, Au,
r=1
where X,, X, Xq, etc. are defined as body axis stability

derivatives, and they are listed in the Apendix. Finally,
expressing the above equations in state-space form gives
(71) where the system matrix A, input matrix B, distur-
bance matrix I" are computed from,

A=x'a,B=x"B,r=3'r
and A, B, T, T are defined as
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A=
X, Xo X Xo X, X X :,
Z, Zy Z, Zy % z. z .
u “o “g ‘Lo € E, Ey En
M, M, M, My M, M. M M.
R & & S En
0 0 1 0 0 0 0 0
0 0 0 0 o0 1 0 0
1 1
EN( E -
E, Ey E, Eg ( F") & . B E!
-KyJ{2M, 0, v Ew
0 0 0 0 0 0 0 1
EN( E -
A S A
L l o ~Ky) (2MpLyoy
1 T
Xs, Zs, My, O 0 Es 0 0 Ey
B =
Xs, Zs, Ms, 0 0 Eg .. 0 0 Ej
1 T
b |Xug Zug Myg 00 By 0 E,,
1
Xyg Zyg Mg 00 E, .. ... 0E,
1 X. 0 W, 0 0 .0 0]
o
0 1-Z. 0 -10 0 0 0 o0
o
0O M. 1 0 0 0 0 0
o
0 0 0 1 0 0 0 0
5|0 o1 0 1 0 0 o0
0o E o0 0 M, .. 0 0
o
0 0 0 0 0 1 0
EY 0 o0 o 0 M,
L a -

8.0 Concluding Remarks

The formulation of a mathematical model for flexible
aircraft dynamics is presented. Newton’s equation is used
to describe the aircraft gross motion, while Lagrange’s
equation with the virtual work principle is used to describe
the fine motion. These two sets of equations are kinemati-
cally decoupled although inertial and aerodynamic cou-
pling remain. Assumptions and constraints to achieve this
degree of decoupling are explicitly stated. In an effort to
provide an extensive tutorial on the subject, a state-space
form of the longitudinal equations is obtained using quasi-

steady strip aerodynamic theory and small perturbation
theory.
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Appendix
Lift Coeffici
* Motion Dependent
0.5by 0.55;
2 2
C, =5 [ @reiinedy eng | (€ ~cie ey +c)
0 0
0.5b,, 056,
2 2 de N
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2 wi wit d(be ] w
C, = c le, +_! c. dy+
Ly S;’ (J; l"( Tdx whjp :
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Moment Coefficients
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Cy, = LEBN (cg 21)c‘”’]Jr
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Cp, = Cp +szp * Drag Polar Model

Cp : equilibrium drag coefficient
Cp, :parasite and trim drag

: equilibrium lift coefficient
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0.5by, 0.5b,
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