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Abstract

The paper describes a method for the in-flight
monitoring of sensors in aircraft using analyti-
cal redundancy. The redundant quantities are
estimated with the help of a nonlinear Luen-
berger-observer. Comparing the estimated
with the measured data, residuals are gener-
ated. The analysis of these residuals in a non-
linear, multistage bank of filters leads to a
number of criteria, which enable a threshold
logic to decide whether a sensor has failed or
not. The method is applied to critical airdata
sensors of the in-flight simulator ATTAS of the
DLR. Some results for the response of the
system to failures will be shown. Because the
failure detection works with simple algorithms,
the method is fast, flexible and easy to imple-
ment.

Introduction

Because of the increasing automation in air-
craft systems, the reliability of the sensor-
systems used becomes more and more impor-
tant. The probability that one sensor failure
leads to a safety-critical situation in flight must
be less than 10” per flight hour [1]. Since the
probability for a single sensor failure can be up
to 10™ per flight hour, the given reliability de-

mands can only be achieved through redun-.

dancy.

Redundancy

The necessary redundancy can be achieved
by tripling the sensor hardware (parallel or
physical redundancy), but this approach in-
creases also the costs and the weight of the
sensor system. Another problem is that the
tripled sensors are often used under the same
or similar environmental conditions. In this
case, the failure probabilities of those sensors
are not statistically independent anymore,
which leads to less safety. Both disadvantages
can be avoided, if the redundancy is generated
analytically.
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In the analytical redundancy concept, the re-
dundant sensor signals are evaluated through
the mathematical model of the aircraft from
other measured quantities. With the help of the
difference between the calculated and the
measured signal (residual) it can be decided,
whether the corresponding sensor failed or
not. The failure detection is done in two steps:

1. Generation of the residuals
2. Analysis of the residuals

Without any sensor failure in the ideal case the
residual is zero. But because of model errors
and disturbances with effect on the process
there will be a deviation aiso in the faultless
case. To come to a correct decision in sensor
failure detection, the residual evaluation must
be able to distinguish between the disturbance
effects and the true sensor failures.

Sensor Failure Detection Tasks

In aircraft usually not only one sensor needs 1o
be monitored, but multiple sensors are com-
bined in a multi sensor system. Then, the sen-
sor failure detection is devided into three tasks
[2], which can be carried out together or sepa-
rately, depending on the concept:

1. Failure detection
2. Failure isolation
3. Failure diagnosis

For each practical sensor failure detecting
system, the first two tasks are obligatory. Al-
though the third task is optional, it is often a
useful addition. In the proposed scheme the
second task is carried out by analyzing a re-
sidual for each sensor signal. In this case the
failed sensor is immediately localized after
detection.

Airlog

In the investigated case the failure detection
algorithm is applied to the airlog of the re-
search aircraft ATTAS (Advanced Technology
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Testing Aircraft System) of the DLR. The airlog
is used to measure angle of attack, angle of
sideslip, and true airspeed (Figure 1).

Fig 1: Research Aircraft ATTAS, Airlog

The airlog, a cardanic suspended vane with an
impeller, is mounted on a noseboom of 4 m
length. This sensor is critical, i) because the
measured signals are of utmost importance for
control and identification [3] and i) it is
mounted outside the cabin, where it is exposed
to influence of the environment and therefore
susceptible to faults (icing, mechanical dam-
age, induced oscillations) above the average.
For this reasons, it is advisable to apply an in-
flight monitoring in this case.

Generation of the Residuals

The residuals are generated by calculating the
difference between estimated and measured
signals. For the estimations a nonlinear Luen-
berger-observer is used {4]. An observer is an
algorithm, which, similar to a simulation, calcu-
lates state and output variables from the input
variables and a mathematical model of the
process. In contrast to the simulation the esti-
mated output variables are compared with the
corresponding measurements and the differ-
ences (output errors) are fed back. The feed-
back matrix works like a controller and
changes the state variables until the output
error becomes small. In this way the observer
is able to generate correct state and output
variables in the presence of wrong initial con-
ditions. The feedback matrix is constant and is
provided by the user in that way that the sys-
tem is stable.

Measurement Variables of the Process

To estimate the states and outputs the ob-
server needs the inputs of the process. Here,
the inputs are the control surface defiections
and the thrust, which initiate the motion of the
aircraft. As output, the observer estimates the
angle of attack, angle of sideslip, and airspeed.
These are substracted from the corresponding

process variables to generate the residual
(Figure 2).

For the feedback the translational accelera-
tions, registered by the inertial measurement
unit, are used. Because the observer is de-
signed as a local observer and therefore esti-
mates only the translational motion of the air-
craft, the rotational quantities (attitude and
angular rates), which are needed in the ob-
server for the transformation of coordinates,
have to be taken from the process.

With this arrangement the process variables,
coming from the airlog, can be monitored. The
other process variables, coming from the sen-
sor groups S,, S, and S,, are supposed to be
failure free.

l disturbances

| residual »

' "F: __on:boar

computer

8y input signals (control surface deflections, thrust, etc.)

S, non observed states (roli-, pitch- and yaw rates, attitude)

S; feedback signals (translational accelerations)

w

S4 supervised sensor signals (Vras, a, B)

S, estimated sensor signals
Fig 2: Sensor Signals in the Process

Experimental Flight Test Data from ATTAS

Figure 3 shows on the left side time histories,
where measured airlog variables and the cor-
responding estimates from the observer are
compared. On the right side, the differences
between both are presented as residuals. The
residuals are caused by model inaccuracies
and disturbances, like gusts, turbulences or
measurement noise. Because they are not
caused by sensor failures and therefore belong
to the failure free case, they have to be toler-
ated by the sensor failure detection scheme.
To evaluate all consequences of these effects
on the residuals, extensive flight data have to
be analyzed.
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Fig 3: Flight Test Data

As one can see also, the three failure free
residuals have different properties which are
characteristic for each measurement variable.
For example in the residual for V., low fre-
quency fluctuations and in the residual for B
high frequency noise dominate, respectively.
These differences in properties have to be
taken into account when the parameters for
the failure detection algorithm are set.

Analysis of Residuals

To distinguish between the failure free case
and a failure, it is assumed, that failures in the
sensor system have certain characteristic ef-
fects on the residual (e.g. sudden deviations
like spikes or jumps, slowly accumulating de-
viations as drifts, constant deviations like off-
sets, and fluctuating deviations like noise or
oscillations). The detection of a failure de-
pends on the appearance of the residual. in
this sense the detection algorithm is a kind of
pattern recognition method. Its task is to ex-
tract characteristic criteria from the residual to
achieve criteria, which can be used to decide
whether a sensor has failed or not.

The analysis of one residual is done in two
steps:

1. Extraction of criteria
2. Decision making

Bank of Parallel Filters

For the extraction of criteria in the first step a
bank of parallel filters is used. The lowpass

filters at the first stage can be realized in dif-
ferent ways: as gliding mean value or expo-
nential filter. The time constants are set in
such a way that strong, medium and weak
filtering of the residual (T, < T, < T,) is applied.

in the second stage the squares of the differ-
ences of every two neighbouring residuals are
generated. The resulting signals are equivalent
to a bandpass filtered residual. Altogether one
can say that the residual is processed in a
bank of parallel bandpass filters. Because of
the different dynamics of the fiiters the residual
is reduced in different spectral areas. The rea-
son why bandpass filters are not used directly
is that the lowpass filtered residuals are
needed as criteria for the following decision
making.

In the block diagram the square operation is
depicted by a quadratic characteristic. Be-
cause the squaring not only causes a positive
sign but also a stronger weighting of the -
higher amplitudes compared with the lower
amplitudes, the squares of the differences are
very sensitive to fast and strong variations of
the residuals. So, they are also taken as crite-
ria for failure detection.

In the third stage the squares of the differ-
ences are filtered by a gliding mean value fil-
ter. The width of the sliding window (time con-
stant) is the same for all filters which are used
at this stage. The criteria, which are created
this way, correspond under certain conditions
to the square effective value or the variance of
the bandpass filtered residuals. By comparison
among themselves one can decide which
spectral regions dominate in the residual.

Use of Counters

Further criteria are generated by counters,
which count discrete events, which occur,
when a criterion exceeds a certain threshold.
Counters are used if an accumulation of
threshold excitations characterizes a special
failure case. In the following three different
counters will be described: duration counters,
frequency counters and drift detectors.

The duration counters register the duration of a
threshold excitation by incrementing their value
by one each sample as long as the signal is
beyond its threshold. The number of threshold
crossings in an interval of time are registered
by the frequency counters. Their values reflect
the changeability of the residual. The imple-
mented drift detectors supply hints about the
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monotony of the signal. For this purpose these
counters work with variable thresholds, which
are set each time step on the last value of the
signal. If the next value is greater, then the
counter is incremented, if it is less, the counter
is decremented by 1. Because the residual
contains stochastic noise, there is no strict
monotony during more than a few samples. To
recognize longer lasting drifts the drift counters
must be applied to the lowpass filtered residu-
als.

The counter values refer to a window of con-
stant width, which slides over the time history
of the residual, and over some of the extracted
criteria. Each time step the window is shifted
one step forward and all new excitations or
crossings of thresholds are added to the corre-
sponding counter. To decrement the counter,
the passing values are saved and substracted
from the sum (counter value) when they leave
the window on the other side. Here such a
counter is named ‘sliding counter’.
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Fig 4: Analysis of the Residual

Decision Making via Threshold Logic

The digital character of the yes/no-decision for
the detection of a failure requires a nonlinear
threshold logic. The extracted criteria are su-
pervised regarding the exceeding of certain
limits. If one limit is exceeded, the correspond-

ing failure flag is set. If criteria stay inside the
tolerance area, the failure flags are zero. The
overall failure flag, which is evaluated by logi-
cal-or-combination of all failure flags, shows if
a failure has occurred at all.

Many parameters of the algorithm, like time-
constants, thresholds, etc. can be set by the
user. Therefore the algorithm is very flexible
and can be adapted to very different character-
istics of measurement signals or residuals.
Also it is possible to locate the cause, if a
wrong decision in failure detection has been
made, and make corrections by modifying the
parameters. Because the failure detection
works with simple algorithms, the method is
fast enough to run on low speed computers in
real-time.

The failure detection is indeed very fast, be-
cause its algorithms consist of only a few op-
erations to perform the filter and threshold
calculations. On a PC (486/50 MHz) the
analysis of a residual of 1000 samples lasted 6
sec (incl. initialization and harddisk opera-
tions), which means that the cycle time is less
than 6 ms. So the failure detection is fast
enough to run in real-time even on computers
with less performance.

Examples

In the following passage two examples will be
given to show, how the analysis of the residual
leads to the detection of a sensor failure. First,
the case of a spike in the residual will be dem-
onstrated.

1 total

—\ " failure
flag

o

ALV '
it Vae

squared difference
RE [ R R
* 100s

filtered residual

0 100s

AL o 100s

“’W}\WJ

[ 100s

Fig 5: Detection of a Spike

A spike is a short (few samples) and strong
deviation from the correct value. Spikes can be
produced by a loose connection in the electric
part of the measurement system. A character-
istic of spike is the sudden appearance and
disappearance. This leads to steep flanks in
the residual. From the criteria especially the
high frequency square-difference is suited. In
the case shown (Figure 5) this criterion ex-
ceeds its threshold and sets the failure flag for
a short moment to 1. The frequency counter
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counts two crossings, but it is not enough to
exceed its own threshold. Other criteria are not
involved in this situation.
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Fig 6: Detection of a Drift

Figure 6 shows a drift of 1°/min which is super-
imposed on the angle of attack residual. A drift
is a slowly increasing, more or iess monotone,
deviation of the measured signal from the cor-
rect value. This can be the consequence of
temperature variation or attrition. As one can
see in the figure, the drift is recognized by the
lowpass filtered residual, which increases mo-
notonously for a certain time and causes the
drift counter to exceed its threshold. Because
of the slowly arising oftset, the lowpass filtered
residual exceeds its threshold and causes a
incrementation of the corresponding duration
counter. But because the time history ends
already 20 sec after this event, the duration
counter does not reach its own threshold.

The failure flags, which are derived from the
criteria, can be used as a preliminary stage for
a diagnosis, because they are activated in a
characteristic combination depending on the
failure. To fulfil a complete diagnosis, the rela-
tion between the residuals and their causes
has to be found.

Elight Experiments

Presently the method will be applied in flight
experiments. By the implementation of the
failure detection algorithm in the research air-
craft ATTAS the airlog can be observed and, if
a failure occurs, the flight can be discontinued.
Canceliing the flight in an early stage of the
experiment, time and money can be saved.

If measurement data are used to teed flight
controllers in a fly-by-wire system, in the case
of a sensor failure there is a crucial need to
react very fast and to switch off the failed sen-
sor. In such a case it is either possible to turn
over the control to the pilot (fail passive) or to
replace the missing sensor information by its
analytically redundant quantity in order to con-

tinue the automatically controlled flight (fail
operate). This replacement of a lost sensor
signal by an other signal is the reconfiguration
of the measurement system.

To fulfiil these tasks, the failure detection has
to be very reliable in flight. The flight experi-
ments are aimed at the following objectives:

¢ Implementation of software in on-board
computer and real-time operation

o ldentification of the effects ot model errors
and disturbances on the residual by analyz-
ing flight data from flight in turbulent air and
extreme flight maneuvers

o Determination of tolerances and thresholds
for the failure free residual

¢ Minimization of false alarm rate

¢ Validation of failure detection algorithm by
initializing artificial sensor failures

For the preparation of the flight experiments
the ground simulation facility is a necessary
and helpful tool. In the ground simulation the
developed software can be tested under al-
most the same conditions as in the aircraft.
With the help of the simulation the motion of
the aircraft and the sensor inputs are calcu-
lated. In this environment it is also possible to
simulate turbulences and sensor failures.

nclusi

Since the airlog is a good example for a critical
sensor, the discussed in-flight monitoring
method is applied to the airlog of the research
aircraft ATTAS of the DLR. The monitoring is
done by analyzing the residual — this is the
difference between estimated and measured
sensor signal — with respect to sensor failures.
For the estimation of the translational motion
of the aircraft a nonlinear local Luenberger-
observer is used. The analysis of the residual
is done through a multi-stage bank of parallel
filters, where several criteria are extracted.
Further criteria are generated by thresholds.
The decision, if a sensor failure is detected or
not, is done with the help of a threshold logic.

The main advantages of the presented ap-
proach are speed, flexibility and transparency.
Speed is a result of simple filter algorithms.
This makes an operation of the failure detec-
tion possible even in situations with low com-
putation power. The parameters, which can be
set by the user, allow an adaptation to different
residual properties. So the method is applica-
ble to several sensor types. The way the re-
sidual is computed until a decision is made, is
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easy to comprehend. If false alarms are trig-
gered because of unsuited parameters, the
user can identify the reason and make ade-
quate changes.

A disadvantage of the used observer scheme
is that only some selected sensors can be
monitored, while the others are assumed to be
free of failures. If one of these fails, the ob-
server is not able to make accurate estima-
tions. So, the caused deviation in the residual
may be interpreted as a failure in a working
sensor, and a false alarm will be triggered.

For that reason DLR is working now on a
method to monitor all important sensors, which
are related by analytical redundancy, at a time.
Also it is intended to extend the analysis by a
diagnosis of the failure. This will be done by
combination of different failure flags.
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