ICAS-96-3.11.2

ROBUST AUTOPILOT DESIGN STRATEGY FOR
FUNCTIONALLY DEPENDENT PARAMETER UNCERTAINTIES

Guy E. Shaviv*

Moshe Idan'

Department of Aerospace Engineering
Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract

In this paper an approach is presented to incorporate
known functional dependencies of model parameters on
uncertain physical quantities. The approach is suit-
able in cases where the source of the plant uncertainty
is mainly accountable by a few unknown physical pa-
rameters. In such cases, uncertainty over-bounding
is greatly reduced compared to using general uncer-
tainty descriptions. This may lead to a better perfor-
mance/robustness trade-off in a robust controller de-
sign. The basis of the approach is to describe the model
uncertainties in the unknown physical parameters as
Linear Fractional Transformations (LFTs). Then, us-
ing LFT algebra, a LFT is obtained, which describes
the effect of the uncertain variables on the plant model.
The resulting model can be used with several robust
control synthesis techniques. In particular, in this pa-
per u synthesis, which is most suitable for the result-
ing functional dependence model was adopted. As an
example, an aircraft controller to follow roll angle com-
mands while keeping the lateral acceleration close to
zero was designed. The resulting controller satisfies
the specified performance requirements and its supe-
rior characteristics is demonstrated by comparison to a
controller which was designed using general uncertainty
bounds model.

1 Introduction

Autopilot design is often based on a linear model of
an aircraft, the numerous parameters of which depend
dominantly on a few unknown physical quantities such
as the location of the vehicle center of gravity (c.g.),
the air density, the trim angle of attack and the Mach
number. Some of these dependencies may be modeled
analytically in a relatively simple form (e.g., the model
coefficients dependence on the aircraft c.g. location or
on the air density,) while others may be more difficult
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to model analytieally, but still could be expressed em-
pirically based on experimental results. The design goal
is to achieve robust performance for the uncertainties
in these few physical quantities. In this work, the effect
of additional model uncertainties that are not related
to any common physical quantity, such as uncertain-
ties in the non dimensional aerodynamic stability and
control derivatives, are assumed to be small compared
to those caused by the uncertainties in the above men-
tioned physical quantities, and thus are not discussed
here.

A problem, closely related to the one presented
above, can be formulated when designing an autopi-
lot for several flight conditions. The flight conditions
are often defined by different values of some physical
parameters, such as flight altitude and speed. These
parameters, which affect the linear model of the air-
craft , can be considered unknown and allowed to per-
turb within a specified range of interest. The require-
ment for the controller to operate at all the conditions
is equivalent to the requirement to provide robust sta-
bility and performance of the system while the physical
parameters vary in the given range.

In order to achieve strict performance requirements,
it is necessary to take into account the uncertainty in
the system model and the manner by which the uncer-
tain variables affect the system model parameters. Sev-
eral approaches exist for describing the system uncer-
tainty for use in robust control design. The multi-model
approach (see Rel. 1 and references therein) evaluates
the system at several operating points and attempts to
find a controller that meets performance criteria for all
system models simultaneously. The complexity of this
approach increases with the number of uncertainty and
controller parameters, which makes it difficult to imple-
ment beyond very few of these parameters. In addition,
there is no guarantee on the performance at operating
points not considered in the design. Alternatively, there
are design techniques that account for the model uncer-
tainties by specifying general bounds on their overall
effect on the plant frequency response. The design goal
in such methods is to minimize a frequency weighted
sensitivity function, leading to design techniques like
H,,.2% An additional approach is to specify bounds
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on each of the model coefficients,*® which is usually
applied with p synthesis.

The drawback of the latter methods for uncertainty
modeling is that they do not incorporate the exact
functional dependence (if such exists) of the model
parameters on a few uncertain variables. Instead, a
more general uncertainty space is defined, often over-
bounding the true uncertainty space. In Ho, this over-
bounding results from ignoring phase or structure in-
formation, while in parameter bounding p it is caused
by ignoring parameter dependency information. This
over-bounding may lead to conservative controller de-
sign and prevent the autopilot from achieving the de-
sired performance in the entire uncertainty range con-
sidered, as will be demonstrated throughout this paper.

In this paper we present a design methodology for
incorporating the known functional dependence of the
model coefficients on physical parameters into the un-
certainty model, resulting in a less restrictive uncer-
tainty model. While the resulting model can be used
for controller design using any robust control technique,
the g synthesis is adopted here since it best fits the
structured uncertainty model obtained.

The advantages of the new technique were recently
demonstrated for a SISO example with only one un-
certain physical parameter.” In this work we tackle a
more realistic MIMO case with a few uncertain physi-
cal parameters, where the advantages of the proposed
technique are expected to be even more pronounced. A
model for the lateral dynamics of a Remotely Piloted
Vehicle (RPV) with unknown payload mass and varying
flight altitude, modeled as unknown air density, is con-
structed. The goal is to design a robust lateral autopilot
for the unknown aireraft mass which can operate at an
altitude range of interest, thus avoiding controller gain
scheduling. To demonstrate the superior performance
of the autopilot designed it is compared to controllers
obtained using other robust control design methods.

In the next section we discuss the underlying concept
of the robust controller design approach. In section 3 an
application of the proposed approach is demonstrated
by developing an uncertainty model of a RPV carrying
a payload of unknown mass and operating at a certain
range of altitudes. A g controller is designed using this
model in section 4 and is compared to a controller which
was designed using a standard uncertainty model in
section 5. Summary and conclusions are presented in
section 6.

2 The Concept

The controller design process is often based on a model
of the dynamic system. Since the dynamic character-
istics of the physical system may be different than its
model, it is said that the system model has an uncer-
tainty. In such cases, a robust controller has to be de-
signed to achieve specified performance qualities for the

entire uncertainty space of the system model. In this
paper we treat systems with uncertainties dominated by
a few uncertain physical parameters. It is assumed that
these unknown physical parameters change the model
of the system in a known manner. )

Not taking into account the resulting dependencies
between the model parameters may lead to an uncer-
tainty space over-bounding, as is demonstrated for a
two parameter example in Fig. 1. Here the two model
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Figure 1: Parameters with Functional Dependence and
a Possible Uncertainty Bounding

parameters (P, P;) are assumed to depend on-a sin-
gle uncertain physical quantity «. As a varies, P; and
P, vary simultaneously, making them dependent. A
simple way to define the uncertainty space could be
to bound the perturbation range of each of the pa-
rameters separately (the gray area in Fig. 1). This
of course will result in an over-bounding of the uncer-
tainty space. When using these bounds in the robust
controller design, the most difficult design point in the
uncertainty space may correspond to a non physical
parameter combination, for which the desired perfor-
mance criteria could be difficult or even impossible to
meet. The use of the functional dependence between
the parameters provides information, for example, that
when P, is maximal, P, obtains a specific value within
the range of its variation. Consequently, there is no
need to design a controller for a combination in which
both parameters are at their maximal values. The use
of the parameter functional dependence eliminates un-
certainty over-bounding by describing the uncertainty
space in an exact manner, letting the controller tackle
physical cases only.

We use a recently presented modeling scheme for a
system with uncertainty which is governed by a small
number of unknown physical parameters.” The method

2644



is based on incorporating the known functional depen-
dence of the model coefficient on the unknown physical
parameters into the uncertainty model, thus avoiding
undesired uncertainty over-bounding. This may poten-
tially lead to a better trade-off between performance
and robustness at the design stage, and reduce the de-
sign problem complexity as the dimension of the un-
known physical parameters is usually smaller compared
to the number of model parameters affected by them.
Ref. 7 presents the method, underlying principles and
algebra. In this paper we focus on demonstrating the
use of the approach by building a functional dependence
uncertainty model for a more realistic and complex au-
topilot design example.

During the modeling process, the relations between
each uncertainty variable and the model parameters is
often known. The procedure is to express these basic
uncertainties of each of the model parameters as a LFT
and then, using LFT algebra, the complete uncertainty
model, which describes the effect of each uncertainty
variable on the model, is derived. The basics of LFT
algebra is reviewed in Ref. 8. This modeling procedure
leads to an uncertainty model presented in an analyt-
ical form. Hence, the LFT algebra is performed ana-
lytically. For this purpose, a symbolic LF'F manipula-
tion package was developed under the Mathematica™
environment, which enables to perform symbolic LFT
algebra.

The resulting uncertainty model is a LFT, which
contains only physical uncertainties in its uncertainty
block. Due to inner structure of the plant and the mod-
eling procedure, some of the physical uncertainties will
be repeated, i.e. will have several instances in the un-
certainty block. These repeated uncertainties are called
“repeated scalar blocks”. Some of these repetitions are
caused by the modeling procedure and are superfluous.
They are introduced in much the same way as excess
modes may be created when cascading two systems in
a state space realization. Often these repetitions could
be eliminated by finding a “minimal realization” for the
LFT. This is similar to finding a minimal realization
of multi dimensional systems® with respect to the re-
peated uncertainties. The difficulty in achieving a min-
imal realization is that, except for a few special cases,
a general solution for this problem does not exist.®

After an uncertainty model is obtained, any robust
control design method, which can handle structured un-
certainties, may be used to synthesis a controller. In
this paper, p synthesis was applied,!® since it comes
naturally with the LFT syntax, and it best suites the
resulting structured uncertainty model. The modeling
and controller design procedures are presented in detail
for an autopilot design example in the next section.

3 Aircraft Model

As a first step in a robust autopilot design for a RPV, a
model of its lateral dynamics and the uncertainty model
are developed in this section. The RPV is assumed to
carry a payload of an unknown mass, hanged from a
given point on the RPV. The change in the payload
mass, changes therefore, the aircraft’s total mass and
the Iocation of the center of gravity (c.g.) This changes
the dynamic characteristics of the aircraft. Addition-
ally, the aircraft is required to operate at an altitude
range from 0 to 10 Kft (about 3 Km). The change in
altitude changes the air density, which in turn changes
the aerodynamic characteristics of the aircraft. Thus,
the aircraft model has two physical variables governing
its uncertainty: the aircraft mass and the air density.
The aircraft and payload data used are of the Israel
Aircraft Industries (IAI) “Pioneer” RPV.

The Uncertainty Model

The change in the RPV payload mass affects both the
total aircraft mass and the c.g. location of the air-
craft /payload system. The change in the RPV flight al-
titude changes the air density. We will first describe the
uncertainty in these basic model parameters as LFTs,
which will then be used in the sequel to obtain an un-
certainty model of the aircraft equations of motion.

The change in aircraft mass can be modeled as a
multiplicative uncertainty by

which can be expressed as a LFT
m=r ([T 7 | on) @

The uncertainty variable d,, represents the relative
change in the aircraft mass due to a change in the pay-
load mass. 7 is the nominal mass.

In this example the payload is located at a known
location along the z axis of that system. Thus the
change in the payload mass shifts the c.g. in the z
direction only. The relation between ., the shift in
the 2 position of the c.g. from its nominal position, and
dm can be expressed as

_ (&g = %eg)0m
b0 = om ®)
where x, is the known payload location along the
axis and £, is the nominal c.g. location. Eq. (3) can
be written as a LFT
RY

0z
acngv([l A

where Tp S Ty — &g is the distance between the pay-
load location and the nominal c.g. location.

(4)
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It will be noted that the shift in the c.g. along the
z axis affects also the aircraft’s moments of inertia I,
and I ... However, it was found that the total change in
the moments of inertia due to the payload mass range
considered is less then 2% and was therefore neglected.
The main effect of the mass uncertainty is on the yaw
moment and the lateral acceleration equations, as pre-
sented in the sequel.

The change in flight altitude changes the air density
p. This change can be expressed as a multiplicative
uncertainty

p=p(1+0,) (5)

where § is the air density at the nominal flight altitude
and &, its relative uncertainty. This can be expressed

as a LFT o
_ p b
r=n(l75])

Linear Model of the Aircraft Lateral Dynamics

(6)

The aircraft equations of motions are described in the
stability coordinate system,!! with its origin at the air-
“craft center of gravity. The linear model of the lateral
dynamics of an aircraft perturbed from straight and
level trim flight includes four perturbation variables: 8
- the side slip angle, p - the roll rate, r - the yaw rate
and ¢ - the roll angle, arrange in a state vector in this
order. The differential equations for these variables are
given by'?

B=Yip+r—-To+Yss, (7a)

N :
p=2¢+LgB+Lyp+ Lyr + L5, 8, + L5 6. (7b)

L.
“2p+ NuB + Npp + Nyr + N5 6, + N5 6. (7c)

;=
I..

p=p (7d)

Here U is the trim flight velocity. Y{.), L(,) and N, are
the dimensional derivatives for the side force and the
roll and yaw moments, respectively, and are defined as

. a1y a1 6L a 108N
O~ ma() TS 0= T1..80)
®)

v is the lateral velocity given by v = BU. In these equa-
tions a linear dependence is assumed between (Y, L, N)
and wmodel states and the control variables.

The control inputs in Eqgs. (7) are the aileron J, and
the rudder 4, deflections. The measurements which are
available for the controller are p, r and a,,,, the lateral
acceleration at the c.g. location, given by

(9)

The linear equations of motion (7} together with lat-
eral acceleration, roll rate and yaw rate measurements,

a'llcg =i) - g¢

can be expressed as a transfer function

a’(s)
o t=rof 2D aw
Yy, 0 -1 5 0 Y ]
Ly L, L. 0 L, L,
N, N, N. 0 [N, N
Ps)=|1 0 1 0 0] 0 0O (10b)
Qyy Gy, Gy, —9 1 Oy, Gy,
0 1 0 0 0 0
L 0 0 1 0 0 0o |
where |—+—/| denotes a transfer function with a state

space realization as follows

G(s) = [—gi-%—] Sp+CsI-A)'B (1)

which, expressed as a LFT becomes:

A B]1
co-n([4 2] 4).
Hence, Eq. (10) can also be written as
1
P(s) = Fu (Ptat, ;h) (13)

where P,y is the lateral dynamics matrix Py =

[ é g and (4, B,C, D) are the state space real-

ization matrices of the lateral dynamics model of the
aircraft. In these equations, the weighted dimensional
derivatives LE_) and N(’.) are defined as

1 I
1 Iy,

and I, =112, /I .1,

Equations (7) and (9) are written with respect to the
unknown true c.g. location of the aircraft. As the pay-
load mass changes, the c.g. location changes with it. In
order to accommodate for this change, the aerodynamic
forces and moments, which are normally expressed with
respect to the a fixed reference point (usually the nom-
inal c.g.), must be corrected.

First, the side slip angle 4 at the reference point
should be corrected to reflect its change due to the yaw
rate times the distance between the nominal and true
c.g. locations. However, since the objective of the con-
troller is to minimize lateral acceleration, the value of
the lateral velocity and its derivatives are expected to
be small, and hence this correction is neglected for sim-
plicity. Consequently, since in our case the c.g. varia-
tions are along the z axis, only the yaw moment equa-
tions have to be corrected. The yaw moment N at the
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unknown true c.g. location relates to the yaw moment
N at the nominal c.g. location according to

N =N+Y$, (15)
where Y is the side force at the nominal c.g.

The lateral accelerometer is installed at a fixed body
position in the aircraft which is assumed to be at the
nominal c.g. location. When the true c.g. location
changes, this accelerometer measures an acceleration
ay' which has a component due to the yaw rate and is
given by

m

ay' = @y, + et

(16)

where a,,  is the acceleration at the true c.g. location.

Using the corrections of Egs. (15) and (16) and the
uncertainties in m, c.g. location and g of Egs. (2),(4)
and (6), the aircraft uncertainty model due to d,, and
d, can be constructed. In this work this is done se-
quentially: first the model for §,, is derived and then
the effects of §, are incorporated.

By using the definitions in Eq. (8) and applying the
corrections due to the uncertainty in the mass and the
c.g. position, Eqgs. (2), (4) and (15), it is possible to ob-
tain LFT expressions for the effect of the uncertainty in
payload mass on the dimensional aerodynamic deriva-
tives. This is achieved by performing the implied differ-
entiations of Eq. (8) using the relations of Eqs. (2) and
(15) and then replacing 6., with its LFT expression in
Eq. (4). After some algebraic LFT manipulations,”®
which in this work was performed by a symbolic pack-
age for Mathematica™ , the result is:

. Y, 1
Y. =F X m
1([ ¥ -1 ],6 ) (17a)
, Y, 1
= F ~ .
5. =Fi ([ ¥ -1 ],5m) (17b)

Nj 1
N/j =F ([ CygszSUEpz -1 } 96m) (17‘3)

where (-) denotes nominal values. Cy, and Cy;, are the
non-dimensional stability derivatives, defined in term of
the dimensional derivatives as:

N,
Cy,;, pSUEp
ZIzz

A 2m A 2m
2V, —— . =Y
25U Cy; Y

C oy
Yﬁ r 3 pSU

(18)
where S is the reference wing area. Other dimensional
aerodynamic derivatives are not affected by 6,,.

The measured lateral acceleration can be expressed
as a LFT with a repeated scalar block of order two
containing the mass uncertainty, by using Eqgs. (9) and
(16), substituting v and # with Eqs. (7a) and (7c) and

including the LFTs from Eqgs. (2) and (4) to obtain

. . SUZp
Eq. (19) in which ¢ = %Tc—f:fi

By substituting the LFTs of Egs. (17) and (19) into
the transfer function of Eq. (10), collecting the uncer-
tainty blocks into a single block and minimizing its di-
mension, the lateral dynamics model is obtained as a
LFT of the mass uncertainty. This model has a third
order repeated scalar uncertainty block and is given by
Equations (20) describe exactly the effect of the mass
uncertainty on the lateral dynamics model of the air-
craft.

Now the uncertainty in the air density is incorpo-
rated. Equations (20) contain expressions, such as all
the dimensional derivatives, which depend on the air
density. By writing explicit expressions for the dimen-
sional derivatives and substituting the uncertain air
density with its LFT expression of Eq. (6), a linear dy-
namic model is obtained as a LFT, which depends on
the uncertainties in the mass and the air density. After
combining the 6, uncertainty blocks of the elements of
My,; and reducing the dimension of the resulting block,
a d, repeated scalar block of three is obtained

Plar = Fi (Mo, diag {0, 13,6mIs}) (21)
where Pj,, is the resulting lateral dynamics system ma-
trix. The analytical expression for M, is quite com-
plex and thus only its numeric form for the “Pioneer”
RPV is given in the appendix.

The model in Eq. (21) describes the effect of the two
uncertain variables, the mass and the air density, on
the linear model of the lateral dynamics of the aircraft.
One could now include additional model uncertainties
due to other sources of parametric uncertainty, such as
then trim angle of attack. Also, unstructured uncer-
tainties could be added if their analytic dependencies
are difficult to obtain.

Here we would like to stress that it would be bene-
ficial to construct a functional dependence uncertainty
models even when only a part of the uncertainty can be
expressed as parameter dominated. The portion of the
uncertainty which cannot be accounted by parameter
functional dependence can be modeled as unstructured
by applying general bounds. This way uncertainty over-
bounding is reduced, since the unstructured portion of
the uncertainty is smaller and does not have to account
for the entire uncertainty space.

A functional dependence uncertainty model can also
be created when there is no analytical knowledge of the
parameter dependence, but an empirical relation may
be found. These empirical relations between parame-
ters can be computed by fitting experimental data with
rational functions, which can then be used to construct
functional dependence uncertainty models.

The model presented is Eq. (21) is now incorporated
in a u synthesis stage to design a controller which is ro-
bust to changes in these uncertain variables and meets
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Y, 0 0 —-g 0 Vs, g 0 p
. RO 2 P U SO OO e SO SN Tt A r
oy =Fi|| Ny—x Ny N0 Ny N -3 -1 -1 | ek | g g (19)
Cysc1 0 0 o 0 Cy,er i 0 ~1 6,
4y
Piat = Fi (Miat,0ml3) (20a)
Y, 0 -1 & o oo i1 0 0]
Ly L, Lo I L, {0 1 0
Iy KON 0 R N o 4= 0
0 1 0 0 0 0 i 0 0 0
Mg = Y, 0 0 -g 0 Y, i0 0 1 (20b)
0 1 0 0 0 0 i o 0 0
U 0 LS. S S 0. (0.0 0.
Y, 0 000 Y, i-170 0
Cyﬁ 1 -}::- 0 0 0 0 CY&_ €L~ 0 -1 0
Nygy —Y, NyZuw N 0 Njzu Njzu-Ys | 0 L2t -1 |
stringent performance requirements, as presented in the - Wy 421
next section. ¢¢m {f,}T Wyi A ‘il
r W WA
4 Autopilot Design W : J
. . Lateral ___T
Inn this section the design of a robust autopilot for the Dynamics
“Pioneer” RPV model derived in the previous section is Model [—
presented. The controller is designed using u synthesis
with the objectives of following roll angle commands a; [¢

while keeping the lateral acceleration of the aircraft
minimal. The autopilot is required to operate at an
altitude range between 0 and 10 Kft (3 Km) above sea
level, at a constant velocity of 40 m/s. The aircraft has
a nominal mass of 167 kg and carries payloads ranging
from 0 to 60 kg. The controller inputs are the mea-
sured roll and yaw rates and the lateral acceleration
at the nominal c.g.. The controller outputs are aileron
and rudder commands.

The g synthesis technique is applied to an inter-
connection model, which includes frequency domain
weighting functions to specify the robustness and per-
formance requirements. The complete interconnection
model used for the u design of the RPV autopilot is
given in Fig. 2.

The controller is designed to implicitly follow a roll
angle model, described as a second order system!?
2

Weesr =
ref 32 + 2prp3 -+ wIZ?

(22)

where w, = 1 rad/sec and ¢, = 0.5. The tracking error
between the aircraft roll angle and the reference model
is required to be less than 0.1 degree in steady state and
is less important at high frequencies. Hence a weight

Figure 2: Interconnection Model for u Design

on the tracking error was set to

180 s/10+1
7 01r s/6+1

The control objective is to perform the bank without
developing lateral acceleration, i.e., perform a coordi-
nated turn. The lateral acceleration is required to be
less then 0.1 m/s, therefore the weight on the accelera-
tion was set to W,, = 1/0.1.

The maximal roll angle required is 45 deg. To nor-
malize the roll commands so that |¢.om| < 1 and to
simulate the pilot’s low frequency stick commands, the

(23)
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roll command is prefiltered by

_ 457 5/100+ 1

7180 541 (24)

From the data presented at the beginning of this sec-
tion, the payload mass changes in the range of +£30 kg,
with a nominal aircraft mass of 187 kg, i.e., the payload
change constitutes £16% of the nominal aircraft mass.
The flight altitude changes between 0 and 10 Kft. In
a standard atmosphere, the air density in this altitude
range changes between 1.225 kg/m® and 0.879 kg/m®.
By designing the controller for a nominal altitude with
an average air density, the relative change in air density
is £17%. Normalizing the uncertainty of the mass and
the air density such that |§,] < 1 and |6,,] < 1, and
since each of these uncertainties appears in a repeated
scalar block of order three (Eq. 21), a weight on the
uncertainty was set to

Wa = diag {0.1713,0.1613} (25)
The aircraft controls, the aileron and the rudder,
have a maximal deflection angle of §™** = 20 deg. The
controls have a servo dynamics with a bandwidth of
about 22 rad/sec, so high frequency contro! commands
should be avoided. To reflect that, the weight on the
controls was set to
10
01

The roll and yaw rate measurements contain an ad-
ditive zero mean white noise with a standard deviation
of o5, = 1 deg/vhour, with no correlation between the
roll rate noise and yaw rate noise. Thus the weight on
the rates measurement noise was set to W, = o, I5. In
a similar manner, the accelerometer measurement noise
has a standard deviation of 0.01 m/+/sec, and therefore
W,., = 0.01.

The current p design tools are not capable to perform
#+ controller synthesis for real uncertainties or repeated
scalar blocks, though analysis of such blocks is possible.
For this reason, the real repeated scalar blocks describ-
ing the mass and density uncertainties (Eq. 21) were
replaced by six complex scalar blocks for synthesis pur-
poses. This is essentially an over-bounding of the model
uncertainty, forced by lack of numerical tools. However,
after each stage of the design, a p analysis with the
exact uncertainty blocks was performed to check the
quality of the synthesis. It was found that the differ-
ence between the all-complex p and the mixed p did not
exceed 2% in the cases examined and where identical
for the final results.

A robust g controller was designed for the intercon-
nection model of Fig. 2. The u D-K iteration process'®
converged after 6 iterations to g = 0.920 with a 44th
order controller. The controller order was reduced us-
ing balanced truncation to order 29 with p = 0.989.

Ws

1 s/20+1 [ (26)

T 5™ /50 + 1

The p value less the unity means that all robust perfor-
mance criteria were met for the specified uncertainties
{variations) in the aircraft mass and the air density.
Figure 3 demonstrates the closed loop response at sev-
eral “edges” of the uncertainty space. It can be clearly
seen that the closed loop response is hardly affected by
the change in the aircraft mass and the air density, and
the performance is within the required specifications.
The design goals were achieved.

5 Autopilot Comparison

The controller in the previous section was based on the
functional dependence model of the aircraft, as is re-
flected in Eq. {21), and will be referred to in the sequel
as the prp (Functional Dependence) controller. In order
to evaluate this controller and demonstrate the impor-
tance and the advantages of including the functional
dependence in the uncertainty model, a more common
1 controller was designed. In the latter, the uncertainty
model was constructed by bounding each parameter in
the state space model separately.

The linear state space model of the aircraft was given
in Eq. (10). This equation contains 17 parameters
which are affected by the chiange in the payload mass
and/or the air density. Each parameter was checked
for its variations at the specified mass and air density
range. Similar to the bounding rectangle in a two di-
mensional parameter space of the example in Fig. 1,
here a bounding hyper-cube in a 17 dimensional pa-
rameter space is to be constructed. In Fig. 1, the rect-
angle bounded a curve created from a single unknown
physical parameter. In the current example, the 17 di-
mensional hyper-cube bounds a surface created by the
two unknown physical parameters.

A LFT containing 17 independent dé-s was con-
structed such that when the § for a particular param-
eter is zero, the parameter receives its nominal value,
and when § = 41 the parameter receives its maximal
or minimal value, respectively. As an example, suppose
a is a parameter that changes between a,in and Gpmes
with a nominal value of 4. The LFT for this parameter

is
é 2 (Orax — @) Qo — &)
a=‘7:l 1 amax+amin ~ 24 ’6
Qrnox ™ Cmin Grax ™ Qmin

In & similar manner, a LF'T was constructed for all pa-
rameters of Eq. (10) and the LFTs were then joined.

The interconnection model used for this controller is
identical to that used in the gy controller (Fig. 2.) The
design specifications remained the same, except for the
different 171 order uncertainty model. This controller
will be referred to as the pps (Parameter Bounding)
controller.

The design process converged after 5 D-K iterations

to a value of ppp = 2.046 with a 66th order controller,
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which was reduced to order 28 using optimal Hankel
norm approximation!® without affecting the y value.
The g value in excess of unity indicates that the con-
troller does not achieve the robust performance objec-
tives considered by the PB model. However, since the
PB model includes uncertainties which are not physi-
cal, it would be fair to compare the two controllers on
the same uncertainty space - the physical uncertainty
space. A p analysis of the ppp controller using the FD
model yielded ppp = 1.49. Thus, the ppg controller
does not provide robust performance even when con-
sidering only the physical uncertainties. Moreover, an
analysis of the system within the y,, controller revealed
that the controller does not even succeed in achieving
stability for all the mass/density combinations in the
uncertainty space.

A designer using only general parameter uncertainty
bounds would conclude that a single controller cannot
control the plant with the specified uncertainty range.
As a resort, several controllers would have to be de-
signed for a few subspaces of the complete uncertainty

space, and a gain scheduling scheme would have to be
set up. This is avoided by the functional dependence
model.

The reason that the ppp controller doesn’t provide
the required performance and even has difficulties just
stabilizing the system results from the fact that it is
based on a conservative uncertainty model that con-
tains non physical uncertainties. This controller has
to cope with a larger uncertainty space, i.e., a larger
possible plant group, and hence achieves a worse per-
formance/robustness trade-off. This point is demon-
strated in Fig. 4 which shows a two dimensional cross
section of the parameter space. The parameters in the
figure are normalized such that each parameter is nom-
inally zero and has a maximal and minimal value of
1 and -1, respectively. The graph frame is essentially
a projection of the 17 dimensional hyper-cube that
bounds the uncertainty space for the PB model, since it
bounds the parameters between their minimal and max-
imal values, independently. The gray area of the graph
is the physical uncertainty space, i.e., for every value of
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the parameters in the gray area there is a combination
of mass and air density, within their uncertainty range,
for which the parameters obtain the specified values.
This area is actually a projection of the physical uncer-
tainty surface onto the parameter space cross section.
Using p analysis it is possible to find the worst pertur-
bation for the pps controller, i.e., the perturbation of
smallest size which caused the pep controller to fail in
meeting the performance requirements. This point is
marked by a cross on the figure. As can be seen, this
point occurs at a non physical combination of param-
eters. In other words, the ppp controller was given a
larger plant group to control. Out of this group, the
plant for which achieving the requirements was most
difficult, is not a physical plant, i.e., it is not included
in the group of plants which can occur by the actual
physical uncertainties. Therefore, in order to design for
the larger, more difficult, group of plants, the controller
obtained a worse performance/robustness trade-off.

Normalized Paramater Space: Yv"yu Cross-Section

T T T v
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Figure 4: A Cross-Section in the Normalized Parame-
ters Space

In summary, the ppg controller had to design against
a larger plant group than is physical and hence against
a much harder control situation than is necessary. This
led to a bad performance/robustness tradeoff. In con-
trast, the pipp, which was designed while considering
physical uncertainties only, was able to provide the re-
quired robust performance.

6 Summary and Conclusions

In this paper, an approach was presented to incorporate
known functional dependencies of model parameters on
uncertain physical quantities into the robust control de-
sign procedure. The approach is suitable in cases where
the source of the plant uncertainty is mainly account-
able by a few unknown physical parameters. Such is

particularly the case in systems which are described by
perturbation equations from distinct equilibrium states
(trim conditions) like in aircraft flight dynamics equa-
tions.

The basis of the approach is to describe the uncer-
tainties in the unknown physical values as Linear Frac-
tional Transformations (LFTs). Then, using LFT al-
gebra, a LFT is obtained, which describes the effect of
the uncertain variables on the plant model by a single
uncertainty block of a minimal dimension.

This procedure was demonstrated in a lateral autopi-
lot design example. Here the controller was designed
for a remotely piloted vehicle carrying payloads of un-
known mass while flying at unknown altitude. Each of
these uncertain variables changes the aircraft dynamic
model parameters in a known fashion. The resulting
model describes the plant uncertainty space without
undesired over-bounding which would have occurred
when treating the plant uncertainties without relating
to their functional origins. A p controller was designed
using this model, which achieved robust performance
in the specified uncertainty range.

For comparison, a p controller was designed for the
same performance specifications with an uncertainty
model that did not use the functional dependence of the
model parameters on the unknown physical variables.
Instead, the model parameters were bound to reflect
their uncertainties independently. The controller based
on this model did not succeed to fulfill the required
performance requirements and even failed to stabilize
the system in the entire uncertainty range. -An analysis
showed that the most difficult case to control corre-
sponded to a non physical combination of parameters.
Had the functional dependence been incorporated to
this model, the controller would not have had to cope
against it. A designer using such a simple uncertainty
description would have to reduce the performance re-
quirements or to design several controllers for a few sub-
spaces of the uncertainty space and establish a switch-
ing scheme between them. Often such “gain schedul-
ing” can be avoided by using the functional dependence
of the system parameters and thus considering physical
uncertainties only.

The example clearly demonstrates the advantages
of including the functional dependencies of the model
parameters in the uncertainty model. The resulting
model avoids uncertainty over-bounding and leads to a
favorable controller design setup and superior robust-
ness/performance trade-off.
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Appendix

The matrix Mj,, of Eq. (21) is partitioned as:

and the submatrices are:

10.

—.1549 0 ~-1  .2453 0 .0504
—17.42 -9.266 3.018 0 24.99 1.225
13.62 2520 1.074 4] —1.847 -—~8.707
My = 0 1 o 0 o 0
~.1549 0 -1 .2453 0 .0504
o 1 0 0 o o
0 0 1 0 0 0
1 0 o0 1 0 0
0 1 o [s] 1 o
0 0 1 0 -7.108 0O
Mipg=1] 0 0o o o 0 0
1 o 0o o ° 1
6 o 0 o o 0
6 o o o 0 0
—.1151 o 0 0 0 .0393
—8.818 -6.9161  3.068 0  14.07 .6467
M = 6.909  —.0402 ~.8632 0 —1.121 —4.507
21 = L1151 ) 0 0 0 -.0393
~.0416 0 0 o 0 .0142
—10.98 0645 1.386 0 1.800 7.343
o 0 o 0 0 o
0 0 o o 0 0
' 0 0 0 o 0 0
My = -1 0 o —1 0 I
3616 0 0 0 -1 0
-1 0 -1.606 - 0 11.42 -1
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