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Abstract

A viscous-inviscid interaction procedure for unsteady
transonic flow using full potential and integral bound-
ary layer equations is presented. Unsteady full po-
tential equations have been used in both conservative
and non conservative formulations. Unsteady com-
pressible boundary layer equations are used both in
direct and inverse forms and many different formula-
tions of them are presented. Coupling between invis-
cid and viscous flow is performed using a semi-inverse
approach. Steady coupling is performed using both
conservative and non conservative full potential for-
mulations. Unsteady coupling is performed using only
non conservative full potential equations. The numer-
ical results obtained for NLF and NACA0012 airfoils
undergoing steady and unsteady motion are discussed
and are compared with experiments.

Introduction

The prediction of aeroelastic behavior of modern
aircraft cannot be performed without the capability
of predicting unsteady transonic airloads on airfoils
and wings.

The use of full Navier-Stokes equations to solve the
unsteady problem is pratically forbidden due to the
enourmous amount of computer time needed espe-
cially in a design phase when many load evaluations
are necessary.

Assuming that the boundary layer equations ade-
quately describe the viscous layer near the wall and
that inviscid equations can be used to represent the ex-
ternal flow, these two regions may then be matched at
a common boundary, usually the boundary layer edge.
This type of approach is known as viscous/inviscid in-
teraction and has been extensively used by one of the
authors and in literature [1], [2], [3], [4],[5],[6], (7], [8]
» (9], [10],[11].

This approach has been shown to be computationally
inexpensive and accurate enough to also predict 2D
flows when large areas of separation are present [12].
Thus coupling inviscid external flows to boundary lay-
ers appears attractive for the purposes just mentioned.
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In fact these relatively low-cost flow methods, pro-
vided that an accurate modelling of boundary layer is
available, are able to predict viscous flows when strong
interactions are present : separated flows, stall, strong
shocks and subsequent shock-boundary layer interac-
tions.

Transonic flow prediction is still an important task
particularly for flutter speed prediction as in the tran-
sonic range a minimum of this speed occurs (the
so called transonic dip). Furthermore for helicopter
blade load prediction, due to the blade tip area being
in transonic flow , the capability to predict aerody-
namic characteristics in this Mach range is essential.
Most popular methods to compute inviscid unsteady
transonic flows are based on Transonic Small Distur-
bance (TSD) equations which produce accurate solu-
tions when moderate shocks are present and airfoils
and wings are thin [13].

To overcome these limitations, unsteady full potential
or Euler equations can be used. Unsteady Euler equa-
tions are still too demanding as far as computer time
is concerned and full potential equations written in
non conservative form (FPNC) along with those writ-
ten in conservative form (FPC) have been used in this
work.

One of the objectives of this paper is to compare and
to analyse results obtained from both formulations.
During the first stage of the work an inviscid FPNC
code was coupled to an integral compressible bound-
ary layer code using a semi-inverse algorithm and a
quasi-steady coupling procedure. Due to the dissipa-
tive nature of inviscid non conservative formulation,
when moderate or strong shock waves were present in
the field, the coupling procedure led to erroneus re-
sults reducing the strength of shock waves too much
and moving them unrealistically upstream.

The coupling was performed using for the inviscid flow
the unsteady full potential equations written in con-
servative form and some of the previous mentioned
problems were solved.

Furthermore unsteady integral boundary layer equa-
tions, written in direct and inverse form, have been
solved and they will be discussed in a subsequent sec-
tion; coupling of these equations to the inviscid ones
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is necessary to obtain a true-unsteady interaction.
Inviscid Flow

For inviscid flow the unsteady full potential equa-
tion has been used both in conservative and non-
conservative form. Both codes compute the develop-
ment of two-dimensional unsteady subsonic or tran-
sonic flow about an airfoil in steady or unsteady mo-
" tion.

Conservative formulation

The HELIFP-2D code, a two-dimensional version
of the code HELIFP [14, 15] that predicts the aerody-
namic flow around an isolated rotor blade, solves the
unsteady full potential equation in conservative form:

pt + (pu)s + (pv)y = 0 (1

The density p and the fluxes pu and pv are nonlinear
functions of the velocity potential ¢. The density is
related to the potential by:

y -
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The full potential equation may be written in curvi-
linear coordinates as:

)+ @) @)= o

where J is the jacobian of the transformation and U
and V are the contravariant velocity components.

In order to avoid non-physical solutions (expansion
shocks) and stabilise the computation in supersonic
flow regions, a streamwise density flux biasing is ap-
plied. In the full potential equation the density will
be replaced by a biased density j defined as

5= p_ L
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where ¢ is the total velocity, Q = VU2 + V2 is the

“modulus” of the contravariant velocity and
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The quantities p* and ¢* are the sonic values of the
density and total velocity.

A set of boundary conditions are imposed: zero-
penetration at the body, unsteady transport equation

on the wake, non-reflective conditions (in the form of
Riemann invariants) at the far field.

The solution of the equation is obtained by means
of the well-known Newton procedure [16]. The full
potential equation is discretized as

bty = D20 (0) 4(B) -

where L,, is the Jacobian system matrix, ¢° is an
intermediate guess value between ¢"*! (to be com-
puted) and ¢" (already known) and f is the free
stream correction term (after the discretization, eq.
2 is not satisfied if no disturbances occur in the
flow). The discretization method is based on the
finite-volume method described for steady flow in [17].
The numerical scheme minimizes the number of den-
sity evaluation but introduces the odd-even decou-
pling problem. To prevent it, a lumping operator is
added to the right-hand-side.

The discretized equation is solved using an approx-
imate factorization technique

Ly (¢"+ — ¢°) = Le Ly (¢ — ¢°)

Upwinding is applied in the L, operator for improv-
ing stability which renders the bandwidth to 5 on a
CH type grid.

Non-conservative formulation

The finite-difference code UFLO5, developed in
[18], solves the full potential equation in non-
conservative form which can be written as

i+ 2udr + 2vdy = (02 - Uz) bzz
+ 2uvgey + (a® — v?) dyy 3)
where a is the speed of sound
-1
a?=1- 1'2—-(2¢t+¢§+¢3)

Jameson’s rotated scheme is applied to eq. 3 in or-
der to account for the right domain of dependency for
supersonic regions.

The boundary conditions imposed are: imperme-
ability on the airfoil surface, zero pressure jump on
the wake and a radiation condition at the far field.
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In order to facilitate the application of the surface
boundary conditions, the moving sheared parabolic
transformation is applied to transform the physical
(inertial) space coordinate system into a rectangular,
equispaced body-attached coordinate system.

Compressible Unsteady Boundary Layer

All boundary layer integral methods have in com-
mon the momentum equation which is reported here
with unsteady terms included :

1. .8 . 8
;—ﬁ’[a(PeUJ )— Ue'a“(/’eop)]
+t— eUe'za (PeUe 8) + 5 2 0 (4)

where s is the distance along the wall streamline, Cy
the skin friction coeflicient, U is the velocity and the
subscript e denotes conditions at the edge of boundary
layer.
The displacement, momentum, and density thickness

are defined as :
/ (1- )dy
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In the above momentum equation, the first term is
a source term and it derives from both continuity and
momentum equations written in local planar coordi-
nate system. The second term describes the rate of
change of momentum thickness. The third term is the
pressure gradient term while the fourth term repre-
sents the contribution coming from the shear stress.
To close the problem different equations can be cho-
sen.
Entrainment and lag-entrainment equations have been
used by some authors like Green [19] , East [20] ,
Cousteix [21] , LeBalleur [8] and mean-flow kinetic en-
ergy compressible equation have been used by Whit-
field [9], Thomas [5], Drela [6].

The entrainment methods base equation is :

1. 1.
2.0, Bt[p(H1+H)0]+_8 (pU.H1+8)—Cg =0

(5)

where Cg is the entrainment coefficient and H; is
a shape factor equal to H; = 452

The energy methods base equation is :

1 2 — 6% + 6" 8U,
*_g,)] 4+ T T
1. 6** oU,
+ U 3 a (peUe30*) + 6 g - D 0 (6)
C £

with the compressibility thickness, energy thickness
and dissipation integral defined as

® 17 P
o
0 -/0 L Uz)dy
1 ® 8. U
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where 7 is the total shear stress.
Different authors have developed different correlations
to close the problem. Here we have mainly used those
derived by Green [19], and modified by East et al. [20]
with reference to entrainment based methods , and
those obtained by Whitfield [9], which are based on
boundary layer profile family generated by Whitfield
[22], with reference to energy based methods. Fur-
ther details of transition, steady laminar and turbu-
lent boundary layer solvers can be found in [2]
A 4% order Runge-Kutta scheme is used to integrate
the steady flow problem equations and to advance the
solution in space. For unsteady flow the nature of the
equations change from parabolic to hyperbolic type,

the appropriate finite difference schemes used are dis-
cussed in the following subparagraph. :

Unsteady formulation

We can write the resulting system of equations in
compact form as :

—=B—=+c=} (")

where A is the (neq - neq) coefficients matrix
(neqg = number of equations present), U is the vector
of unknowns and the right hand side matrix and vec-
tor contain known quantities and spatial derivatives
; manipulation of this system leads to the following
final form :

ZiMSE=d (8)

where M = —A~1B and d = A~l¢c.
To solve this first order system of equations, a lin-
ear combination of the MacCormack and the Beam-
Warming second order upwind scheme has been used.
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This combination is necessary in order to compen-
sate the lagging phase error typical of the MacCor-
mack scheme and the leading phase error of the Beam-
Warming scheme. Details on this analysis can be
found in [23]

When the combined scheme is applied to the following
system of unsteady equations,

o = AT ) ®

we will obtain :

Predictor step :
U = U7 + At A7 N9, )

Corrector step :

1
urt

(Ur + Ui+

N

30 A7 blw A, UFT
(1 ‘w)(Va_U..m‘* VE—U-'J))) Tty ]

where A and V7 indicate forward and backward dif-
ference operators and w = 1 corresponds to MacCor-
mack scheme while w = 0 corresponds to Beam and
Warming scheme; the remainders denoted by (---)
contains parameters such as boundary layer quanti-
ties upon which vector b is dependent.

The time step is evaluated as At = SEL s

N (M)
p(M) is the spectral radius of matrix M.
Boundary conditions are handled by introducing
phantom points outside the computational domain
and extrapolating the dependent variables there.
Both steady and unsteady boundary layer equations
have been written and solved in direct and inverse
form.

where

Coupling procedure

The viscous-inviscid interaction method is based on
semi-inverse coupling,
The external field is solved in a direct way, while tur-
bulent boundary layer equations are solved in inverse
form starting from transition points.
Updating é6* during viscous-inviscid interaction iter-
ations will lead to the final converged solution. 6* is
updated during the iterations according to the relation

Ueu
Uei

6*(i+1) - 5*1'[1 + wcoup( _ 1)]

where weoup is a relaxation factor (about .3), U,
is the velocity evaluated at the edge of the boundary

layer, from boundary layer equations, and U,; is the
velocity from equivalent inviscid flow after that the
transpiration velocity

1
Pe

Vo= %(Pe Ueat)

has been imposed on the wall.

On the wake no pressure variations are allowed nor-
mal to the fixed wake grid line emanating from airfoil
trailing edge.

There are many possibilities to perform the coupling
in unsteady computations. Up to now, only the quasi-
steady interaction procedure has been implemented.
Starting from uniform flow, full potential equations
are solved for a number of inviscid iterations (about
500) and zero mass flux at the wall.

In the steady case, viscous-inviscid coupling is per-
formed and about 50 inviscid cycles per interaction
are necessary to obtain an equivalent inviscid solu-
tion.

In the unsteady case, one period of oscillation is nec-
essary to stabilize the inviscid solution and after that
only at some user specified times the viscous-inviscid
coupling is performed. This procedure is called quasi-
steady coupling because steady-state boundary layer
solution is coupled to the time-accurate solution of
full potential equations.

Results and discussion

Typical C grid of 129 X 25 obtained through confor-
mal mapping and used in the present calculations is
shown in Fig. 1.

Steady case

To show the capability of the code to deal with sep-

arated flow, NLF airfoil has been analised at the pre-
stall angle of attack of 14 degrees, at Reynolds number
of 4 million and at a Mach number of .1.
Fig. 2 shows the comparison between viscous results
obtained with FPNC code along with experiments
[26]. The agreement between numerical results with
experiments is quite satisfactory.

The transonic steady experimental results for a
NACAO0012 airfoil obtained by Mc. Devitt and Okuno,
[27] have been used for comparison with numerical re-
sults.

In Fig. 3 comparison between inviscid solutions ob-
tained with FPNC and FPC codes for o« = 2. M =
.755 are shown along with experiments obtained at
Re = 10 MI. It can be clearly seen that inviscid
FPNC computations agree quite well with experi-
ments showing that they are inaccurate for the case
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under investigation; in fact because this is a strong
shock wave case, artificial numerical dissipation em-
ployed in the inviscid numerical scheme, is such that
it weakens shock wave while the real inviscid flow is
better represented by FPC results which are very sim-
ilar to Euler computations. This is why the FPNC
codes have been so popular in the industry in the re-
cent past.

Viscous solutions are reported in Fig. 4 for the same
airfoil with o = 2. M = .750, Re = 14 M1 , showing
that the coupling procedure is effective in predicting
shock position even if in this strong shock case the
intensity of the shock is overpredicted; we should also
take in account that no corrections have been applied
on experimental Cp.

As far as concern compressible and turbulent bound-
ary layer methods, in Fig. 5 are reported solutions ob-
tained with FPC code coupled to two different steady
boundary layer methods. ‘

In particular Green method [19], (as modified by East
et al.[20]) is compared to Whitfield [9] energy method
which causes a little forward movement of shock.

All boundary layer methods available in the present
version of the code, are compared among them for
a shock wave-boundary layer interaction as experi-
mented by Kooi [28]. The results are shown in Fig. 6
where the displacement thickness distribution shown,
and used as input for the inverse boundary layer com-
putation, is that measured experimentally by Kooi.
The oscillation in the distribution have been left on
purpouse in order to see if any of the tested meth-
ods presents a kind of smoothing effect. As it can
be inferred from the figure, equlibrium kinetic energy
model as proposed by Thomas [5], presents this effect,.
As far as concern incipient separation prediction (as
observed by Kooi in his experiment) all of them are
able to predict it, meaning that when §* is correctly
evaluated all the rest is well predicted.

Unsteady case

Unsteady boundary layer

In fig. 7 direct and inverse unsteady boundary layer
solution is obtained for a case proposed by Cousteix;
this is an incompressible test case in which a linear
velocity gradient variable with time is imposed on a
flat plate. Details can be found in {21] In particular
the shown disribution of U, (z,t) is imposed for the di-
. rect boundary layer solution and §*(z,t) is obtained.
Then imposing this §*(z, t) distribution for the inverse
method, the same U,(z,t) as for the direct case should
be obtained. As it can be seen from the figure the
results are correct. For this case a wheighted factor
of w = .5 has been used in the combined numerical
scheme to solve the unsteady system of equations.

Furthermore the numerical results obtained (not
shown in the paper) agree quite well with those shown
in the Cousteix paper [21].

Agard test case 1

The standard Agard test case 1, as reported in [29],
has been used for numerical comparison. Case 1 is rel-
ative to a Naca 0012 airfoil undergoing a pitching mo-
tion with the followinglaw : @ = 2.89 + 2.41 sin (wt)
with a freestream Re = 4.8 M and a reduced fre-
quency k = &3 = .0816.

Up to date the unsteady coupled solutions obtained
and shown in the paper, use as inviscid solver the
FPNC code while the coupling of unsteady FPC code
with boundary layer is under development.

Fig. 9 reports a comparison between Cj obtained from
FPNC inviscid and viscous code. It can be seen that
the effect of viscosity is to lower the Cl values during
the cycle and also to understimate these values spe-
cially in the downstroke movement.

In fig. 8 and fig. 10 it is shown the comparison be-
tween numerical and experimental pressure coefficient
distributions at specified angles which are the same
of those reported in [29]. This attempt to compare
numerical pressures to those measured is just to have
an idea of what is going on, because no correction is
applied neither to pressure coefficients nor to angles
of attack.

As already said, during the angle of attack decreasing
phase, there is an underprediction of loads.

Fig. 11 and fig. 12 shows frequency effect. In fig-
ures 11 and 12 the results obtained from the FPNC
inviscid and viscous codes at nominal and double fre-
quency are reported respectively. It can be seen that
the viscous solution tends to cancel the frequency ef-
fect. The reason for this is under investigation.

Agard test case 5

Case 5 is relative to the same NACA 0012 airfoil
undergoing a pitching motion with the law :
a = 0.016 + 2.41 sin (wt) with a freestream Re =
5.5 M1 and a reduced frequency k = .0816. In Fig.
13 inviscid and viscous Cj cycles are reported as ob-
tained from FPNC code along with experiments and
it is clear that, for this strong shock case, the FPNC
code results are totally inaccurate and the need of a
better inviscid solver, such as Helifp, is urgent.

A typical inviscid calculation for a complete cycle
of oscillation for a standard 129 X 25 grid takes about
30 minutes on a Convex C38 mainframe for the FPNC
code. When viscous runs are performed, the total re-
quired time increases of about 30% of the correspond-
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ing time needed for the inviscid solutions.

Conclusions

This paper has presented a study of unsteady com-
pressible viscous and transonic flows. This has been
done using viscous-inviscid interaction technique and
using full potential equations in both conservative and
non conservative form as inviscid solver. For the un-
steady coupled solution, only non conservative full po-
tential formulation has been used. As a boundary
layer, solver the unsteady and compressible integral
boundary layer equations have been coded and results
obtained using different methods have been compared
with experimental data. The quasi-steady interaction
procedure has proved to be accurate enough when the
oscillation frequency is not too high and when the
shock waves are not too strong. True unsteady cou-
pling is currently under development. This work is a
first step in an attempt to predict complex unsteady
transonic flows.
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Figure 1: C grid around NACA0012 airfoil
129 X 25 grid points
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Figure 2: Chordwise pressure distribution on
NLF at Mach = 0.1, a = 14.0°, Re = 4.E06
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Figure 3: Chordwise pressure distribution
NACAO0012 Mach=0.775, a = 2.0°, Re=10E06

NACAOQ012 aisfoil : M=.750 Re=14.E06 Alpha=2. degrees Steady case
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Figure 4: Chordwise pressure distribution
NACA0012 Mach=0.750, a = 2.0°, Re=14E06

NACAO012 airfoil : M=.750 Re=14.E06 Alpha=2. degrees Steady case
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Figure 5: Effect of b.l. methods on pressure dis-
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Figure 6:  Effect of bl method on
shock-boundary layer interaction, Kooi case, [28]
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Figure 11: Variation of numerical inviscid lift co-
efficient for two values of the reduced frequency
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Figure 12: Variation of numerical viscous lift co-
efficient for two values of the reduced frequency
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Figure 13:
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