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Abstract

In this paper a method is developed for applying the
Transonic Doublet Lattice Method (TDLM) of Lu and
VoP to general configurations consisting of multiple non-
coplanar lifting surfaces and bodies. In the TDLM, the
flow around harmonically oscillating surfaces is described
by superposition of a steady transonic mean flow and an
unsteady harmonic flow. The unsteady flow component is
modelled by acceleration potential doublets on the mean
wing surface and a source distribution in the flow field
near the wing. The time-linearized unsteady transonic
small perturbation equation is solved by an integral
equation method. A simple implementation of this
method for general configurations would result in a
prohibitive number of unknown singularity strengths to
solve. By dividing the lifting surfaces of the configuration
into groups and limiting the influence of the volume
elements to their own group, a sufficiently accurate
solution for aeroelastic analyses can be obtained with

reasonable memory requirements and computational effort.

A simple rectangular wing is used for numerical
experiments with the method, and the wing together with a
body is used to demonstrate its applicability to wing-body
combinations.

Introduction

The calculation of unsteady air loads acting on an aircraft
vibrating in its natural modes is a fundamental step in any
aeroelastic analysis. The DLM®*? is used extensively for
unsteady subsonic load calculation. Similar methods for
supersonic flow™® have also been developed and are
being used routinely. Transonic unsteady aerodynamics
poses a special challenge because the approximations
which are used in subsonic and supersonic flow
calculations are not justifiable in transonic flow. Lu and
Vop proposed the TDLM® as a solution to the unsteady
transonic problem. The TDLM uses volume elements
over lifting surfaces in regions where the mean flow is
transonic, in addition to the lifting surface elements of the
DLM to model the unsteady flow. Each volume element
contains a source distribution of unknown strength which
is solved along with the doublet strengths of the lifting
surface elements. Typically eight layers of volume
elements are used in the TDLM, and typical DLM models
already contain a large number of lifting surface elements.
This means that the computer time and memory
requirements for solving a typical aeroelastic problem
would be prohibitive if it were implemented by simply
Copyright © 1996 by the AIAA and ICAS. All rights reserved.

adding volume elements to each lifting surface. By
assuming that the influence of a volume element is limited
to a user-defined group of lifting surfaces, these
requirements can be reduced to reasonable levels while
still producing accurate results.

Nomenclature

AB,C,D matrices of influence coefficients

A B,D transformed matrices of influence
coefficients

c PP pressure coefficient

4 pLUZ 12
—i\r
G Green’s Function
4nr

1 identity matrix

k of reduced frequency

K (y+1)M?2 /B? or Kernel of Integral
Equation

/ reference length, usually half of the
average wing chord

M., free stream Mach number

p local pressure

Deo free stream pressure

r \/(E —xf+ -y +(g-2)* distance
between control point and singularity

U, free stream velocity

w downwash at lifting surface control point

x,¥,2 scaled cartesian coordinates, xby £, ¥
and z by £/B

B J1- M2

Y ratio of specific heats

Acp, unsteady pressure coefficient jump
across a lifting surface

AS, AV Surface, Volume elements

£ kM2 | B7‘

A kM., | p?

o] velocity potential, scaled by U_¢

o transformed velocity potential

Poc free stream density

o volume source distribution
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Theory

Without discussing the derivation of the TDLM, the
starting point for the present work is repeated below.

In the TDLM, lifting surfaces are discretised into
trapezoidal panels and the space around the lifting surfaces
are discretised into volume elements. Both volume
elements and lifting surface elements have unknown
singularity strengths associated with them. The singularity
strengths are solved from a system of complex linear
equations:

w=AAcp+Bc
¢=CAc,+ Do M

where

a-o ][ k@ 50dEan
B=-pe=[] (G -iecazana

—l&

C= -'—” K (%,%)dEdn
D= H J.A NG~ ie(dEdnd(

@

These equations have three unknown vectors Ac,,, ¢ and
o . Using the relation

o=K®(¢, +iep) 3)

6 can be approximated by the finite differentiation of ¢ .

For a field pointP(x,- Y j,zk) it holds that

O = (1- W) K ‘I’gijqujk

'Hl'z-lij X1 Jth— Ljk +uukqtjk p’z-—l,]qu—l,]k (4)
where

g =0, +ieQ

and p;;, =0or 1 for sub- or supersonic mean flow field

points, respectively. This relation can be expressed as a
linear combination

{g} =1D )¢}

{d =[Dy]{q}

{d =Dy, Ho} 5)
where

Dyy =Dy xDy

o depends only on ¢ within the same streamwise bar of
volume elements. The matrices Dy;, D, and D, for the

complete model would all be large, sparse matrices
consisting of small square submattices on the diagonal.
These matrices can be calculated and the transformation
performed for each bar in turn. By writing the second
order Taylor expansion for the function values at points 2
and 3 around point 1, the following expression for the
derivative of the function at point 1 is obtained.

_ci)_‘_

dx 1

((”z ~ )’ *(xa—x1)2)f1+(x3‘ ) fo-(-2)fy
(23— 1) (o — 1) (05— 32)

(6)
The non-zero elements of the first row of Dy are
correspondingly defined by
, (xg_xl)z—(ﬁ%—xl)z
=ie+

B PR Py PRy
D, = (x3 - xl)z )

12 (x3 - x1)(x2 - xl)(x3 - xz)
D, .= —(x2 - x1)2

R COEEN ERE CE

Non-zero elements of subsequent rows, excluding the last
tow, are defined by

Dl' = (xi+1 )Z
ol (xi+1 - 9&)(%—1 x; )(xm xz—l)
D, —ie+ (i1 =) ~ (0= %)° ®
i (xz+1 ] )( )(xm xz—l)
D, = _(xi~1 - xi)z
e (xi+1 % )(xi—l - xi)(xi+1 - xi—l)
Non-zero elements of the last row are defined by
Dl - (xn—l - xn)z
2 (xn—l - xn)(x,b_z - xn)(xn-l - xn—z)
Dl '—(xn—z - xn)z ©)
na1™ (xn-l )(xn—Z xn)(xm-l - xn—Z)
. (xn—z - xn)z —(xn—l - xn)2
Dln’n e (xn—1 - xn)(xn-z X, )(xrb-l - xn—z)

The elements of D, are defined by
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0 if point i -1, j, k is subsonic
DPai1= K®}, | 4 —1 if point i-1,jk s supersonic

{chgijk if point i, j, k is subsonic

Dy = e .
1 if point i, j, k is supersonic

(10)
Note that the flow upstream of the first element in the bar

can be assumed to be subsonic, therefore B,; , would be
zero anyway. The steady ¢p Vvalue is used to determine

whether the mean flow at a point is subsonic or supersonic
by comparing it to the critical Cp value, where

Cperie = % M (11

and also to calculate

y-1

0 v
ol = +1| -1|-1 a2

2 yMz,cp
(y —1)M2 2

Substituting equation (5) into equation (1), we get

(p=CACp+DD21(p (13)
or
TA Blfac p} {w}

~ = (14)
[C Do 0
where
- s)
D=DxDy, -1
The A sub-matrix is exactly the DLM matrix for this
problem. From the second equation,
[C{Ac, }+[Dlfo}= o} (16)
or

11

{o}=—1D] "1CNAc, } 17

If we substitute this into the first equation, we get

[4N{ac, }- (BIBT e ac, }= fu} a8
or

[Al{Ac, }=fw) (19)
where

A= A-BxD'xC (20)

Thus the effect of the TDLM is to modify the DLM
influence matrix. Refinements to the TDLM, e.g. the use
of a local reduced frequency or Mach number, and limiting
the zone of influence of supersonic panels can be
incorporated in the calculation of A .

Implementation

Based on the result above, the approach taken in the
present work is to replace the submatrix corresponding to
the wing-wing influence coefficients of one group in the
DLM with the modified sub-matrix as derived above. The
cost of implementing the TDLM is the calculation of the
influence coefficient matrices B, C and D , the

transformations to get to B and D, the inversion of D and
the transformation to get A.

The TDLM was implemented in a DLM which uses axial
singularities to model bodies and the method of images to
model wing-body intetference. In this method, an image
of a lifting surface element which is close to a body is
formed within the body. The image minimises the velocity
normal to the body surface induced by the element and its
image.

The output from the DLM for the purpose of aeroelastic
analysis are the generalised forces, which depend on the
Mach number, reduced frequency and modeshapes. The
basic steps involved in the calculation of generalised
forces at one Mach number are:

Read general and geometric data and modeshapes.
Calculate influence coefficients.

Solve singularity strengths.

Calculate and write generalised forces.

Ealb ol

Steps 2 to 4 are repeated for each reduced frequency.

There are numerous possible ways of implementing the
method of images in the DLM. In the present case the
following rules were applied:

¢  The maximum radius of any body is used in the
generation of images.
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e Animage of alifting surface is formed if any edge
(left or right) of the element is within 5 body radii
from the axis of the body, and the quarter chord point
of both edges fall within the axial limits of the body.

e The image of a lifting surface element within one
body does not have an image within another body

Likewise, there are many ways of implementing the
TDLM. The assumptions used in the present study are:

e Lifting surfaces are grouped by the user. Groups may
or may not have volume elements. The user also
controls whether the reflection of a group in the case
of a symmetric half model is part of the same group or
a separate group.

e There is no mutual influence between body elements
and volume elements.

e The mutual influence between lifting surface elements
and volume elements, and among volume elements, is
limited to elements of the same group.

e [Images of lifting surface elements do not influence
volume elements.

e Volume elements do not contribute to the pressure
distribution on bodies in the calculation of generalised
forces.

The basic steps in the solution are modified in a number of
ways. The volume of the geometric data increases to
accomodate the volume elements. Steady cp data is read

together with the geometric and general data. This data is
used in the transformations to test whether the mean flow
at a point is subsonic or supersonic, and to calculate the

elements of D, which depend on <I>g.

The biggest change is in the calculation of the influence
coefficient matrix. The overall influence coefficient
matrix of the DLM is divided into four regions, with the
wing-wing influence coefficients at top left, wing-body
influence coefficients bottom left, body-wing influence
coefficients top right and body-body influence coefficients
bottom right. The matrix is calculated column by column,
where a column corresponds to a sending element and a
row to a receiving element.

The additional wing-volume, volume-wing and volume-
volume influence coefficients of the TDLM are stored in
separate, temporary matrices. After the wing-wing, wing-
body, wing-volume, volume-wing and volume-volume
influence coefficients for a particular group have been
calculated, the corresponding region of the overall
influence coefficient matrix is modified according to
equations (15) and (20). The temporary storage is then
available for the next group.

The calculation of the body-wing and body-body regions,
the solution of the singularity strengths and the calculation
of generalised forces proceed exactly as for the DLM.

Additions to the pre-processor for the DLM include
provision for defining wing profiles, volume elements and
for grouping elements. The pre-processor determines the
coordinates of the centres of the volume elements and
produces a list of these coordinates. The steady ¢, values

at these points are then interpolated from CFD results. In
the TDLM, a lifting surface is still treated as a flat surface,
whereas in the CFD model, a lifting surface has finite
thickness. The pre-processor resolves this discrepancy by
adding the profile thickness when calculating the
coordinates of the volume element centres for
interpolation purposes. The ability to display the volume
elements of a single group at a time allows quick visual
checking of the grouping of lifting surfaces. Figure 1
shows a typical model of a fighter aircraft, with a coarse
panelling scheme for clarity, showing the volume regions
of all groups. Each wing is divided into three panels to
accomodate the control surfaces and the discontinuity in
the leading edge. The three panels of each wing belong to
a single group. The two stabilisers belong to separate
groups. The three panels of the fin belong to single group.

Figure 1. TDLM model of a fighter aircraft.
Results

The test case selected for numerical experiments is a
simple wing which will be used for unsteady transonic
pressure measurements in a wind tunnel. The wing has an
aspect ratio of 4 and a NACA 64A010 profile. At Mach
0.85, the wing shows a large supersonic region, with a
shock position that varies from 62% at the root to 55% at
75% span.

Unsteady pressures were solved at two reduced
frequencies, zero and 0.1, for two modes, a pitching
mode about the midchord of the'wing and a plunging
mode. Various panelling schemes were used, viz. an §
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chordwise panels x 6 spanwise strips x 8 layers of volume
elements, a 16x6x8 and a 20x12x8 scheme. In the latter
scheme, the chordwise divisions were 7*1/16, 8*1/32,
5*1/16. All other divisions were equally spaced. 4 layers
of volume elements above and below the wing, extending
to 40% of the chord away from the wing reference plane,
were used in all cases. Figure 2 shows a symmetric half
model of the wing. The calculated steady pressure
distributions over the most inboard strip is shown in figure
3 for angles of attack of 0°, 0.5° and 1°. The steady
pressures at 0° were used as input to the TDLM, while the
pressures at the other angles of attack were used to
calculate quasi-steady results for comparison with the
TDLM.

Figure 2. TDLM model of the rectangular wing,

1.5

—8— Upper, 0.5° —— Lower, 0.5° —k— Both, 0.0°
=3¢ Upper, 1.0° —%— Lower, 1.0°

Figure 3. Steady surface pressures over the inboard strip
at Mach 0.85 and different angles of attack.

The quasi-steady pressures and unsteady pressures were
solved from equation (14) and also from equation (19).
Although the results should be identical, the roundoff error
may be influenced by the solution method. A DLM
solution was also obtained for the 16x6 scheme and the
roundoff error determined. Tables 1 and 2 compare the

roundoff error of the various panelling schemes and
solution methods. In the case of a solution from equation
(19), the ¢ values were obtained from equation (17). The
complete solution vector was substituted into the left hand
side of equation (14) and a result vector was calculated.
The roundoff error is expressed as the rms value of the
difference between the new result vector and the original
rigth hand side of equation (14). The error values are
normalised by the non-dimensional amplitude kh/ ¢ in the
case of the plunging mode. Separate error values were
calculated for the first part, which is the boundary
condition and the second part which is related to the
transformed velocity potential in the field.

Table 1. Roundoff error, boundary condition (x10°)

Model | Model | Mode?2

k=0 k=0.1 k=0.1
8x6x8, eq (14) 0.650 0.764 0.795
8x6x8, eq (19) 1.623 1.522 1.402
DLM, 16x6 0.759 0.581 0.561
16x6x%8, eq (14) 0.827 1.211 1.310
16x6x8, eq (19) 1.865 2.021 1.928
20x12x8, eq (14) | 2.867 3.297 2.869
20x12x8, eq (19) | 8.896 9.144 8.624

Table 2. Roundoff error, velocity potential (x10°).

Mode Mode 1 | Mode 2

k=0 =0.1 k=0.1
8x6x8, eq (14) 1.386 "] 1.363 1.299
8x6x8, eq (19) 1.161 1.076 0.991
16x6x%8, eq (14) 1.990 1.957 1.838
16x6x8, eq (19) 1.653 1.570 1.521
20x12x8, eq (14) | 3.556 3.734 3.608
20x12x8,eq (19) | 3.918 3.988 3.823

It is clear that the roundoff error is larger when using
equation (19) than when using equation (14). This is
probably due to the fact that the subdivision of the matrix
allows a less efficient pivoting strategy than what is
possible with the complete matrix. In absolute terms,
however, the roundoff error is acceptably small.

The quasi-steady pressure distribution over the most
inboatd strip calculated by the TDLM is compared to the
quasi-steady results from CFD and the results from the
DLM in figure 4. The quasi-steady results from CFD were
calculated from both agles of attack to confirm linearity
with amplitude. The quasi-steady results show good
agreement with results obtained from CFD, while the
DLM results expectedly do not show any contribution
from the shock motion.
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Figure 4. Quasi-steady results for rectangular wing.

Total aerodynamic coefficients were calculated using the
different panelling schemes and are compared in tables 3
and 4 for the pitching mode and in table 5 for the plunging
mode. The coefficients for the plunging mode were
normalised by the non-dimensional amplitude kh/¢.

Table 3. Total quasi-steady acrodynamic coefficients for

the pitching mode.
CL Cum
8x6x8 5.7705 | 1.4709
DLM, 16x6 | 5.2218 | 1.5155
16x6x8 6.0596 | 1.3981
20x12x8 5.8374 | 1.3431
Table 4. Total unsteady aerodynamic coefficients for the
pitching mode.
CLR Cu CMR CMI
8x6x8 5.6080 [ -0.3161 | 1.3321 | -0.5853
DLM, 16x6 | 5.0687 | -0.1465 | 1.4180 | -0.4603
16x6x8 5.8542 ] -04846 | 1.2223 | -0.6077
20%12x8 5.6536 | -0.4503 | 1.1790 | -0.5789

Table 5. Total aerodynamic coefficients for the plunging

mode.
Cir Cu Cumr Cwi
8x6x8 -0.6471 | -5.4922 | -0.4970 | -1.2984
DLM, 16x6 | -0.4250 | -4.9902 | -0.3923 | -1.3925
16x6x8 -0.8396 | -5.6866 | -0.4916 | -1.2006
20x12x8 -0.7886 | -5.5005 | -0.4691 | -1.1573

All figures quoted for the TDLM are from a solution of
equation (14). Results from solving equation (19) differs
by no more than 1 in the last digit quoted. The differences

between the TDLM and DLM results have the same trends
as those teported for a similar wing®.

The wing will not be mounted directly to the wind tunnel
wall, but with a fairing as shown in figure 5. This
arrangement was used as a test case with a body included.
The case was solved with the wing and its reflection in the
symmetry plane treated as a single group as well as
separate groups. The unsteady pressure distributions over
the inboard strip due to symmetric pitching of the wings
are shown in figures 6 and 7. The unsteady pressure
distributions over the inboard strip due to anti-symmetric
pitching of the wings are shown in figures 8 and 9. The
lack of significant differences between the results indicates
that it is justified in this case to consider the two wings as
separate groups.

Figure 5. Rectangular wing with fairing.

[3:]

Cp/rad

204 —&— Single group

—+- Separate groups
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v

T ¥ T ¥ T ¥
02 03 04 05 06 07 08 09 1
x/c

Figure 6. Real part of unsteady pressure due to symmetric
pitching. .
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Figure 7. Imaginary part of unsteady pressure due to
symmetric pitching.
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Figure 8. Real part of unsteady pressure due to anti-

symmetric pitching,
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Figure 9. Imaginary part of unsteady pressure due to anti-
symmetric pitching.

1

Conclusion

A method has been developed for implementing the
TDLM of Lu and Vop} in a DLM for general
configurations. The new method retains the versatility of
the DLM and the solid theoretical foundation of the
TDLM. The method must still be tested for complex
configurations.
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