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Abstract

The aerodynamic performarnce of supercritical aerofoils
at transonic speeds is strongly influenced by the shock
wave-boundary layer interaction. As a means of con-
trolling this interaction it has been suggested that the
upper part of aerofoil surface, in the shock wave re-
gion, is replaced by a porous surface. Quite small suc-
tion through the porous surface may cause a significant
reduction in the undesirable effects of a strong interac-
tion. The suction effect downstream of the shock wave
limits the boundary layer growth and minimizes flow
separation.

The main aim of this study is to estimate the reduction
in both skin friction and pressure drag produced by
small amount of suction or blowing utilizing a modern
high resolution numerical scheme. A fast and robust
algorithm utilizing an upwind implicit Total Variation
Diminishing (TVD) scheme(!) has been used to study
both laminar and turbulent transonic flows over the
aerofoils with porous surfaces. A hyperbolic C-mesh
has been used to generate an orthogonal grid around
aerofoil section.

The numerical results obtained for the RAE 2822 aero-
foil are compared with experimental data and other
numerical results. The results consist of both laminar
and turbulent viscous flows over the aerofoils with and
without suction.

1. Introduction

In order to reduce undesired effects of shock-boundary
layer interaction for supercritical aerofoils, many dif-
ferent techniques have been used. The most at-
tractive method is passive control of shock-boundary
layer interaction using a porous surface above a closed
plenum chamber underneath the shock wave region.
A comprehensive review on theoretical and experi-
mental investigations of passive control was given by
Raghunathan(®). In that review, he concluded that for
practical aerofoils the passive control can reduce drag
only at off-design condition when shock wave becomes
stronger. But, drag reduction at cruise condition is
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more desirable than off-design condition for transonic
civil aircrafts.

In this study, it was decided to maintain laminar flow
for whole aerofoil chord length and investigate (com-
putationally) what percentage drag reduction can be
achieved at transonic speeds. Experimental investiga-
tion at NASA(® proved that full chord length laminar
flow can be obtained by suction through strips. At
this stage, we consider the shock-boundary layer in-
teraction to be controlled by a certain amount of air
suction through porous surface in the shock wave re-
gion.

An implicit TVD scheme has been selected for this
study. The TVD concept first proposed by Harten(4®)
and then modified and generalized by Yee(%"®) who
had implemented to solve the two-dimensional Euler
equations of gas-dynamics for aerofoil problems. In
most of these papers inviscid aerofoil flows have been
considered and the interest is in general flow features
such as shock capturing. However, in our study we aim
to make the scheme a practical tool for computation
of transonic flows over aerofoils and examine the abil-
ity of the scheme to accurately predict aerodynamics
coefficients. The aerodynamics coefficients which are
important from practical point of view can not be re-
solved efficiently by the original Yee’s scheme because
of many involved control parameters such as type of
limniters, local time-stepping, and dissipation correc-
tion at boundaries. Therefore, some modification of
the original scheme is introduced(®) to obtain more ac-
curate results.

In the present study, the finite-difference explicit part
of flux computation in the Yee’s implicit scheme has
been replaced by a cell-vertex finite-volume scheme and
the implicit part and TVD dissipation functions are
also modified. Since at steady-state, the solution of
implicit schemes converge to explicit part by vanishing
the implicit part, we can claim that the final results
are truely based on a finite-volume scherme which is
mostly desirable for aerofoil flows. The derivation of
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this class of TVD schemes in two-dimensional general-
ized curvilinear coordinates and details of the scheme
can be found in references(®1%11) for solving compress-
ible flows. Details of the Baldwin-Lomax(1?) turbulent
model in non-dimensional form used here is explained
and the numerical implementation of this turbulent
mode] is discussed.

The goal is to assess the performance of this scheme
in terms of numerical accuracy, robustness and conver-
gence rate for drag reduction purposes. The RAE 2822
aerofoil is selected as a test case to compare laminar
and turbulent numerical results on a relatively coarse
grid. The 24 % drag reduction obtained for RAE 2822
(case 10) is a very promising result at this stage and
we are now aiming to include all physical phenomena
such as controlling the transition of laminar flow to
turbulent in the future investigation.

2. Governing Equations

The nondimensional form of the compressible Navier-
Stokes equations in the general curvilinear coordinates
in two dimension can be written as
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¢ = €&(z,y),n = n(z,y) are coordinate transformation
functions and J is the Jacobian of the transformation.
The vectors U, F, and G are given by
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where p,u,v,p and e are the density, velocity compo-
nents along the z_ and y_ directions, static pressure
and total energy respectively. The components of the
shear-stress tensor and the heat flux vector in non-
dimensional form are given by
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where p, v, Pr and Re are the dynamic viscosity, ra-
tio of specific heats, the Prandt! number, and the
Reynolds number based on the chord length.

The following non-dimensionalization are used to write
the governing fluid flow equations, and all subsequent
equations, are in non-dimensional form.
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where ¢, poo, Poo, and Uy are chord length and free-
streamn density, pressure and velocity, respectively. The
Mach number is My, = U /Coo with the free-stream
sound speed C.

3. The Numerical Algorithm

The Alternative Direction Implicit (ADI) form of
Linearized Conservative Implicit (LCI) TVD scheme

in generalized curvilinear coordinates can be written
agl6:11)
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with Un*! = U™ + E*. The operatores H¢ and H”
are defined as
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The Jacobian matrices A and B result from the lin-
earization of the flux vectors F and G respectively.
For steady-state applications
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The scalar values M¢ and M" are
Mf+1/2,j ma“’W(ai-}.l/z)]
M?+1/2,j ma${¢(a§+1/z)] (8)
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1, aj,,/, and @}, ,, and € are (4 x 4) identity ma-

trix, the eigenvalues correspond to the A and B, and
entropy correction function, respectively. The RHS
here is a combination of a cell-vertex finite-volume(1®)

approach and the numerical dissipation of the Yee’s
TVD scheme as:
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(d)i +1 /2)U for the second-order upwind TVD
scheme(®19) are given by
1
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with € = 0.125. The characteristic function ai

1/2 is
defined as T
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with R is right eigen-vector matrix.
In all test cases, the Van-Leer limiter functions gﬁ +1/2

is used and is given by(1:9)
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g =

with 6 a small parameter (10~7 < § < 107%). In all
the above equations the Roe’s averaging(1® is used to
evaluate U;;y/; and corresponding terms.

4. The Turbulent Model

For laminar flow computation the coefficient of molec-
ular viscosity p is obtained from Sutherland’s law ex-
pressed by

21.04+ C/Ty
T+C/Tw

with C' = 110.4K and the coefficient of thermal con-
ductivity & is specified by

=13 (15)
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where the laminar Prandtl number Pr; is a constant
equals to 0.72 for air. '

For turbulent flow computations, using a zero-equation
model, the transport coeflicients in Navier-Stokes
equations are simply replaced by

p=
k_HA L P
cp_Prz+Prt

(16)

where the turbulent Prandt! number used here is a
constant equals to 0.9 for air and the turbulent vis-
cosity coefficient p; is computed using the isotropic,
two-layer, Cebeci-type, algebraic eddy-viscosity model
reported by Baldwin and Lomax(12),

In the Baldwin-Lomax two-layer formulation p; is
given by:
He = {

where y is the local distance measured normal to the
body surface and y, is the smallest value of y at which
the values from the inner and outer region formulas
are equal. In practice y, corresponds to the y at which
(1t )inner > (it )outer. Within the inner region
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where w is the vorticity defined by
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y is the surface normal distance, and yt is defined as
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Tw 1s the wall shear stress and given by
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u; is the mean-velocity component tangential to the
surface.

(22)

The outer region formulation is given by
(,ut)oute'r = Reoo'Ccs-Ccp~p-Fwake/Fkleb (23)
where Fyqke is the maximum value of the function

o) =20 o)

Fyqep 1s the Klebanoff intermittency factor defined as

6
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Umaz Deing the value of y for F,q5. To determine each
peak in F, it is suggested by Degani('®) that the value
Fpeak = F(Ypear) is chosen when F(y) < 0.9F (Ypear)
for y > Ypeak-

The turbulent model involves the following five con-
stants:

K=04 , At=26 , C. =0.0168

Cp=16 , Criep =03

For practical implementation in a CFD code, the term
Ymaz, Which involves a search across the boundary
layer at each station, must be determined to find the
position of Fyez, the maximum value of the function
F in Equation (24). The length scale ymqs is used as
a characteristic scale for the outer part of the bound-
ary layer, and so near wall peaks in F must be ignored.
This is accomplished by restricting the search for Fy,qz
to y* > 10. Secondly, multiple peaks in F may occure,
particularly downstream of shock waves. An effective
strategy used in reference('®) is to search across the
boundary layer, starting at y* > 10, for the first three
peaks and to take the largest of these peaks to deter-
mine Ymag-

In the wake region a simple wake model is used i.e., the
upper and lower surface trailing edge eddy-viscosity
distributions are imposed at all stations downstream
in the wake

{ (/‘t)gake = (lut)Ue.

() wake = (u:)?ﬁ (26)

€

As far as the flow development around the aerofoil is
considered, the above approximation for the immediate
near-wake region gives a reasonable estimation.

5. Results and Discussion

Results are presented in this section of calculation of
the RAE 2822 covering a range of conditions from
fully subcritical flow to supercritical flow with shock-
induced separation. The calculations are made using
the method with a fixed set of flow algorithm and grid
generation parameters.

Computational grids are constructed using the alge-
braic grid generator of Rizzi('7) together with a hy-
perbolic grid generator of Alsalihi('® to produce an
orthogonal C-mesh for the test cases (see Fig. 1). A
relatively coarse mesh of 141 x 61 has been used in
order to investigate performance of the numerical re-
sults. The outer boundary is placed at 18 chord lengths
away from the aerofoil surface. The first cell-size at
both the leading edge and the trailing edge is fixed to
2% = 0.002 and 22 = 0.00002. In the wake region
24 x 61 grid points have been placed between the up-
per and the lower wake cut and the outflow boundary
which is placed 10 chords length downstream of the

trailing edge.

Fach test case was initialized with a uniform freestream
flow at the prescribed Mach number and angle of at-
tack. The no-slip condition together with zero nor-
mal pressure gradient and normal temperature gradi-
ent (adiabatic wall) have been applied on the aero-
foil surface. The characteristic boundary condition(?)
has been used for the outer-boundary and zero-
extrapolation was used for the outflow boundary. In
the wake region simple averaging has been applied to
all conservative variables.

A local time-stepping similar to Pulliam and Steger(®)
is used here is based on mesh Jacobians as follows

(27)

At = T
AR s

where T is a constant to provide the maximum allowed
time-step which can maintain the stability of the nu-
merical scheme. A typical value used in our computa-
tion for T is 0.5.

The RAE 2822 aerofoil has been designed for transonic
flows and has a maximum thickness/chord ratio of 12.1
% and a sharp trailing edge. An extensive experimen-
tal study of this aerofoil in the 8ft x 6ft transonic wind
tunne}l at RAE Farnborough was presented by Cook et
al(®?9), It has been used extensively to validate numer-
ical methods(?1),

Figure 1 shows the RAE 2822 aerofoil with a close-up
of the computational grid used in the present calcula-
tion. Four cases are considered here and the relevant
flow conditions are given in Table 1(a). Comparisons of
predicted and measured lift, drag and pitching moment
coefficients and also Johnston’s(!®) numerical results
are shown in Table 1(b), the results being presented
for the Baldwin-Lomax turbulence model. Note that
Johnston’s results are based on a fairly fine mesh con-
sisting of 272 x 64 cells.

Transition is fixed at 11 % chord for Case 1 and at
3 % chord for the others on the upper and lower sur-
faces of the aerofoil.

Considering the Case 1 which involves mainly subcrit-
ical flow, the agreement with measurements is fairly
good, especially, drag prediction is very close to exper-
iment. Figure 2 shows that pressure coefficient on up-
per and lower aerofoil surfaces are fairly matched with
results from experiment. The predicted skin friction
is generally in good agreement with measurements.
Drag convergence is oscillatory due to the relatively
large time step is used. However, convergence can be
achieved in around 3000 iterations for engineering ap-
plications.
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TABLE 1
RAE 2822 Aerofoil
Results using Baldwin-Lomax (B-L) model
(a) Flow conditions

Case M o R, x 107°
1 0.676 | 1.93° 5.7
6 0.725 | 2.54° 6.5
9 0.730 | 2.79° 6.5
10 | 0.750 | 2.81° 6.2
b) Comparison of measured and calculated loads
Case 1 CL CD CM(1/4)
Experiment 0.566 | 0.0085 -0.082
Johnston (B-L) | 0.5802 | 0.01068 | -0.08769
present (B-L) | 0.5750 | 0.0084 | -0.08593
Case 6 C'L CD CM(1/4)
Experiment 0.743 | 0.0127 -0.095
Johnston (B-L) | 0.7457 | 0.01502 | -0.09175
present (B-L) | 0.7637 | 0.01199 | -0.09255
Case 9 CL CD CM(1/4)
Experiment 0.803 | 0.0168 -0.099
Johnston (B-L) | 0.7950 | 0.01884 | -0.09513
present (B-L) | 0.8174 | 0.01593 | -0.09642
Case 10 CL CD CM(1/4)
Experiment 0.743 | 0.0242 -0.106
Johnston (B-L) | 0.7901 | 0.02921 | -0.1108
present (B-L) | 0.8157 | 0.02582 | -0.1117

Case 6 presents a supercritical flow on the upper sur-
face terminated by a shock wave of moderate strength
just downstream of the mid-chord position. Drag and
moment coefficients predicted by present method are in
good agreement with measurements. However, the pre-
dicted lift coefficient is a little higher than the other nu-
merical scheme and measurement. Similarly, as shown
in Figure 3, the shock wave is predicted to be a lit-
tle too far upstream. This is in agreement with other
calculation methods; see Johnston(1®), and Holst(21)
for example. Very good agreement in skin friction is
achieved upstream of the shock wave, but, relatively
poor prediction is observed downstream of the shock
wave which results from the discrepancies in shock
wave position. Rapid and robust convergence of drag
coefficient is found.

Most aerodynamics coefficients are matched closely
with the measurements for Case 9. In Figure 4 , bet-
ter agreement in shock wave position is observed as
also reported by Johnston. The upper surface skin
friction distribution, in Figure 4(b), indicates flow sep-
aration at the foot of the shock wave for the Baldwin-
Lomax turbulent model. No separation in the experi-
ment is reported for this case(2?). This tendency of the
Baldwin-Lomax model to predict premature flow sepa-

ration, particularly at shock waves, has been noted by
other authors(?1), Similar convergence with the other
test cases is observed.

Case 10 is the most interesting of the RAE 2822 cases
to be considered, since it is the only one in which shock-
induced separation is present in the experiment. Fig-
ure 5 shows that there are now larger discrepancies be-
tween prediction and measurements. The flow remains
separated up to the trailing edge for the Baldwin-
Lomax turbulent model. This behavior has been re-
lated to the use of the friction velocity U, in the near-
wall damping function by Johnston(1®),

Figure 6 shows the results obtained for RAE 2822 aero-
foil with and without suction underneath the shock
wave. The case 10 is selected here to investigate the
effects of suction on flow separation. For the porous
aerofoil, suction equivalent to 1% of freestream veloc-
ity is employed along the segment of 0.6 < z; 1 < 0.8
on the upper part of aerofoil surface. 24% drag re-
duction is achieved, which is very promising for future
investigation. However, all physical flow features such
as transition from laminar to turbulent flow, have to be
considered to accurately resolve all physical phenom-
ena.

To see all the merits of maintaining laminar flow on
supercritical aerofoils in respect to drag reduction, the
laminar fluid flow equations have been solved and re-
sults are compared with turbulent results. Figure 6(a)
shows that the shock wave for the porous aerofoil
moves slightly downstream with respect to solid aero-
foil result. The suction upstream of the shock wave
causes the shock wave to become stronger and the flow
tends to separate. However, immediate suction down-
stream of the shock wave prevents the flow separation
and causes a rapid reattachment. Using the appropri-
ate amount of suction, however, will prevent the occu-
rance of any local separation. The laminar flow result
has also predicted the wrong shock wave position and
this may suggest that more study of laminar flows are
needed before involving more complicated turbulence
models.

6. Conclusion

In the initial phase of this study, a fast algorithm uti-
lizing an upwind, implicit, Total Variation Diminishing
(TVD) scheme has been developed. Both laminar and
turbulent transonic flows over aerofoils with and with-
out porous surfaces have been studied. A hyperbolic
C-mesh has been used to provide an orthogonal grid
around the aerofoil section. This study has shown that
aerodynamic coefficients can be predicted fairly accu-
rately using a relatively coarse orthogonal grid. The
current study of laminar transonic flows has indicated
that active laminar flow control (LFC) can also be in-
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vestigated by such a method and any possible drag re-
duction can be analyzed in detail. This is the subject
of current research.
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Figure 1 A global and sectional view of the C-hyperbolic mesh
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Figure 2 Results for RAE 2822 (case 1), M=0.676, a=1.93", R,=5.7 X 10°
a) surface pressure coefficient; b) surface skin friction; ¢) drag convergence.
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a) surface pressure coefficient; b) surface skin friction; ¢) drag convergence.
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Figure 4 Results for RAE 2822 (case 9), M=0.73, ®=2.79", R,=6.5 X 10°

a) surface pressure coefficient; b) surface skin friction; ¢} drag converaence.
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Figure 5 Results for RAE 2822 (case 10), M=0.75, ®=2.81°, R,=6.2 X 10°
a) surface pressure coefficient; b) surface skin friction; ¢) drag convergence.
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Figure 6 Comparison of solid and porous RAE 2822 Aerofoil (case 10)
a) surface pressure coefficient; b) surface skin friction; c) drag convergence.



