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1. Introduction

Since the precursor works of Helmholtz and
Kirchhoff, the theory of the two dimensional potential
flow of an incompressible ideal fluid has been very
extensively developed in hydrodynamics and
aerodynamics. This can be explained by the fact that
the powerful methods of complex function theory are
applicable. Since Joukowsky’s theorem, the motion of
an airfoil with constant circulation is well known.
Now, owing to the fondamental works of Couchet®
and Mudry™® on vortex sheets complemented by
numerical conformal mapping, an exact solution to the
unsteady motion of wing with continuous shedding of
vortices from the trailing edge is available. Moreover
the profile may be deformable during the motion.
Computed values of hydrodynamics forces present a
good agreement with experimental results. So, the
theory of thin wake wing can be considered as
achieved in 2D flow.

The problem of thick wake modelling is
different. Helmholtz used a « dead zone» running
indefinitely behind the obstacie with a constant
pressure equal to the free stream pressure. This flow
pattern was very popular in the beginning of this
century as it provided a way of getting around
d’Alembert’s paradox, so that the drag could be
calculated. Levi-Civita"® and Villat"® elaborated the
mathematical foundations of this model. Later,
Leray"” showed the existence and uniqueness of the
solution to this flow, but, unfortunately, the velocity
field and the free streamlines can be determined only
for extremely simple cases (flat plate, wedge and
circular arcs). The theory then fell into disuse for some
time. At the beginning of the fifties, using the
increasing capacities of computers, results for
cylinders, arcs, and plates with split flap, are
computed by Birkhoff and Zarantonello®, and Wu®®.
Lastly, in 1986 Elcrat and Trefethen® studied
polygonal bodies and obstacles approximated by
polygonal lines, using a numerical treatment of the
modified Schwarz-Christoffel integral.

This paper presents a general numerical
method that provides the solution for an obstacle of
arbitrary geometry®. The results obtained show that
the Helmholtz wake theory can predict lift and
pressure distribution as long as it is used with a
Copyright © 1996 by the AIAA and ICAS. All rights reserved.

boundary layer computation to specify the position of
the separation points. Because Cp is null in the wake,
the drag coefficients we compute are underestimated.
So we propose a new model called « virtual wall »
model®, which should predict the drag as well as the
lift. Now the pressure in the wake is not equal to the
free stream one and its value must be determined by
computing the forces applied to the obstacle. This
model is more complicated than the first one because it
calls for a solution to a mixed problem of the function
theory. The flow is then analyzed and described
without reference to experimental data. For each
model, we have tested the accuracy of the results of
our programs, and computed the values of C;, and

C, for various bodies.

2. Helmholtz’s Model

An obstacle of known geometry is placed in an
infinite stream of velocity V., parallel to the x-axis,
and of pressure P_. P is the wetted wall, A is the
upstream infinite point, and D is the stagnation point.
C and E are the points where the flow separates from
P, and {-p and Jgp are the free streamlines coming

from C and E (Fig (2.1)).

P=P.
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S

Fig (2.)

Let f(z) be the complex potential and its
derivative w(z) the complex velocity.

The boundary conditions are :
lim wW(2) = V,, .1
Im{w(z)dz} =0 on P (2.2
[W@)| =V on Ly and 2y 23)
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The locations of points C and E used to be
obtained by Brillouin's conditions. In fact, a boundary
layer analysis can only calculate the location of the
current break-away points. We shall therefore assume
that points C and E are specified.

2.1 Theoretical Formulation

Here, the problem cannot be solved by
calculating dz = dffw where f and w are obtained by
conformal mapping, because the w-plane is unknown.
The function Q defined by the following relations,
must be considered.

Q:ilog%: @+iT
o0
where ©® is the angle the fluid velocity makes with the
x-axis, and T is given by : M =Vael.
This is a mixed problem for Q, because @ is
knownon P, and T=0on L., and £ .

The mixed problem becomes a Dirichlet
problem by use of the Levi-Civita method: The domain
of the f-plane is mapped on the inside of the upper unit
semi-disk A", in the ¢ -plane Fig (2.II), in such a way
that the free streamlines map onto the diameter. Since
T = 0 on the diameter, the function can then,
according to Schwarz's principle of symmetry, be
continued analytically across the diameter on the
whole disk A and the mixed problem then becomes a
Dirichlet problem. If 8(c)=® (") (Villat’s
function) is supposed to be known on the boundary of
A, the Schwarz-Villat formula can be used to
determine Q2 and consequently 7 (¢) = T(¢’*). From
(2.1) €(0)=0, so the constant of the formula is null

and () is easily calculated:
L7 1-¢ 2

QG)=— 50(c)do  (24)
T ol-2Lcos(o)+¢
An
-~ ©
r) e
E A o]

Fig (2.I)

Now, f-plane must be mapped on § -plane. The

diagrams in the different planes used are shown in
figure (2.1II).
The classical transformations are:

*f =a’(Z+cos 7)*  with

_NPE tyPc VPe —\Pc
a__—._.._..____ et
2 Pp +yPc

where @ and @ are the velocity potential values at

and cosy =

C and E, and the value {'=e" corresponds to point

D.
wzo_ 1,1
zZ= 2(§+C)

(2

Ao C D B As
177777777777
-1 W%(‘{) 1

Y ®

- 4
Yy

Fig (2.11D)
Finally we obtain:

2
f=a’ [cos (y)—%(é#%)]

Since ¢ and ¢y are unknown, a and ¥ are
constants to be determined.

(2.5)

dz= af gives :
w
az=X. i (;’+—1-)—2cos(7) -1 ¢ (2.6)
4 ¢ ¢ 2
2
where K= 2a”
0
The parametric equations of the free

streamlines £, and 7 are obtained by integrating
(2.6) from ¢ =+1 to &', where ¢’ is a point on CB or
EF.

On the boundary of A, {=¢ and (2.6)
becomes:
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dz= K ¢l ¢ (cos ()~ cos (o)) sin(o)do  (2.7)

Let s be the arc length of z onto / starting from

C,s € [0,L] (L is the length of P ).
ds=K ¢ |cos(y) - cos(0)| sin(c)da 2.8

As 6(o) is unknown, the first problems treated
had very simple &(o) functions, such as a two-value
function for a flat plate or a wedge.

Let B be the angle between the tangent at a
point on P and the x-axis, and & the one-to-one
boundary correspondence function.

€. cel0n] > se[0L]

Then, from the geometry of the contour, let us
write:

G(o)=(fee)c)—7 Vo €[0,7 [

0 (o) =(BoeXo) Vo ely (2.9

To solve we just have to define & from (2.8).

At the stagnation point, Q presents a
singularity which is isolated by expressing :

Q=Q,+Q
where Qg is a particular solution having the same
singularity as Q.

3 ioc __ iy
Q, =0, +ir, =_7ﬂ+y+nog(ﬁ,_e.,_]

P
05 = ‘% Vo e [04]
05 =7 Vo €yl
sl 727
Tg=1

sin(o—ﬂl )
2
We must analyze Q = 8 +i7 and now (2.8) can
be written as:
o 2sin(c’)sin? (9;;1)
s(o)=K I )
e

0
As 8 is known, (2.9) gives:

5(a>=(ﬁoe)(a)—§

7 is calculated using Schwarz-Villat's formula:

do'  (2.10)

Vo €[0,r] (2.11)

7o) = - (2.12)
y 2
L tim 1m J' I-¢

! ~6(c")do’
TE>e” 1-2¢cos(a)+¢

0

T
€(0)=0 means {@(c")do’'=0 hence
0

1 -~
y=2i2 j' d(c")do" (2.13)
2 7z
0
g(x)=L allows us to determine K, and we write
(2.10) in the form

E(cr,;'))
= 2.14
&(o) L( E(r.r) (2.14)
o 2sin(a’)sin2(a,;y)
where E(o,y) = j o) do’
e

0

The unknowns are functions 6 — &, 7, &, and angle
Y-

Relations (2.11), (2.12), (2.13), (2.14) supply a
functional system of four equations written as :

0=7(s) @11)
y=49) (2.12)
7=40) (2.13")
e=¢(T.y (2.14)

2.2 Numerical Procedure and Computed Results

The functional system is solved by building,
from any initial correspondence function &,, a series

~

g ! n T n€n> using the following recursive
algorithm:
0, = (1-r9 )7(8,,_1) +r5 6,4

0 =(l—r},)b(5n_l)+ry Yn-1
?n =(l_r1)i(§n—l)+r‘r ~n——1

= (1_r5)c(fn—1’yn——l)+r€ tn-1

As the existence and uniqueness of the solution
has been proved, we consider that the solution is
reached if the process converges. Then it is easy to
calculate w and thus find the pressure distribution, the
drag, and the lift.

In most cases, the number of iterations varies
from 10 to 50, corresponding to a few minutes'
calculations on a PC 486-DX 50 type computer. The
accuracy can be improved by increasing the number of
iterations and quadrature points (usually 500 points).

To study obstacles with high curvature the
values of the weighting factors to obtain convergence,
are: 1= r1g=1,= 0.5 and r,= 0. For polygonal obstacles,
they must be greater.

To test the capacity of our program we compare
the Cp, and C; that it computes with the exact values,

or values given in the literature. First, we consider
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three obstacles with straight boundaries, then obstacles
with curved boundaries.
o Inclined plate

This is a geometry whose exact solution is well
known. The classical values of Cpy, C;, and y are:

5.
T 7 cos” (0)
=6+—, Cp=——",
r 2 b 4+ 7 cos(6)
and c. == cos(0) sin(5)
L 4+ mcos(d)

where & is the angle between the perpendicular
to the wall and the x-axis.

For different values of &, the values of Cpy, C;,
and ¥ that we computed, reproduce the exact values of
Cp, C; and ¥ obtained from these formulas.

o Inclined plate with separation on the backface

Let us consider a plate inclined at an angle of
30° with the separation point prescribed in the middle
of the back face. This case was studied recently by
Elcrat and Trefethen®. Their computed values of Cp

and C; are:

Cp = 0.000575 Cp =2.26628
We find :
Cp = 0.000574 C; =2.26652
¢ Asymmetrical wedge

The upper face of the wedge is inclined at an
angle of 30°, the lower face at 45°, and both faces are
the same length. Elcrat and Trefethen® computed :

Cp = 0.33703 C; =0.07397

We find :

Cp = 0.33707 C; =0.07400
o Circular cylinder

We compare our results to those calculated by
Birkhoff and Zarantonello(z), Brodetski, and
Schmieden.

¢ = 55.04° (angle of separation )

Brodetski Cp =0.500
Birkhoff et Zarantonello Cp =0.499
We find Cp = 0.4986

» Convex and concave circular arcs

Our program reproduces the values published
by Birkhoff and Zarantonello®.
o Comparison with experiments

To show that the method described in this
paper works for an arbitrary obstacle, we will now
present two new Helmholiz’s flow calculations and
compare them with experimental results.

The first is a NACA 0012 wing section with a
0.2 chord simulated split flap deflected at 60°. The
section lift coefficient is given by Abbott and Von
Doenhoff . The separation points are placed at the
flap extremity and trailing edge. Figure (2.1V) shows
as good an agreement with experimental results as
Joukowsky's method in the classical theory of wing
sections.

2.5

TIOA

15 4

/
0.5 /
—Experimental Curve
/ » Computed results

" L1 1]

-15  -10 -5 0 5 10 15
Angle of attack o

Fig (2.IV)

The second calculation is of a thick wing
section with boundary layer suction as used in the
Cousteau-Malavard sail of windsail ships. Its surface
section consists of a half ellipse upstream and a semi-
circle with a flap downstream (Fig (2.V)). As we do
not know ¢, we give it a value so that, when a is zero,
the C; we calculate is equal to the experimental one.
Then we assume that the separation point is specified.
The results are presented in figure (2.VI). When o is
20°, C; is computed as ¢ decreases 5°, because
prescribing the separation point is not realistic as the
angle o increases. This agrees better with

experimental results®.

(a2
k/gw

Fig (2.V)

8 r

6

5 i ——C1 Comp 0
——Cl Comp -5

0 L ]

0 10 20
Angle of attack
Fig 2.VD)
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The results shown in figures (2.IV) and (2.VI)
allow us to say that Helmholtz's wake model, in spite
of its simplicity, can predict C, but the Cp, values

obtained are not realistic because the pressure in the
wake generally is not equal to P_. To try to improve
the drag value, we consider a new model where the
pressure in the wake can be P, #P,..

3. The Virtual Wall Model

The virtual wall model proposes, as an
innovation, to calculate the wake pressure P, or the
wake pressure coefficient Cp, thanks to an original
contribution of the momentum theorem. Releasing the
pressure in a wake still considered as a motionless area
extending to infinity, is made possible provided that
walls separate the wake from the general flow at
infinity®P(®  The wake is first limited by free
streamlines and then limited by virtual walls, so called
as they do not appear in the real flow. The locations of
the beginning of these walls is also calculated by the
model. In this way, the solution is reached without
experimental data input and without choice of
parameters. Now, let us refer to the figure (3.D).
Consider an obstacle in an infinite stream of velocity
V., parallel to the x-axis, and of pressure P.. The
Bernoulli theorem applies between the point at infinity
upstream and a point of a free streamline, which links
PQ and Pgo.

A is the stagnation point. F and B are
respectively the lower and upper separation points,
specified as in the previous model. The arc FB
represents the wetted wall, so called . The free
streamlines /pc and Jgg join the separation points to
the beginning of the virtual walls. CD and ED
represent the horizontal virtual walls running to
infinity. These are not only lines of discontinuity for
the velocity (like free streamlines) but also for the
pressure. On CD and ED, outside the wake, the
pressure of the flowtendsto P, .

The boundary conditions for the complex
velocity w are written as follows

lim w=V,
H—)oo ®
Im{wdz} = 0 on #,CD,ED @B.D

|Wl = VO on ‘£BC "zFE

4 @
. P
B V=0
/ > D
—"”AK\< P=P,
fig (3.I)

3.1 Theoretical Formulation

The technique of resolution that is used then
is quite similar to that used in Helmholtz’s model,
considering the log-hodograph function

A =Log—= =T(O+i®C) (.2)
w($)

with, now |V| =V,eT. It is usual to write, on the unit

circle

{T<;)=T(e*")= (o) 53

) =0(e)=6(c)

AA 1

w

1
1
1
— — >
C : D ' I
‘g ! /
\\‘ i ’
N ',/
x [
B,\\\N-_“’,‘F:
v
@
A B _C i
F E Do
fig (3.1)

Levi-Civita’s method still applies, particu-
larly consisting in mapping the flow inside the upper
half A" of the unit disk A. The choice of the function Q
instead of Q proceeds from the principle of reflexion
requiring the function to be real on the real diameter.
Indeed, contrary to the previous model, it is
convenient that the real diameter of the auxiliary plane
figures the virtual walls of the physical plane (instead
of the free streamlines) where the argument of the
velocity vanishes. Moreover, this process removes the
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virtual walls from the resolution (still justifying its
name). The mixed problem is simplified as it gets a
symmetry across the real axis. But it does not
degenerate in a Dirichlet problem as in the Helmholtz
model. We are then led to solve, in the whole disk, a
four-arc mixed problem for Q.

Figure (3.II) shows both potential and
auxiliary planes.

On fpc and Zgg , function T is known as soon

as Cpy is calculated. On P, function 6(c) defined as

o)=(Bo¢)o)-7 on [7 1%[

G4
Ao)=(poee)  on 23]
is known as soon as &(c)
e oefyLy,] > s e[0,L] (3.5

is calculated. s is the arc length of z onto /P starting
from F, and L is the length of /°. B always means the

angle between the tangent and the x-axis.
As previously, in order to get a continuous
function, the stagnation point singularity is eliminated

putting N
QA¢)=Q¢)-(9)

Q(¢) =-Log(¢-iX¢+1) 3.7
The solution to the mixed problem for Q is
then given by the integral™®

(3.6)
where

5 o _ X T(Hdt
A© ir I X(t(t-¢)
N (3.8)
+ X O(t)dt
) XOe-0
with
L’=F’EFUBCB’ L”’=FABUB’A’F’
and
X(¢)=
J(é’... eiyl )(é'_ ei72 Xé’_ ei(27r'72 ))(é’__ ei(27f‘71))
3.9

Note that there is a condition of existence for
the mathematical mixed problem® that must be
verified by the solution, namely

T(t)dt+i B(tydt o
X . X()

The study is then complete considering the
following function which conformally maps &-plane on
f-plane

(3.10)

” fEfC(§+-})2
f(¢)= ;
[ ) Vo)

G.11)
where fz and f; mean the affixes of points E and C in
the f-plane. Successive steps of mapping occuring in
(3.11) have been avoided because of their similarity
with those of the Helmholtz model.

Hence three positions are unknown in the -
plane: points B and F, respectively of arguments
v,and y,, and d, the affix of D, which is related to fg

and fc by
2d _ fg +yfc

d?+1 s -fo
Building the flow field in the physical plane
derives then from

(3.12)

-4 (3.13)
A%

that is

dz=2Ke%e"? (52—1)(5”1) s (3.14)

[l_ d2d+ 1(§+%ﬂ

where, apart from d, appears the unknown coefficient
fefe (3.15)

K:
2
VoV - )
(3.14) is used on the virtual walls, so by
integrating from &=1 and from (=1 on the real

diameter for CD and ED respectively.
On the circle, (3.14) becomes, setting in it

é«=ei0'

dz= 4Ke"el? 0050'2 _1 sin2o . do
cosg— L *+1 (I_chosa)
2d d?+1

(3.16)
Drawing the free streamlines Jyz and Zpc

proceeds from the integration from ¢ =y, to 6 = 0 and
from o =y, to o = 7. The arc length s is then given by

ds=
r coso sin2o
4e"K il -1 2 do
oSO — 1- 2dcos0')
2d d?+1

(3.17)
Coefficient K is calculated by the integration
of ds from 6 =y, to 6 =y, knowing L.
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At this stage of the study, one can list and
number the unknowns to determine:

1- the function &(c) (or §(c)) on L’

2- the function z(o') (or 7(c)) onL”

3- the one-to-one correspondence (o )

4- Cp,

5,6,7- the variables d, 7,, 7,

Functions 0 and 7 are given by (3.8), while
bijection € is obtained by (3.17) once K has been

determined. Position d is clearly determined by the
infinity condition of (3.1), say
Q(d) +Logd? +1)=0 (3.18)
Equation (3.10) is then related to one of the
two unknowns y, ory, .

We are now going to see how the application
of the momentum theorem supplies two new
equations. Let us have a look at figure (3.1II) showing
the surface reference S chosen for this calculation.

3
2
1
‘—\6‘

fig (3.11)

Contour 1-2-3-4-5-6-1 is defined so that
boundaries 2-3 and 1-6 are streamlines at pressure P,
and velocity V_,. Segments 1-2, 3-4 and 5-6 are
considered sufficiently far upstream and downstream
to assume thatV=Vwi. Writing the momentum
theorem leads to:

jp\‘/(\“/.ﬁ)ds = RtFprpue (319
S

where vector R is the resultant of the dynamic forces
on the body.

With the above choices for S and the law of
conservation of mass, it is easily seen that the left hand
side of (3.19) wvanishes. Finally, after some
calculations, one obtains for drag and lift coefficients

ACp =-hCp, (3.20)

ACy = j‘gpdx - Epdx + Cpo(xc—xg) (2D
c .

where h=y_ -y, is the height between the virtual

walls and A is the reference length of the body (the
chord for a wing section) and Cp is the pressure
coefficient.

One has to consider that the integrals
occurring in formula (3.21) are to be performed in the
C-plane, and more precisely on the circle diameter up
to d. In the same way, the affixes z. and z;;, required

not only for(x. —x;) but also for h proceed from

(3.16). Equation (3.20) gives the wake underpressure
coefficient after the determination of h and the
integration of the pressure coefficient on the wall of
the obstacle (for C,, ), while (3.21) is related to one of

the arguments y, or ¥, (occurring, in the integrals, as

an end of the path of integration).

Hence, we get a system of seven equations
(3.8) twice, (3.10), (3.17), (3.18), (3.20) and (3.21) in
order to determine the seven unknowns.

3.2 Numerical Procedure and Computed Results

Taking into account the symmetry due to the
principle of reflexion, the integral occurring in (3.8)
can be reduced to the half upper of the unit circle. The
calculation is however difficult to perform because of

the two singularitiese'”* and e'2 lying on the path of
integration. A classical quadrature -even if the
clustering is increased near the singularities- does not
meet the case as a good accuracy is not reached.

Therefore, a numerical method has been
elaborated and tried on test functions®. It consists in
finding a primitive either to a piece or the whole (in
symmetrical flow configurations) of the integrable part
of the function lying under the integral, the other part
being taken at the middle of the integration segment.

If a constant partition lower than 0.5 degree is
chosen, this method proves its ability to calculate
accurately the solution all along the circle, including
the points lying near the discontinuities. Relative error
does not exceed 1% if we exclude the points where the
function vanishes.

Now, in order to solve the seven- unknown
above system, we have to build a series

{8;1 ’ Tn ’gn ’Cp()(n) ’71(n) ’72(n) ’dn}

using a relaxed iterative algorithm. To start, only
initial guesses for Cp,, 7, and function &(c) have to

be specified. In most of the symmetrical cases, the
convergence is reached after 30 to 50 iterations,
requiring a few minutes’ calculation on an IBM RISC
6000 (27 MIPS).

We built first a simplified program which
only applies to symmetrical flows. In this way, because
of the symmetry, only one of the two
arguments ¥, or y, is unknown, say y;, and, moreover,

d=0. According to these two unknowns, equations
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(3.10) and (3.21) disappear in the system of equations
as they are always verified.

With a function & taken as linear, and any
initial choices for Cp,, y,, calculations have been

performed and a solution reached for a wedge with /2
apex angle and edge rounded off (which makes it look
like real body), a 2:1 elliptic cylinder and the circular
cylinder for separation angle up to 110°.

For the flat plate perpendicular to the wind
and the circular cylinder with a separation angle
greater than 110°, convergence is difficult to reach
with the above initialisation. Anyway, a further study
of the conditions of existence and uniqueness would
help to understand.

Concerning circular cylinder (A=cylinder
diameter), calculation is presented for 75° separation
angle, as it is close to the separation angle
experimentally occuring in subcritical range. Figure
(3.1V) shows the fairly good agreement found between
computed and experimental pressure distributions.

1

experience
081 — — -~ computation
0
a )
o
054
-1+
45
cylinder angjle
fig 3.1IV)
Computation gives:
Cp=1.13 Cpe=-1.07
compared to experimental values®
Cp=12 Cpo=-1.1

Increasing separation angle value shows
increasing progressive accordance with Helmholtz’s
model values. It seems that the two models hold the
same limit case of zero drag which lies at 124.21°,

2:1 elliptic cylinder has also been investigated
(A=minor axis). Two calculations have been performed
for 10° and 0° tangent angles at separation.
10° comp. values:

Cp=0.73 Cpo=-0.03
0° comp. values:
CD= 0.36 Cp(): -0.1

Experimentally, in  subcritical range,
considering a separation angle within the interval
[0°,10°], Cp = 0.6%7.

The general program has been written in
order to compute dissymetrical flows. A strong
dependence on the condition of existence has been
shown up. Indeed, if this is not verified, computed
values of variables no longer make sense. For
example, 7 values on the real diameter of {-plane near
-1 and 1 do not connect the prescribed values in these
points. Consequently, the building of the series

{En :T,, aen ’Cp0(n) ’},l(n) ,72(n) ,dn}

is more difficult than in the case of symetrical flow,
and no exact convergence has yet been reached. An
optimisation of both conditions of initialisations and
choices of relaxation coefficients is carrying out.

4. Conclusion

Inside the wing section theory, our works,
concerning 2D-thick wake modelling, can be seen as
coming on top of earlier studies about thin wakes, in
steady cases, that is Joukowsky’s theory, or in
unsteady cases, that is Couchet-Mudry’s theory.
Because of their generality and agreements found
between computed and experimental values, both
models -Helmholtz’s and the Virtual Wall one- can be
clearly considered as good prediction tools. They
produce evidence that using powerful developments of
complex analysis is always an interesting challenge in
fluid dynamics modelling.

However, one can argue that representing the
wake by a motionless area is certainly a crude
modelling of turbulent and viscous effects
experimentally occurring. We cannot reasonably put
forward objections to that, but our purpose is not to
become a serious threat to Computational Fluid
Dynamics. Indeed, these models must rather be
considered as basic models, with regard both to their
relative theoretical simplicity and economical
computation time. Quick results can be obtained either
to give a first idea on a phenomenon, or to have initial
guesses for a CFD code.

The fact remains nonetheless that one can
justify their attractive aspect by accounting for their
autonomy where no parameter appears and no
experimental value is required. For several bodies,
taking into account a coupling procedure with a
boundary layer calculation -to determine separation
points-, Helmholtz’s model predicts lift and the
Virtual Wall model predicts drag but also wake
pressure. The Dissymetrical Virtual Wall model, still
numerically studied at the moment, should supply a
complete prediction. Further investigations will carry
us through to a successful conclusion, but if
convergence cannot be reached, the existence of
solution, that we do not take into account, will be
studied.
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