ICAS-96-2.6.4

NUMERICAL INVESTIGATIONS OF THE FLOWS AROUND VARIOUS CRUCIFORM
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ARBITRARY ANGLES OF ATTACK USING SYCHEV’S THEORY
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Abstract

Supersonic flows over slender bodies at various
angles of attack have been investigated using
numerical method based on  Sychev’s
generalization of hypersonic small-disturbance
theory and Godunov’s method. The theoretical
and numerical investigations have been
performed to determine the method applicability
range. This investigations have shown that the
method under consideration and the program
based on it are applicable to a great variety of
configurations, and that the applicability range
is much greater than it was assumed by basic
theory. The studies have been conducted to
determine the possibility of this method to
calculate the flow parameters and aerodynamic
characteristics of various configurations, such as:
1) bodies of revolution with various generatrix,
2) cruciform wing-body, 3) cruciform wing-
body-canards. Comparison of numerical results
with experimental data indicate that this method
can be reliably applied to such practical
configurations.

Introduction

The problem of the flows calculations for
slender bodies at high supersonic velocities and
arbitrary angles of attack is considered in the
frame of hypersonic small disturbance theory
(flat sections law) generalized by V.V. Sychev on
the case of arbitrary angles of attack (Sychev’s
theory(1)). The calculation of 3-D flows around
bodies at high angles of attack and supersonic
speeds is rather complex and difficult problem
for the usual 3-D numerical methods. The
approximate fast methods (for example, based
on Newton’s theory, or conical-shock-expansion
theory, or linear theory and so on) permit us to
consider the narrow classes of geometry only
(usually, these are the slender bodies close to
axisymmetric).

Sychev’s theory in combination with numerical
method makes it possible to solve the above
mentioned problem for wide class of airframes
rapidly and reliably.

A number of papers, for example®3 were
devoted to the investigations of the Sychev’s
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theory applicability range and to the use of
‘Sychev’s similarity parameters, which follow
from Sychev’s theory, for the experimental data
analysis.

The numerical method and the programme
package  (NINA), Dbased on  Sychev’s
generalization of hypersonic small disturbance
theory and Godunov’s method, are presented by
this paper.

A theoretical investigation have been done to
determine the applicability region of this
method. Such investigations indicate that this
method is applicable to a wide class of airplane
and airspace configurations.

This method is used for the studies of the flows
around variety of airframes at supersonic/
hypersonic speeds and at wide range of angles of
attack.

An investigation has been conducted to
determine the effectiveness of this method in
predicting the aerodynamic characteristics and
pressure distributions over various cruciform
wing-body configurations at Mach numbers
from 1.5 to 4.63. The numerical results are
compared with experimental data.

Theoretical consideration.

1.  We consider the ideal gas supersonic flow
over slender body at o — angle of attack. d —
denotes the maximum body cross-section
dimension, ¢ — the length of the body.

Following(!l) we suppose that

8=%< 1, Mgsina» 1 MS> 1 1.1
When suppositions (1.1) are valid, the original
problem is equivalent to the flat unsteady gas
motion problem. Such 2-D unsteady motion is
initiated by the extension of the flat piston. The
piston form is determined by the form of the

body cross sections.

2-D unsteady ideal gas motion is described by
the following set of equations:
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As it was demonstrated by paper(D, in this case
the equations and boundary conditions depend
on two parameters

K|=8ctga, K,=M_sino (1.3)

only.

If angle of attack is small, the parameter K; is
not significant and the solution depends on the
parameter K, only. So, Sychev’s theory()
transforms into Hayes’s hypersonic small
disturbance theory®.

2.  But the restrictions (1.1) of the theory(!
are too strong. It was shown by paper(?) that the
requirement M_ sina>> 1 can be substituted by

M_sina>1. So, the velocity component

normal to the body axis can be any supersonic.
But theory(l) is correct even at M_sino <1, if

M, > 1,M_8=0(3). In this case a=O(8) and
theory(!) transforms into theory®.

The requirement 8 = dar' « 1 s too strong also.
This requirement restricts the class of the bodies
under consideration by the configurations which
a]l cross-section sizes are small in comparison
with longitudinal one.

In paper® it was demonstrated that the
Sychev’s similarity parameters (1.3) are correct
for the small-swept wings, elliptical cones and
for rectangular wing even.

Using NINA-package we have investigated the
Sychev’s theory applicability region. We have
considered the delta wings of a great variety of
sweep and compared the NINA results with the
3-D numerical methods results and exact
analytical solutions. The results are obtained for
M.=2+10; a=0+60°; o=0+70°.

In dependence on three parameters: M,, o, o,
three various regimes of the flow over delta wing
can be realized: 1) the flow with bow shock

wave attached to the leading edges, 2) the flow
with bow shock wave attached to the wing top
but coming off the leading edges, 3) the flow
with shock wave coming off the leading edges
and off the wing top.

Let us consider the regimes 1) and 2) only.

The results at regime 1) have been compared
with results®. The investigations have been
conducted for M,=2.5+10; o=0+40° and
»=30°+70°. C, distributions over wing span for a
number of typical regimes are demonstrated by
fig. 1. Curves 1 correspond to M,=10, a=40°,
»=60°; curves 2 — M.=5, a=30°, ¢=60°, curves
3 — M.=10, o=20°, p=45°, curves 4 — M,=3.5,
a=20°, ¢=45°. Solid lines are NINA’s results,
touch lines are the results of the characteristics
method®. y is the angle between longitudinal
axis and the ray from the wing top to the
current point on the wing surface.

1.2 ——
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———— 2
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04 =P
0° 20° 40°  y 60
FIGURE 1

Fig. 1 demonstrates that the greatest divergence
of the two methods results is located at the
neighborhood of the leading edge.

When the shock wave is attached the flow on
the compression side about leading edge is
analogous to the flow behind the oblique shock-
wave.

The velocity component in the flat section,
normal to the wind axis, is U,=U, sin «. And
the velocity component in the plane of wing is
Ui=U,cos o (fig. 2). The velocity component,
normal to the leading edge and lying in the
wing plane, is U;=U, cos a sin ¢. Mach number
in front of the shock  wave is

M= Mstin2 a+cos’a-sin’ ¢ and the wedge
angle is 0: tg0 =tga-sinle, (fig.2). So, the
flow over leading edge can be considered as
analogous to the 2-D flow after oblique flat
shock wave in the plane, normal to the leading
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edge. In this case, we have the exact analytical
solution in the region over leading edge.

FIGURE 2

Theory() deals with unsteady 2-D flow in the
plane, normal to the wing symmetry axis. So, in
the theory(l) approach, the flow run into the
leading edge with velocity U; = U, cos a tg ¢.
Than the flow after oblique shock wave has
another Mach number and wedge angle:

tg o
M= Mw\/sinzoc+coszoctg2<p; tge=g—.

tgo

So, the error of theory() in comparison with
exact solution around leading edge can be
determined analytically, and as it is the greatest
one on the compression side of the wing (as
shown by fig. 1), this error determines the whole
error of theory(!) on the wing compression side.

/ .
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010“ 20° 30° o 40°
FIGURE 3

The dependence of the theory!) error
Ap=(p;-p)p! (where p; is the pressure
obtained by theory(l), p — the exact solution) on
the angle of attack o at Mach number M, = 5 is
shown by fig. 3,a and at M,, = 10 — by fig. 3,b.
The number of curve corresponds to each half-
angle at the wing top: 1 — ¢=30°, 2 — ¢=45°, 3

- ¢=50°, 4 — ¢=60°, 5 — ¢=70°. Figures 3,a
and 3,b show that usually the error of theory(!
don't exceed 10%. In the range under
consideration the error is biggest at M,=3,
a=30°, ¢=70° and is of vaiue 15%.

The fact that the theory(l) error decreases with
the angle ¢ increase is absolutely unexpected. It
seems as this result is in the contradiction with
one of basic assumptions of theory(l):

§=dr ! « 1. But let us remind about the fact
that the general parameter which determines the
theory(l) error is the disturbed layer thickness.
The disturbed layer thickness over leading edge
decreases with ¢ increase because of Mach
number of the flow running into leading edge
increases. '

Let us consider the regime 2), when the shock
wave is attached to the wing top, but coming off
the leading edges of delta wing. The results of
such regimes calculations by NINA-programme
have been compared with the results of 3-D
second order numerical method®. The
investigations have been conducted in the range:
M,=4—10, o=30°—60°, ¢=10°—20°. Fig. 4
shows the pressure p/p. distribution on the
compression side of the wing at M,=6, a=40°.
Curve 1 corresponds to 9=10°, 2 — ¢=15°, 3 —
®=20°. Solid lines are NINA's results and
touched lines are the results of paper®. Like
regime 1), in this case the greatest error is
located over leading edge.
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Calculation results show that the character of
the theory) error dependence on Mach
number, angle of attack and half-angle at wing
top is keeping the same as for regime 1) and 2).

So, as it was shown by numerical investigations
and by analytical consideration Sychev's
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theory(l) is applicable not only to the bodies
close to axisymmetric one, but to the bodies
with wings of various form up to small-swept
and rectangular wings.

3. The small disturbance theory, generalized
by paper) on the case of high angle of attack,
is correct for slender bodies with accuracy

~O(3%). The span to length parameter A can be
used as parameter § for wings. The analysis of
the previous results and experimental data®
shows that similarity parameters and the
solutions obtained by theory(!) are applicable up

to A~1. Moreover, when A->x (flat problem) the
solution obtained by theory(!) has an acceptable
accuracy.

Let us consider the simple example of the flow
over wedge with angle o~1 at the top. We
consider the regime when the shock wave is
attached to the wedge top. X-axis is directed
along the inclined wedge surface. In the frame
of flat section law this problem transforms to the
1-D problem of shock wave motion, so

o2 1 ®-1 1
@+l (1-pjp,) @=+leM’
e-1 2
p=— L_E, G.1)

- p. U2 sin’ o’ P, &+l (ae+1)Mi ’
M, =M_sina
If parameter ¢ is small, s=p,/p<l, we can
obtain using (3.1) that the difference between
solution (3.1) and exact solution is about O(g2).

Let expand in series:

2
p = ae+l(1 +2¢)+0[s?) (3.2)

and compare with exact solution:

;2 sin’B e-1 1
S @+lsinfo @+l @M’ (3.3)

B=a+stgoc+0(82)

After corresponding substitutions and series
expansion of (3.3) we obtain (3.2) again with
accuracy ~O(g2).

So, when we use theory(l) for calculations on

the compression side of any-swept wings (A~1),
a small parameter should be treated as the angle

between shock-wave and wing surface. So, when

A=0(1), it is necessary to require the parameter
g to be small, p/p,~s<1.

4. Now we consider the flow over a wing
surface which has a small deformation and a
sharp leading edges at the regime with shock-
wave attached to the edges. Let s<1, ny~g,
ny~1, n,~¢, where ny, ny, n, are the components
of a unit vector normal to the wing surface in a
coordinate system shown by fig. 2.

If we limit the equation members order by
O(s?), then, as it is shown in paper(10) the
equations and boundary conditions which
describe the problem, are splitting up. After
substitution of t=xL/U, cos a instead of X, the
equations and boundary conditions are
transformed into 1-D unsteady one.

Note, that this equations solution depends on

the same three parameters K;=Actga,
Ky=M.,, sin a, @&. Note also, that this equations
don’t include the derivatives by Z (so, Z is the
parameter only). So, theory() transforms into

straps theory at A=0(1), like small disturbance
theory®.

It can be shown that theory(D) is also applicable
to the flows over more complex airframes such
as a number of slender bodies with parallel
longitudinal axis, or slightly deformed wings (so
that n,=O(g), ny=0(1), n,=0(1)).

= - 45 s

FIGURE 5

So, theory() and the programme based on it are
able to calculate the flows over much more wide
class of configurations then it mentioned by
paperD. Fig. 5 shows schematically the
applicability region of small disturbance theory
(hatched region). The touched lines indicate the
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boundaries which can be determined only
approximately.

Region 1 corresponds to the small angles of
attack, so the Hayes’s theory® is applicable in

this region. At high ¢ theory™® transforms into
straps theory.

Region 2 corresponds to the initial restrictions
introduced in paper{l) (bodies which all cross-
section dimensions are small in comparison with
longitudinal one).

The region located under AB-curve corresponds
to the flows with shock-wave attached to the
leading edges. As it was shown above in this
paper, theory(!) is applicable in region 3 with
the same accuracy O(5?), and at high ¢ theory(!)
transforms into straps theory.

Curve BC can be determined only
approximately. Region 5 is located above curve
BC and corresponds to the flows with shock-
wave coming off the wing top (regime 3). In
region 5 the small disturbance theory is not
applicable with the exception of small region
CDE, which is the case of very thing bodies in
all cross-section dimensions.

For arbitrary swept wings in region 4, where
shock-wave is coming off the leading edges, but
attached to the wing top, we can’t obtain the
strict proof of the small disturbance theory
applicability. If the angle at wing top is high,
this theory is not correct around leading edges,
but it is correct at the central part of the flow.
In this case the disturbed region should be
divided into two parts: 1) entropy layer which
spreads far downstream from the subsonic
regions over leading edges; 2) region where
small disturbance theory is applicable. In the
entropy layer all flow parameters besides
pressure change considerably. But pressure stays
almost constant. So, in region 4 it is possible to
use the small disturbance theory for calculations
of  pressure and total aerodynamic
characteristics.

Results

Programme NINA based on theory(!) is able to
calculate the various classes of airframes such as:

— isolated body,
— body-wing configuration,

— body-wing-canard configuration,

— body-wing-stabilizer-tail configuration,

— all above mentioned configurations with
engine,

— two bodies configuration.

It can be quickly adjusted for many types of
shapes by creating a corresponding file of
geometry. But this work has been done to
investigate the ability of this method to calculate
the flow and aerodynamic characteristics of
various cruciform body-wing-tail configurations.

Bodies of revolution

The first stage of such investigation was done for
a series of four bodies of revolution at Mach
numbers from 1.6 to 4.63 for angles of attack
from 0 to 60°. Four bodies representing various
amounts of nose bluntness, midsection slope,
and afterbody closure are presented by fig. 6;
each has a circular cross section.

Bl

Cone cylinder
1/0=016667-x/¢ (0<x/¢<045)
1/6 = 0075 (045<x/e<1)

B2

Circular-arc-cylind

r/¢= 131257 + (x/£X09 - x/¢)-13125 (0 < x/¢ <045)
(045<x/¢<1)

1/¢= 0075

B3

1/0=/(13125) + (x/£X09-x/¢)~13125 (0 <x/¢<045)

1/t = 0075 (045 <x/£<09)
1/€=0.075-0105(x/¢ - 09) (09<x/e<1)
B4

r/6=03125) + (x/eX09-x/¢)~13125 (0 <x/¢<045)
t/¢=0075 (045 <x/¢ <09)
1/¢= 0075+ 0105(x/# - 09) (09<x/£<1)

FIGURE 6

Calculation results have been compared with
experimental data obtained in the Langley
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Unitary Plan wind tunnel paper!D. The results
of this investigation are shown by figures 7-10.
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FIGURE 7

C, distribution over two typical cross sections
X=0.275, 0.475 for con-cylinder (B1) at Mach
number 2.96 and two angles of attack a=20°,
52° are presented on fig. 7. Note that the results
coincidence is acceptable not only on the
compression side of the body but on the leeward
side too.

C(o) and C(M) at lower point of the section x=.275
at M=1.6,2.96,4.63 and 0~=0—60°

FIGURE 8

Fig. 8 demonstrates the results behavior in the
whole range of Mach numbers and angles of
attack. C, at a lower point of the section
X=0.275 is taken for all regimes. The largest
difference between NINA-results and
experimental data is obtained at M,=1.6 and
a=60°. But even in this case the results
difference is not more then 8%.

C, for Bl at lower point of the section in the
various cross sections X=0.275, 0475, 0.675, 0.
875 is shown on the left part of fig. 9 at

M.=2.3. Right part of fig. 9 demonstrates the
results coincidence along body axis (C, is taken
at a lower point of cross-section) for M,=2.96.

S
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C, distribution on the surface of body
B2 (curcular-arc-cylinder)
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FIGURE 10

Fig. 10 presents the results for circular arc-
cylinder (body B2), for circular arc-cylinder-
boattail (body B3), and for circular arc-
cylinder-flare (body B4) at one typical regime
M,=2.96, a=40°. C, dependence on 6 (8 is
circumferential angle, measured clockwise
looking aft) in various cross-sections at
M,=2.96, o=40° is shown. The largest
difference 8% is observed at lower point of the
section X=0.075. Fig. 10 demonstrates that the
numerical method based on theory(l) can be
successfully applied to the calculations of the
bodies of revolution with various generatrix.
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The investigation, which have been conducted,
shows that the method under consideration is
applicable in a wide range of Mach numbers
and angles of attack to the various body forms,
various amount of nose bluntness, midsection
slope, and afterbody closure.

Body+wings of various planform

The next stage is the investigation of this
method applicability to the bodies with wings of
various planeform. The planeforms include a
family of delta wings, rectangular wings, and
cranked-tip wings. Sketches of the models are
shown in fig.11.

Moment center

//
_< ey v—DeltaWingS
N
— Rectangula
wings
~ -
" Cranked
~— o =T T wings

Sketch of tested wing-body configurations NASA TMX-1839
FIGURE 11

Calculation results have been compared with the
experimental data obtained in the Langley
Unitary Plan wind tunnel and presented in
paper(!2), The investigation have been done at
Mach numbers from 2.3 to 4.63 and o=0-40°,
Present investigation was undertaken in order to
determine the possibilities of this method to
obtain the total characteristics for body with
various wings. The model were investigated at
two roll angles: =0 (scheme +) and ¢=45°
(scheme X).

Numerical results and experimental data are
shown by figures 12-16. The results for body
with tree delta wings (large, mid and small) at
roll angle ¢=0 (scheme +) and isolated body are
demonstrated on fig. 12. Experimental data(?)
are obtained in the range of a=0—20°. But
numerical investigations have been done at
a=0—40°,
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Fig.13 presents the results for body with large
delta wing at roll angle ¢=45° (scheme X).

Effect of rectangular wing at ¢=0 (scheme +) is
shown by fig.14. Results for cranked wings at
¢=45° (scheme X) are presented on fig.15.

Aerodynamic characteristics of body-+large delta
wing at o=0 and o=20° in the Mach number
range M,=2.3-4.63 are presented on fig.16.

The above investigations demonstrate that the
numerical method under consideration can be
reliable applied to the total aerodynamic
characteristics calculation for the configurations
of body+wing of various planeform.

Body+wing. Pressure distribution

An investigation has been  conducted to
determine the possibility of the method in
predicting the pressure distributions over wing-
body configuration. @ Numerical  pressure
coefficients are compared with experimental
values obtained on a delta planeform wing-body
model in the Langley Unitary Plane wind
tunnel(® at Mach numbers from 2.30 to 4.63
and angles of attack to 11°.

A drawing of the model is presented in fig.17.

2

£=101.60 sm o
0.385 ¢ 0.540 ¢ 3
=
s 2
2
<
e
‘< - - ’{
| AN o v N« .
0.100 £10.100°4 M~

[~ 0mse

T

&
5
Ny

| 0252¢ 0050 ¢

Sketch of model showing location of pressure orifices

FIGURE 17

Comparison of the body experimental data with
NINA's calculation at M,=4.63 and «=6.2°
10.4° is presented by fig. 18,a and 18,b, where is
circumferencial angle, measured as shown by
fig.17. Pressure coefficients over wing
distribution is shown by fig. 19,a and 19,b.

Pressure cocfficients over body; M=4.63
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, Pressure coefficients over wing; M=4.63
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The previously mentioned numerical method
based on theory(l) permits us to obtain the
pressure coefficients which are in reasonable
agreement with experimental data through the
test Mach number range.

Body+cruciform delta wing+various horizontal
canards

Static longitudinal stability and control
characteristics of a configuration with cruciform
delta wings and various horizontal canards have
been investigated by this method at Mach
numbers from 2. to 4.63 through an angle of
attack range from 0 to 30°.

The results have been
experimental data obtained
Unitary Plan Wind tunnel(9,

compared with
in the Langley

A drawing of the model is shown in fig. 20.
Figure 21 presents the aerodynamic coefficients
for the model with canards Cl and C3 at
M,=4.63. Fig. 21 is typical for whole range of
Mach numbers. A comparison of the numerical
results with experimental data indicates little
disagreement between numerical and
experimental data. Effect of canards C1 and C2
on coefficients C,, C,, Cy4, C; and L/D is very
close to the C1 one. Moment coefficients for

C1 and C2 differ significantly from the C3 one.
This is why the results for C1 and C2 are shown
for moment coefficients only.
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Cruciform configuration of body+wing+canard
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The aerodynamics of a cruciform configuration
with triangular canard controls and trapezoidal
wing have been investigated using this method.
A drawing of the model is presented as Fig. 22.
The cylindrical model fuselage is incorporated a
hemisphere nose. Sychev’s theory is applicable
to the bodies which surface inclination is small.
But around blunt nose, where surface
inclination is up to 90° we have to use some
spatial methods to determine the flow
parameters. Pressure distribution over blunt nose
have been obtained by modified Newton’s
method. Calculations started from the cross-
section X=0.9 r. The typical results obtained
during this investigation are shown for M =2.96
by fig.23 — roll angle ¢=0 (scheme +), and
fig. 24 — roll angle ¢=45° (scheme X).
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Body-canard-tail, scheme + (¢ = 0°), M = 2.86
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Body-canard-tail, scheme x (¢ = 45%), M = 2.86
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FIGURE 24
This investigation indicates that the method

under consideration is effective for the
configurations with canards which produce a
pitching moment.

Conclusions

Theoretical consideration of the possibilities of
the numerical method, based on Sychev’s
theory(t) and Godunov’s method, shows that
this method has a wide applicability region
(fig. 5). It can be applied to the various
airframes.

Numerical investigations and the comparison of
its results with experimental data for a variety of
body, body-wing, body-wing-canard configura-
tions indicate that this method can be reliably
applied to such practical configurations.
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