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CASE STUDY
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Abstract
Longitudinal static stability and control of a
gliding parachute are analyzed both analytically
and numerically. The origins of center-of-gravity
and speed limits are discussed.

1. Introduction

Typical gliding parachute is shown in figure
1. Longitudinal and lateral control of the vessel is
commonly executed through the lines attached to
the trailing edge of the canopy — a pull on these
lines causes the trailing part of the canopy to flex
downward, serving much as a pair of
conventional elevons. In parachute’s jargon the
trailing edge lines (and the part of the trailing
edge attached to them) are known as ‘brakes’. In
some designs, a pilot can also control the lengths
of the lines attached to the forward half of the
canopy so as to move him or her self (and the
vessel’s center-of-gravity) forward and backward
relative to the canopy. In parachute's jargon the
system of pulleys enabling a pilot to do so is
known as a ‘speed system’.

In Ref. 1 a standard static stability analysis
was used to demonstrate a peculiar nature of
longitudinal center-of-gravity limits of a gliding
parachute. It was shown that the forward center-
of-gravity position of the vessel is limited by a
loss of longitudinal static stability and by a loss
of control power; whereas the aft center-of-
gravity position is limited by the stall of the
canopy. It was also shown that a loss of
longitudinal static stability and a loss of control
power limit the top speed of the vessel.

In this exposition we remove the most
conspicuous simplifying assumptions of Ref. 1
regarding the behavior of control derivatives, and
elucidate the existence of center-of-gravity and
top-speed limits numerically.

The static stability analysis of Ref. 1 -
without the pertinent simplifying assumptions - is
recapitulated in the next three sections. It will be
followed by an analysis of a model parachute.

2. Recapitulation - static stability
Consider a gliding parachute in a symmetric
unaccelerated flight. Following conventional
definitions of aerodynamic coefficients, let the
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projected wing area and its mean aerodynamic
chord serve as the respective references.

Select a Cartesian coordinate system, with the
x, v and 7 axes pointing forward, right and
downward, respectively. For the sake of being
specific, it will be assumed that the x-axis
connects the trailing and the leading edges of the
mid-section of the wing.

Using wing’s mean aerodynamic chord as a
unit of length, let {x,,.2,), (Xeg s Zeg)s (X752

and (x,, z,) be the respective dimensionless
coordinates of the wing aerodynamic center,
vessel’s center of gravity, lines’ center of
pressure, and pilot’s center of pressure — see
figure 1. Also, let a be the angle of attack,
measured between the direction of the flow and
the x-axis. It will be assumed that

(1) ais small as compared with unity;
(i1) lift coefficient C; is linear with the angle of

attack, viz.
CL =CL,O +ad ., (1)

where a is the lift slope coefficient, and C}
is the lift coefficient at zero angle of attack.
(iii) drag coefficient Cp,,, of the wing is given by

the parabolic polar

CD,w = CD,WO + KCZ > (2)
where Cj; . and K are independent of C;

/,
» o /

canopy

Figure 1 - Notation

1074



(iv) drag coefficients of the lines C},, and of the
pllot C ) pare independent of the lift
coefficient

(v) there are no elastic deformations of the
canopy and the lines with the change in lift
coefficient — elevons held constant.

Under these assumptions, the pitching
moment coefficient C,;of the vessel about its
center of gravity takes on the form

Cu = C-‘“’ #Hxy = x0g) =5 Cpo Gy = 2e)IC,
+(1- KXz, -2.)CP (3)
where
Car0 = Caraeo = Como (G = Zeg)
~Cpu(y = 20g) = Cp p(Zp = Z0g) - 4)

Here, Cy; . is the pitching moment coefficient
of the canopy about its aerodynamic center. By
interpretation,C,,, is the (hypothetical) pitching
moment coefficient of the parachute about its

Ic?nter of gravity when the canopy produces no
it

If a vessel is to hold its attitude, then C,
needs to be zero. With (3), this requirement
yields a quadratic equation

aCA\'[,() + [a(xw - x('g) - CL,O (:w - :('g)]CLJrim
+(1_aKX:m ":(q)Clznim=O (3

for the lift coefficient C; ,,,,, at equilibrium
(trim). Among two p0551ble solutions of (5), if
exist, we shall choose the one at which the vessel
is statically stable; i.e. we shall choose the
solution for which the derivative

IC\fIC, = (xy =x00) =2 Cp (5, =
+2(1- aKXz, ~2:0)Cp s (6)

is negative at C; = Cy ;. It may be easily

verlfled by direct substitution that such a solution
is

Zeg)

1

Cropim = (X, = X,
Larim 21— aK )z, - :(‘g){_a LKy — X 3)
+C L,(‘)( S = :(.g )
- l[a(xw = Xg) = Cp o2y = :('(g),lz

—4aC o1 - aK)(z,, - 'tg)]%} D
Since both Cy, and C; ( are functions of the
generalized elevons deflection 4,, equation (7)

defines CZ lnm‘C[ mm(\(;,’ e)-

It is clear that (7) exists only if the expression
under the square-root is nonnegative, that is it
exists only if

l(l( Xy —_'\_("Q ) - C["()(:“_ — :('g)lz
= 4dC (1= aK) 2y = 5.0 (8)

In (8), the left-hand side is nonnegative,
whereas the right-hand side is either positive or
negative, depending on signs of the respective
multipliers. Under normal circumstances aK<1,
whereas I, — ., is negative by the choice of the
coordinate system — see figure 1. Hence, if Cyy,
is nonnegative, then (8) holds unconditionally.
If, on the other hand, C,, is negative, then there

exist

LGz -
24 JAaCy o (T-aK)(5 =2, (9

such that (8) holds if either

Xy =X, — :('g)

Xpg SX_ (10)
or
Kpg = Xy (11)
For x,., = x,, the absolute value of C; I rim 1S
C£ 2z
= -~ \10 } 12
L =aK)z, —20)
whereas ’
CI Jrim 2 Cl 1 for ’C(g =X, (13)
Cl Jrim = _Cl 1 for. rrg (14)

by (7) and (9). Since negative values of C; yim
are irrelevant in the present discussion, (11) is
ruled out by (14}, in which case the center-of-
gravity should be positioned behind x_. From
(13) it thus follows that there exist a lower bound
on the lift coefficient possibly attainable at trim.
Note that a gliding parachute with Cy;,< O is

neutrally stable at x, Xpg =X, by (6), (9) and (12).
Since, by assumption, the vessel is supposed to
be statically stable if (6) exists, moving the center
of gravity backward seems to have a stabilizing
effect.

Under normal circumstances, the sum of drag
contributions to C,,is usually positive. Hence,
at least in principle, by flattening the profile one
can design a vessel with positive Cy; . Such a
vessel will have no apparent limitations on its
longitudinal center-of-gravity position, and
therefore it could be designed to fly at any
desired lift coefficient below stall [see (13)]. At
the same time, it seems improbable that one can
design an elevons-controlled gliding parachute in
such a way that it will have a reasonable range of
accessible lift coefficients on the one hand, and
nonnegative C,;,for all possible elevons
deflections on the other. But in order to trim the
vessel with negative C,,,the most forward
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center-of-gravity position should be limited by

(10). Thus, given the range A = (5, 0,,4,) Of
usable elevons deflections, the requirement that

trim condition should exist for each 8, in A,
limits the forward center-of-gravity position by

X(‘g,l = inf{x_(be) ' 6()EA and C.\{,()( 6(,)30} (15)
3. Recapitulation - control
Consider the derivatives 9C; ., /95, and

aCL,Iri m/ O’)Xrg :

sides of (8) with respect to §, and Xegs and use
(8) in the resulting expressions so as to obtain

Differentiate, in turn, on both

&Cl‘,lrim _ aCZ,I)‘iIiz ’ (16)
X . H
Vol - Y 2 ;
O'C]‘,lrim - (‘ﬂn‘ g )Cl,,n'im dC]“O
98, H 90,
_ aC[,,lrim aC\"l,() . (17)
H dd

where ¢

H = _aC.\{,() +(I—aK)z, — Seg )Ci,lt'ifil' (18)

From (18), (13) and (8) it follows that H is
negative for each x., < x., ;. Hence,

g,
IC, rimf 0%.q <O for each x., < x4 1; (19)
that is, moving the center-of-gravity forward
reduces the lift coefficient at trim — as in a
conventional vessel.
Predictable longitudinal control of a gliding
parachute dictates that the lift coefficient at trim

should be un increasing function of elevons
deflection; viz.

acll,zrim/&éc >0 foreach g, in A. 20)

From (17), it immediately follows that in order to

satisfy (19) for some Xg < Xeq 1, ONE needs

9Co _ ,9C0
a6, d6,

€ [4

( Se :rg)cl.,lrim <0 (21)

for each 9, in A. In(21), dC; , /96, is normally
positive, whereas 2, —Z ., is negative. Hence,

with
44 &CA\H)/dat’

Cra=- . (22)
Seg T Sw 0"(:1“()/0758
equation (20) imposes a restriction
CI,.Irim(xrgaée) > () 4(6,) (23)

on the lift coefficient that is predictably

controllable with elevons deflected at 9,.
Concurrently, it also imposes an additional
restriction on the most forward center-of-gravity
position. With

x('g,lr'im(clnée) = Xy + CA\I,O(ae )/VCL
HZeg ~ 20| CLo(0) - (1=aK)C, Jfa 24)

the longitudinal center-of-gravity position needed
to trim a vessel at lift coefficient C; with elevons

deflected at 4, and
Crax8,) =sup{C; (8,), C; (8,)}, (25)
this restriction takes on the form

X(.g < x('g.2 y

(26)
where
Xrg,z = inf{x('g,n'im(CL,I2(6e)>6e) | aee A}~ (27)

From (19) and (20), the minimal Ilift
coefficient C; ,,;, possibly attainable at trim
corresponds to the most forward center-of-
gravity position, i.e. X.,=X., 5, and elevons

released, i.e. 6, =0,,, ; explicitly,

Cl,.min = CL.II'im(xrg,Z’amin)' (28)
4. Forward center-of-gravity and minimal lift
coefficient limits

The results of the preceding two sections
suggest that the existence of the minimal lift
coefficient, and, concurrently, of the forward
center-of-gravity limit, is a direct consequence of
the requiring a predictably controllable trim
condition for all possible elevons positions. A

parachute with C,;((8,,,)>0 utilizing center-of-
gravity movement for longitudinal control
(elevons released and ‘fixed’) can, in principle,
be predictably trimmed at any desired lift
coefficient below stall [see (12) and (19)].

The minimal lift coefficient of an elevons-
controlled parachute depends on several design
parameters, of which the most noticeable are

C;\{,(‘) and the ratio of the derivatives 8C\m/0"6€

and JdC; , /30, . Unless the canopy is stalled, the

last derivative is positive. The first derivative
dCyp  9Cywo Cpuo,

- (e =Zeg) (29)

46 do, 30, ‘

[see (4)] is either positive or negative, depending

on the relation between the drag (positive) and

pitching moment (negative) contributions. If it

could be made positive for the entire range of
elevons deflections, the parachute with

e
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Cy10(8,,,)>0 would have no restrictions on the
minimal lift coefficient and on the forward center-
of-gravity position. Typically, the derivative

dCyy0 [0, is negative for small elevons

deflections, and positive for large ones. Since for
small deflections C,,(, can be designed positive,
the predictability of elevons control at small
deflections is, perhaps, the most significant
design criterion that determines the minimal lift
coefficient and the forward center-of-gravity
limit. Numerous numerical simulations that have
been done during this study seem to support this
conclusion.

For small elevons deflections one can usually

assume that C; ,is a decreasing function of §,.
In this case, (20) and (23) imply that

CL,rrim(x('g’51711'11) > CL,Z(amin)' (30)
viz. C; 5(8,,;,) is the lower bound on the lift

coefficient possibly attainable at trim. The
concurrent forward center-of-gravity limit is

xc*g,[ri m(CL,Z( 6min ) ﬁmin ) .

5. Numerical example
We turn now to implement the above theory
for a typical recreational gliding parachute. The
vessel to be discussed has a pseudo-elliptic

canopy of 25.6m? [pertinent chord distribution is
given by (A6) in Appendix Al, with mid-chord of
3.2m and span of 10.5m; the canopy is curved
into an 86° arc of radius 7m, centered about the
pilot. The canopy has 15% thick cross section
with 2% camber. 175 lines, each about 2.2m
long and Imm in diameter are attached to the
canopy in 5 rows; these lines merge into 42 lines
attached to the pilot, each about 4.8m long and
1.5mm in diameter. The vessel weighs 910N,
and its center of gravity is located approximately
- 0.5m above the center of the canopy’s arc.

The parachute is equipped with full-span
elevons, located between the trailing edge and the
fourth row of lines; the lines are connected at the
respective 80%-chord points. Since the shape
that the canopy accepts with the pull on the
trailing edge is difficult to predict, it was
simulated using several simplified models. Two
of these models will be discussed below. Model
A assumes that the elevons behave as 20%-chord
plain flaps of variable deflection angle; the latter

changes between 0° at d,,,, and 60° at §,,,,.
Model B assumes that the elevons behave as 45°-
down plain flaps with variable chord; the latter

changes between 0% at é,,;, and 20% at o

min max:

For the sake of display, we shall set henceforth
0., =0andéd,,, = 1.

min
A small code was written to reduce this data
to a form which is readily usable in equations

displayed above. Pertinent formulae are listed in

Appendix A. The resulting coefficients at 0,=0
are following:

a=3.1, K=0.1, :(.‘g:2.43,

5 =118, 2w =0.2, 2,=2.62,
CD*[ =0.03, CI),[,:O.OZ, &)’\‘»():0.03,
CI,,():O' 1 6, CA\.1,“~():—O.O6, C.\“):0.045.

Trim conditions as functions of elevons
deflection are presented in figures 2 and 3 for the
two models of elevons deflection. In each figure,
the top two graphs represent equations (6) and
(7). The third graph from the top represents flight
velocity, as computed from C; ,,;, at standard
sea level conditions. The bottom graph represents
the glide ratio, viz.

o _ o 3D
Cp CpuwotCpy+Cpp+ KCG

Consider figure 2 first. With center-of-
gravity positioned forward of x,,+0.02 the static
stability will be lost for some range of elevons
deflections (centered at about 30% FS) — see the
top graph in figure 2. Hence, x,+0.02 is the
most forward center-of-gravity position that
allows a steady flight without active stabilization.
This limit corresponds to x, - see section 2.

With center of gravity positioned between
x,,+0.02and x,,, the parachute is statically stable,
but the elevons control is reversed for small
deflections — the speed increases with the pull on
the lines — see third graph in figure 2. This
behavior infers poor handling qualities, and
therefore x,, is the most forward center-of gravity
position that allows a predictable control of the
parachute. This limit corresponds to x, , - see
section 3. )

With center of gravity limited by x,,, the
minimal lift coefficient at which the parachute can
be trimmed is about 0.45 - see the second graph
in figure 2. It corresponds to the top speed of
about 40km/hr at standard sea level conditions —
see the third graph in figure 2. This is the
maximal speed at which the parachute can be
predictably trimmed, i.e. the absolute top speed
of the vessel - see section 4.

The use of model B to simulate elevons
deflection yields qualitatively similar results,
although the limits x, ; and x, , move aft by
about 0.1, the minimal [ift coefficient increases to
about 0.6, and the top speed reduces to about
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35km/hr. The sensitivity of the forward center-
of-gravity limit to the modelling of elevons
deflection suggests that experimental study of the
flexible elevons is indispensable.

JC v/
0 aCr 02 0.4 0.6 0.8 1.0 4,
N \_r‘.g - X,
}),().;
0.4 5‘0”
0.6 013
-0.26
08
b €. Keg= Xy
0.26

) 0.2 04 0.6 0.8 1.0 &

Figure 2 - Trim conditions as functions of
elevons deflection. Model A.

It is commonly accepted with parachute
designers that C; ,,,,, with brakes released is set
to be slightly less than the lift coefficient C; 44,
giving the best glide ratio; this setting seems to be
the most convenient for recreational soaring.
Hence, a designer would, probably, set the
center of gravity at (or somewhat forward of)
x,,—0.26 - see bottom graph in figures 2 and 3. In
this case the maximal speed of the parachute
(with brakes released) is only about 30km/hr -
see third graph from the top in figures 2 and 3.
Hence, in order to utilize the maximal speed

potential of the vessel - which was shown above
to be somewhere between 35 and 40 km/hr -
there should be an in-flight possibility to move
the center-of-gravity forward. This is the purpose
of the ‘speed system’.

The analysis of section 2 implies that static
stability imposes no limit on the aft center-of-
gravity limit. This result is clearly elucidated by
the top graph in figures 2 and 3. Analysis of
section 3 implies that C; ,.,,, increases as center
of gravity moves backward, elevons fixed. This
result is supported by the second graph in figures
2 and 3. Thus, the aft center-of-gravity position
is limited by the canopy’s stall only.
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Figure 3 - Trim conditions as functions of
elevons deflection. Model B.
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Appendix A - Estimates of the pertinent
acrodynamic coefficients

Profile

Figures 7 and 9 of Ref. 2 infer that parasite
drag C,,,q coefficient of LS1-0417 profile varies
from 0.01 to about 0.05, depending on the size
of the air intakes. The corresponding separation-
drag coefficients k, (the coefficient of the drag
polar) varies from 0.01 to 0.1, and the lift slope
coefficient a,, varies from 5.5 to 5. We assume
that these figures are typical for any profile used
in gliding parachutes.

With no data on the size and location of the
air intakes on the particular canopy discussed, we
choose typical values, viz. C;,(~0.03, k;=0.02
and ay;5=5. Note that by neglecting aerodynamic
interference between the canopy and the lines,
one has that C,,(=C .-

Assume that the wing’s profile has a circular
arc mean camber line. Then, the pitching moment
coefficient C,, ,. about the quarter-chord point
and the lift coefficient C, at zero-angle-of-attack

will be estimated from the thin airfoil theory (see
Ref. 3) to be

Cpy a0 = -5, (AD)

G

C/,() = 4.77C . (AZ)
where C is the maximal relative camber. In the

present case, £=0.02; hence C,, ,.~-0.063 and
C/‘()Q’-O.ZS.

Elevons

Assume that the effect of elevons on the
profile characteristics is similar to that produced
by plain flaps. Let ¢, and 6 be the relative
elevons chord and the elevons deflection angle.

Let, also 8= cos (1 — 2¢,). Then, from Ref. 4.

AC;y=2(8+ sinf)nd , (A3)
AC,, 4 =~0.25(20 - sin20nd,  (Ad)
ACy = 1.7¢,!*8sin%6 (A5)

where 1) is an empirical correction factor found as
a function of d in figure 3.33 of Ref. 4. Its value
varies from about 0.8 at 6—( to about 0.4 as 6
approaches unity.
Canopy

Let R and ¢, be the radius and half the angle
of the wing’s arc. With ¢ in (-¢,, ¢,,), let the
local chord (¢) of the wing be given by
290 29y

(tan —tan” =

(@) = ¢, (A6)

n-—2—(1+ tanz—z—) ,

where ¢, = ¢(0) is the chord length at the mid-
section of the wing.
Let T=— tan2(¢0/4). It is shown in equation

(6.73) of Ref. 5 that for such a wing, the mean
aerodynamic chord can be approximated by

Car = Co 7,,;“""'7"'0(7 ).

(A7)
Under present circumstances, where ¢,=43" and
¢,=3.2m, (A7) yields ¢, =2.7m.

With § being the wing’s area, let A =
4stin2(¢0/2)/5 be the respective aspect ratio.
We now use the lifting line theory developed in

Refs. 5 and 6 to obtain the following
approximate formulae

TA(l - T) [aZDa(l +471) +(1+21’)C,0]

Lo 7A(l - T + ayp (1 + T)°
...(A8)
1+2
Cyy =~ ——CF. (A9)
’ TA
CM’,W() zqn,a(-(l"'%r)a (A10)
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for the wing’s lift, induced drag and pitching
moment coefficients, as well as

=~ R(1 + 27) (All)

for the distance between the wing’s center of
pressure and the center of the wing’s arc. The
accuracy of the above formulae with respect to
exact formulae of the lifting line theory is

estimated to be of the order ©*. Under present
circumstances, (A8), (A10) and (A11) yield

Cr~3.1a + 0.67C;, (A12)
Cypwo = — 0.06, (A13)
4, ~02. (A14)

Following equation (4.31) of Ref. 4, (A9)
implies that K can be approximated by

5 (A15)

TA

where k; was already estimated above. Thus,
K=0.1.

Lines

Assume all lines to be almost perpendicular to
the flow, and no aerodynamic interference
between them. Given typical flight velocity of 10
m/sec, the corresponding cross flow Reynolds
number on a single line turns out to be of the

order of 10 whence the drag coefficient of all
lines, based on their frontal area, should be about
1.1, by figure 4.6 of Ref. 4. Accordingly,
C[)JQO.O:;.

Assume that the density of the lines per unit
angle of the wing’s arc is constant (it is allowed
to vary with the distance of the lines from the
center of the arc). In the present case, the density
of the lines is about 30 per one radian of the
wing’s arc at all distances which are less than
4.8m from the center of the arc, and about 117
per radian for all distances grater than that. For
constant-density lines located between radii R,
and R, the distance 7 between their center-of-
pressure and the center of the wing’s arc is,

simply, .
- Ro + Rl sin ¢o

2 9

A detailed computation based on this formula
yields z; =1.18.

Pilot

Assume that a pilot holds a sitting position.
Then, the effective flat-plate area of the pilot
should be about 0.5m?, by Ref. 7; whence
Cp~0.02. Since, by assumptlon the pilot is
located at the center of the wing’s arc, therefore
2,=2.62. Note that with center-of-gravity located

.5m above the center of the arc, one has that
\.(.g~2.43.

(Al6)
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