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Abstract

The work presented here is an initial foray into a
problem concerning the steady, laminar flow on hyper-
sonic swept wings. Of particular interest is the compu-
tations of the cross-flow profiles which are a source of
laminar to turbulent flow transition near the leading
edge of swept wings. A single march Infinite Swept
Navier-Stokes code (ISPNS) has been developed to
compute the flow field from which certain character-
istics of the boundary-layer profiles are quantified to
indicate any possible trends. It is hoped that this data,
backed by experimental measurements, can be used to
produce empirical relations to estimate the transition
location for high speed cross-flow dominated problems.
As part of this study the effects of varying the free
stream Mach number, unit Reynolds number, leading
edge sweep, and angle of attack on the cross-flow pro-
files have been considered in detail and the results are
presented herein.

Nomenclature

c Cross-flow velocity

C1, C2 Arnal’s correlation parameters(®)

Cp heat capacity at constant pressure

E,F, G Vector fluxes given by Eqn (1)

H,, H, Wall enthalpy, total enthalpy

H.; Cross flow shape factor

Hqq Three-dimensional shape factor

J Transformation Jacobian

L Typical length (chord of the delta wing)

M, Free stream Mach number

p Pressure

Pr Prandtl number, 0.72

Gw Heat transfer rate at the wall

@, Q. Free stream velocity and streamwise local
inviscid velocity

Re, Cross flow Reynolds number, Eqn (11)

Re, Reynolds number at the edge of the
boundary-layer

Reoo Free stream unit Reynolds number

Rie Leading edge radius

St Stanton number, Eqn (14)

t Time
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T Temperature

U, v, W Cartesian velocity components

U Vector of conservative variables, Eqn (1)
a, Qg angle of attack, effective «

B8 maximum cross flow velocity/Q.

v ratio of specific heats, 1.4

é boundary layer thickness

& displacement thickness

8 j Kronecker delta

A step size increment

¢n & Spanwise, normal to the wall and chord-

wise directions

A Sweep angle

7 Viscosity

v Kinematic viscosity

p Density

o Safety factor, slightly less than unity

Tzy: Toz  Shear stress in x-y-plane, direct stress in
x-direction

¢ local flow angle

X Cross flow Reynolds number, Eqn (9)

w Splitting parameter for chordwise pressure

gradient

1. Introduction

Interest in supersonic laminar flow control (LFC) is
increasing because of the possible large gains in perfor-
mance, range and lower surface temperature for high
speed transport aircraft(!). These advantages would
lead to a reduction in fuel consumption and there-
fore to more economical and environmentally friendly
aircraft(?). The development and application of lami-
nar flow control (LFC) techniques to swept wings re-
quires a detailed understanding of the effects of “span-
wise contamination” and the “cross-flow vortices” on
boundary layer stability and transition in the lead-
ing edge region. These two mechanisms, which may
cause transition in the leading-edge regions of swept
wings, have been extensively studied for subsonic
flows(®=5), The problem of spanwise turbulent con-
tamination along the attachment line of swept wings
was recognised in the 1960’s. Critical values of the
attachment line momentum thickness Reynolds num-
ber R, were found to be about 100 in the presence
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of large upstream disturbances and about 240 with all
disturbances minimized(®). The phenomena, of leading
edge contamination has also been extensively studied
by Poll(%5) at subsonic speed and, recently, his attach-
ment line transition correlations have been extended to
more general cases involving compressibility and heat
transfer(®). Poll studied the response of the attachment
line boundary layer to trip wires of different diameters
fixed to the surface and normal to the wing leading
edge. The variation of critical Reynolds number with
roughness height could then be correlated with a new
parameter to predict the onset of attachment line tran-
sition. In the absence of any tripping or surface rough-
ness, fully laminar flows can be achieved for values of
up to 650. Increasing the trip wire diameter reduces
R. in the “critical” range up to a “fully effective” trip
size where R, is about 245.

In the absence of “spanwise contamination” on the
attachment line, transition can still occur near the
leading edge of swept wings due to cross-flow in-
stability. The aerodynamic efficiency of wings that
have been or are currently being designed for super-
sonic/hypersonic aerospace planes requires them to be
highly swept and relatively thin. However, the viscous-
inviscid interactions over a swept wing with a sharp
leading edge would lead to a shock wave being gen-
erated and a pressure field being induced. For swept
wings, the combination of an external pressure gradi-
ent and a viscous layer (across which the pressure is
almost constant but the momentum is lower) would
always lead to generation of cross-flow, i.e. the devel-
opment of a velocity component inside the boundary
layer that is perpendicular to the local inviscid-flow ve-
locity vector. All cross-flow velocity profiles have zero
velocity at the wall and tend to zero velocity at the vis-
cous layer edge. In the vicinity of a swept leading edge
the profile has a “” shape that has a single maximum
and an inflection point (a condition that is known to
be dynamically unstable), see figure 1.

Curved external
streamline

Streamwise
velocity profile

Point of
inflection

Cross-flow
velocity profile

Surface
plane

Figure 1 Schematic of velocity components within a
swept wing boundary layer

This phenomena was first observed in the flight ex-
periment of Gray(”) as regularly spaced streaks caused
by variations in mass transfer from surface coatings.
The streaks are formed by co-rotating vortices, in the
shape of “cat’s eyes” resulting from the inflectional in-
stability of the cross-flow boundary-layer profiles.

In the initial phase of this investigation, a general,
non-interactive infinite swept Navier-Stokes (ISPNS)
code has been developed to predict the steady hy-
personic flows over a plate of infinite span with a
sharp leading edge. The equations are solved using
an implicit, approximate-factorisation, finite difference
scheme which is second-order accurate in the normal
to the wall and in the cross-flow directions. The ef-
fects of varying the sweep angle, the free stream unit
Reynolds number, Mach number and angle of attack
are presented. It must be pointed out that the purpose
of the presented parametric computational study has
been to reveal any trends that might exist. The basic
state numerical result will be later manipulated with
the aid of experimental data and/or stability analyses
to produce empirical relations similar to those men-
tioned above for the boundary-layer instability due to
“spanwise contamination” of attachment line. It is
hoped that these new empirical relations can be used
to predict the position of transition location for high
speed cross-flow dominated flows.

1.1 Geometry

A typical delta wing with sweep angle of A is shown
in figure 2. For typical wings, sweep angles are un-
likely to exceed 80° and for free stream Mach numbers
in excess of 5, i.e. hypersonic flow, the Mach number
in a plane drawn normal to the leading edge will be in
excess of unity. This is also true for moderate Mach
numbers of 2-2.5 with sweep angles of approximately
60°, categories to which most fighter aircraft, and cur-
rent and future supersonic transport aircrafts belong
to. This being the case, two limiting cases of sharp
and blunt leading edges can be considered.

Mo>1

[ L4

apex zone
of influence

rim

]

Figure 2 Typical planform and normal to leading
edge section details ‘
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In the initial phase of this research the limiting case
where the leading edge is sharp is considered. More-
over, away from the apex of the wing the leading edge
region will be unaware of the details of the delta wing
planform and the flow will be locally “infinitely swept”.
This implies that there are no pressure or velocity gra-
dients in the spanwise direction and the bow shock
wave, detached or attached, has to be parallel to the
leading edge. The main flow features are shown in fig-
ure 2.

2. Governing equations

2.1. Unsteady Navier-Stokes equations

The compressible viscous flow equations can be writ-
ten in strong conservation and general coordinate form,
where the {-direction is along the chord and the (-
direction is along the span of the delta wing, as shown
in figure 3, without body forces or external heat and
mass transfer as
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system, i.e. J = , and

Tij =

(i=1,2,3).

In these equations, p,p and T are non-dimensional
pressure, density and temperature respectively and € is
the total energy per unit volume. The Prandtl number,
Pr, is assumed to be 0.72 and v = 1.4. The coeflicient
of molecular viscosity p is assumed to vary with tem-
perature according to Sutherland’s law: '

M,
(VM2 TTe +110.4)

u(T) (Too +110.4)  (2)

All quantities in the above equations were non-
dimensionalised with respect to the free stream values
and the velocity normal to the leading edge. For ex-
ample,

= ~~ = —-——-—B———T_ p pusan _____'__T
p ;%, p Boo(Qoo cosA)”’ M Too
W = tan A, and Mo n = Moo cos A .

2.2 The infinite swept parabolized Navier-Stokes Eqns

The parabolized Navier-Stokes (PNS) equations are
a subset of the full Navier-Stokes equations obtained
by eliminating the unsteady terms and neglecting the
contribution of viscous derivatives in the marching di-
rection i.e. along the surface and normal to the leading
edge. The resulting equation set is valid in both the
inviscid and viscous regions of the flow with all the ef-
fects of second-order boundary-layer theory included.
Thus the PNS equations are particularly well suited
for calculating flow fields where there is interaction be-
tween the viscous and the inviscid regions of the flow.
Eliminating 8/8t and 8/9¢ in the viscous terms and
additionally, as mentioned in section 1.1, using the infi-
nite swept assumption which implies that {-derivatives
are zero, the ISPNS equations become
0E OF
9 + an 0 | 3)

where
E = 1(&E + §F), and F = 3(n,E + 3y F).
Note that the vector E still has 5 components, and

there is strong coupling between the spanwise momen-
tum equation and the other two chordwise and normal
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momentum equations. For example, the shear stress in
3 ow

the yz-plane, 7y, has a non-zero value (ie. 1_2%797

which appears in the energy equation of F as wry,.

The flux vector E in Eqn (3) includes the pres-
sure and, therefore, the streamwise pressure gradi-
ent appears in dE/0¢ with no modifications to the
streamwise pressure gradient within the subsonic re-
gions. The equations are elliptic in these regions and
thus the downstream flowfield influences the upstream
flow. Therefore, a space marching procedure is not
well posed unless this elliptic influence is suppressed.
If a marching procedure is used, exponential growth or
decay in the solution near the surface can occur which
is known as the ‘departure solution’. To overcome this
difficulty, the streamwise pressure gradient is modified
in the subsonic regions. One approach(® is to split
the inviscid flux vector E as

E =E-P (4)
where,

K

E = [pu, pu® +wp, puv, puw, (é+p)u]T/J,
P=[0, (1-w)p 0,0, 0]7/J.

In the supersonic position of the flow field, w is unity
and no modification of the pressure gradient is re-
quired, but in the subsonic regions of the flow a fraction
of the pressure gradient term, wdp/d¢, is retained and
the remainder (1 —w)dp/0¢ is either omitted or evalu-
ated explicitly on the right hand side using a backward
difference formula. An eigenvalue stability analysis in-
dicates that for stability

w = min [1 o7 Mg ] (5)

Tl (y-1)ME
where M is the Mach number in the {-direction, and o

is a safety factor included to provide for non-linearities
not accounted for in the stability analysis.

3. Method of solution

Equation (3) is solved using an efficient, implicit,
non-iterative method which is second-order accurate in
the normal and cross-flow directions and first order in
the marching (€ ) direction. The quasi-linearised form
of the equation (3) for an infinite swept flow where A¢
is constant is

OE" o (0F _ oF -
—_—— A o — —— A‘U:— —_ — ¢ P
[aU+ “an (BU)] Ag((‘?n) o

(6)

where,

R = _
AU=U" -U, and U= (3)][p, pu, pv, pw, €.

The superscript i refers to the station £ = i A,
the values at i + 1 being unknown. The inviscid and
viscous 5x5 Jacobians, i.e. %I';’e, and Z% are given in
full in reference [14] and are not repeated here but it
should be pointed out that the assumption that 4 is
independent of vector U made in [14] is not made here.

The ISPNS code developed here belong to the class
of implicit schemes which use central differencing for
modelling of the fluxes. These schemes tend to in-
troduce errors when there are discontinuities, such as
shock waves in the flowfield. In order to stabilize the
computer code some artificial dissipation is required
which could reduce the accuracy of the ISPNS equa-
tions. Hence, to try to minimise the smoothing or ar-
tificial viscosity a box scheme has been used which is
naturally dissipative together with an implicit bound-
ary conditions (the usual no slip and zero normal pres-
sure gradients applied at the wall) compatible with the
finite-difference scheme used on the mesh interior. For
more details of the numerical scheme and for further
references on the PNS equations, see references [15]
and [16].

4. Definition of cross-flow Reynolds number

When a wing is swept back by an angle A, as shown
in the figure 3, the streamlines just outside the bound-
ary layer become highly curved in planes drawn parallel
to the surface. The local flow angle is

¢ = ta,n"l(%e-) = ta.n"l(%’:). )

S

~» a typical streamline

[4

AN

z

We

Qe

Figure 3: Supersonic flow over a swept flat-plate.

If the spanwise and the chordwise boundary-layer
profiles are known, the resulting three-dimensional
boundary-layer can be resolved in both cross-flow and
streamwise directions. The velocity in the cross-flow
direction is given by

¢ = usin¢ — wcos ¢. )

A characteristic Reynolds number can then be com-
puted based on the maximum cross-flow velocity cpar
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and a measure of local boundary layer thickness such
as the value of z at which the cross-flow velocity drops
to 1% of its maximum,

¥ = Emaa: 53.010".4, . (9)

Ve

Alternatively a cross-flow displacement thickness can
be defined by 67, such that

e
* PC ~

= d . 10
°f A PeCrmax v ( )

and a corresponding Reynolds number by

Cmaz 6cf

Re, = =

S
Re, / ¢
= d
. e ) peay
where the equations are non-dimensionalized with the
normal to the leading edge free-stream values.

(11)

It should be noted that both definitions, Eqns (9)
and (11), produce qualitatively similar results. How-
ever the x values are usually an order of magnitude
larger than Re. due to differences in the thickness ()
of the secondary profile. It was also found that the
second definition, Re., produces smoother results from
the integration of the boundary layer profiles whereas
the other definition requires both the value of ¢pyq, and
the height above the wall where ¢ tends to 1% of ¢pas
which may lead to inaccuracies when they are obtained
from the highly clustered grid used in the CFD code.

4.1 Historical background to correlation parameters

During the past 40 years there have been a number
of attempts to correlate the experimentally observed
transition data with particular boundary-layer param-
eters such as a Reynolds number, y, based on cross-
flow profiles. Owen and Randall® have suggested a
value of 125 for the onset of instability, corrected to 150
for the appearances of streaks and 200 for transition(4).
However, it has become clear that a single value of x
does not correlate all the available experimental tran-
sition data due to cross-flow instability. In practice,
two or more parameters are needed. Pfenniger(®) used
a cross-flow shape factor, Het = Ymqs /010, and cross-
flow Reynolds number, wmaz810/Ve, in the design of
supercritical aerofoils whilst Arnal et al(® identified
the streamwise shape factor Hy; and Re. as suitable
parameters. Better results were obtained using these
correlations (C1) for a number of low speed experi-
ments where transitional Re. varied from 50 to 150.
In order to reduce the scatter in the C1 curve, Arnal
et al produced a second correlation, C2, where the dis-
turbance wave propagation direction apart from pure
cross-flow direction is taken into account. This method
produced better agreement with experimental results

when the free-stream-turbulence level is taken into ac-
count. However, the computation is expensive as qS is
not known at priori.

For supersonic flows, where compressibility and heat
transfer are important, Chapman(® reported that us-
ing cross-flow Reynolds number correlates well with
transition location. However, Chapman’s cross-flow
induced transition correlation is erroneous due to the
fact that the transition data used in the correlation
was the result of attachment line contamination, which
was unknown at that time(). Based on yawed cone
experiments, King(1!) found that there was no correla-
tion with the traditional cross-flow Reynolds number.
However, he was able to produce a criterion which in-
cluded both compressibility and yawed cone geometry
effects. By virtue of its formulation the criterion is
limited in its applicability to general geometries. More
recently Reed and Haynes(2) have attempted to rem-
edy this problem and produced a criterion which is
applicable to a variety of body geometries and a wide
range of flow conditions. A new cross-flow Reynolds
number, corrected for compressibility and heat trans-
fer and a shape factor similar to Pfenninger, were used
to correlate transition data for spinning-cones. Their
correlation appears to work well for predicting the
transition location on two different yawed cone mod-
els under various angle-of-attack conditions. However,
the range of validity of their criterion is limited to
2% < Wmaz/Qe < 8%, and therefore is not universally
applicable, as for example, the case of a rotating disk
where Wpes/Qe is higher. Readers should be aware
that Reed’s compressibility and heat transfer- correc-
tion factors are derived from flat plate relations where
axial pressure gradients are zero. It may therefore be
applied with care to similar geometries where strong
pressure gradients do not exist, such as a slender cone.
It should be noted that most of the high speed sta-
bility research has been done for two-dimensional and
axisymmetric supersonic boundary layers. It is sur-
prising that little research has been done applicable to
high speed vehicles which are characterised by highly
swept wings and three-dimensional boundary layers.

5. Numerical test cases

The test conditions used here closely represent the
experimental conditions obtained in the Imperial Col-
lege gun-tunnel:

Moo = 8.8 ; Recoy/m= 52  10° ; Reno/m= 15+ 10° ;
L = 7.256x10~2m (typical chord of the delta wing
tested), :
RLE—OOand04mm,a_0° and2°

A = 50°, 60° and 70° (60° delta wing, yawed 10° to
the free stream;_

T = 64.3K ; Toyan = 300.0K.
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6. Discussion

6.1 General comments

The present ISPNS program has evolved from a
previous code which has been extensively used and
validated(1%16), It has been shown that for bodies
with sharp leading edges, an accurate initial condition
is not required because of the parabolic nature of the
equations('”). For this reason, the initial conditions
may be obtained by assuming that the flow is locally
conical near the leading edge and by using a “step-
back” procedure(!®). However, here the computation
was started with a very small step size of 10~° which
was gradually increased to 10~3 at about ¢ = 0.01.
After this station the step size was kept constant. The
code was run double-precision. For most engineering
purposes it is adequate to define the boundary-layer
by between 30 and 40 points. However, great care had
to be taken here to compute the cross-flow profiles as
they are obtained by the difference between the veloc-
ity profiles in the chordwise and spanwise directions
which can be vastly different in magnitude and after
resolution become of the same order of magnitude so
that any errors in the solution become relatively im-
portant. Since the ISPNS code is very efficient and
does not require a great deal of CPU time, 1000 points
were used in the normal to the wall direction. The grid
points were clustered so that at least 100 points were
inside the boundary-layer. The first cell had typical
heights of 1-1.5x107%.

6.2 Effects of sweep, zero incidence.

The variation of maximum cross-flow velocity, Cras,
with sweep angle in the chordwise direction (normal
to leading edge) is shown in figure 5. The maximum
Cmaz occurs near the leading edge and subsequently
drops towards a limiting value. The cross-flow veloci-
ties increase monotonically with sweep due to increase
in the streamline deflection angles, but the Mach num-
ber normal to the leading edge becomes less. The
experimental®) onsets of transition are marked on
this graph. The maximum cross-flow velocity (normal-
ized by the local inviscid flow), 8, varies between 0.5 to
1.5% suggesting that any correlation would be outside
Reed’s database. This will be the subject of further
study. Near the leading edge the boundary-layer is
relatively thin and therefore the computed cross-flow
Reynolds numbers are small. Figure 6 shows the vari-
ation of Re. obtained for a range of sweep angles as a
function of surface distance normal to leading edge. In
the strong interaction region, there is an initial sharp
rise of Re., which increases monotonically with sweep
up to 75 degrees. However, this rapid rise is followed by
a gentler monotonic rise towards a maximum value in
the weak interaction region. The cross-flow Reynolds
numbers obtained are smaller (2-3 times) than those

obtained for blunt bodies which were quoted above.
The laminar to turbulent transition occurs in the weak-
interation region. As shown in figure 7, the maximum
value of Re,. increases almost linearly with the tangent
of sweep angle. However, it is not expected that Re.
will continue to rise unbounded. As the sweep angle
approaches 90°, Re, should fall towards zero. How-
ever, it is rather difficult to carry out the numerical
analysis for sweep angles larger than 80° as the Mach
number normal to the leading edge becomes subsonic
and stream lines deflections also become prohibitively
large. The infinite sweep assumption is unlikely to be
appropriate. It is also evident from figure 6 that the
cross flow Reynolds number is insensitive to the varia-
tion of the free-stream unit Reynolds number. This is
not a surprising result for a sharp flat plate since, due
to its geometrical similarity, the problem does not in-
volve any streamwise length scale in the solution. The
differences obtained are due to the level of numerical
accuracy in the strong-interaction region. The lower
unit Reynolds number results are thought to be more
accurate since in these cases the initial portion of the
shock and boundary layer interaction are better re-
solved. For example, the peak in 8 ( = ¢maz/Qe) Dear
the leading edge is clearly resolved indicating larger
values of 3 when the free stream unit Reynolds num-
ber is lower. The transition point for a sweep angle of
70°, marked by * on figure 5, has moved downstream,
suggesting a constant value for transitional Reynolds
number based on local edge values and x, although the
cross-flow Reynolds number, Re., is almost indepen-
dent of Reoo. Pure cross-flow instability can therefore
not be solely responsible for the transition. Evidently,
the level and the effects of free-stream noise and tur-
bulence must be taken into account before the experi-
mental transition data can be seriously used in future
correlations.

Nevertheless, the role of cross-flow instability must
not be overlooked in the transition process. The
experimental(!®) positions of transition shown on fig-
ures 5 and 6 clearly indicate that the transition front
moves forward as the sweep angle increases. However,
as shown in figure 8, the unit Reynolds number at the
edge of the boundary-layer does not exhibit any signif-
icant variations with sweep angle; as expected it de-
creases slightly. The shockwave at the leading edge
and its boundary layer interaction has a bigger effect
on compression than on temperature increase so that
the ratio p./pe increases near the leading edge (Q.
stays almost constant as the spanwise velocity, w, is
unaffected by the leading edge shockwave). As the
sweep angle increases and the leading edge shockwave
becomes weaker, this ratio stays almost constant.

Typically, the space marching scheme will become
unstable and fail in the presence of streamwise sepa-
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ration, when the regions of subsonic flow close to the
walls are not thin or when the streamwise pressure gra-
dient in these subsonic regions is strong. However, it is
possible to introduce upstream influence into the solu-
tion by manipulating the wg% term on the right hand

side of Eqn (6). Results have been obtained(!8) where
strong streamwise interactions exist and even for flows
possessing a small streamwise separation bubble. Here,
the above procedure was deemed unnecessary as the
interaction on the swept flat plate was found to be
weak, except for very close to the leading edge region.
Cross-low Reynolds number, Re., reaches a maximum
in the weak-interaction region. Introducing upstream
influence would change the local streamlines deflection
angle only slightly, and in any case, the solution is not
expected to be accurate in the immediate vicinity of
the leading edge.

6.3 Mach number effects

To investigate the effect of Mach number on the so-
lution, the free stream Mach number was increased to
12. Although the leading edge shock wave becomes
stronger, it was found that the variation of cross-flow
Reynolds number with sweep angle is very much the
same as that presented in figure 6, but the magnitude
of cross-flow Reynolds number has increased consider-
ably. Figure 7 shows magnitudes of the cross-flow at
z=1.0 plotted against the tangent of sweep angle. At
any particular sweep angle the increase of the cross-
flow Reynolds number with Mach number is approx-
imately proportional to M2.5. Although not shown
here, the actual values of Cpar/@Q for both cases
are almost the same. It is therefore concluded that
the effect of changing the free-stream Mach number is
mainly due to the change in the relative magnitude of
the boundary-layer thickness.

6.4 Angle of attack considerations

When the delta wing is at an angle of attack «, as
shown in figure 4, the flow normal to the leading plane
would be at an effective angle of attack, a., scaled by
the cosine of sweep angle ie

-1 tana

a, = tan (12)

cos A

For this case the ISPNS code has been run as before but
with the following non-dimensional free stream condi-
tion:

tan

u=10,w=tanA,v=— (13)

cos A

Figure 4 Schematic diagram of the flow components
for the delta wing at an angle of attack.

The reference velocity is Qoo cosar cosA and the effec-

tive normal Mach number is My \/ (1.0- sin?A cos?a).

Figure 8 shows the variation of cross flow Reynolds
number with sweep when o is 2°. It can clearly be
seen that magnitudes of the cross-flow Reynolds num-
ber have decreased considerably from the zero-angle
of attack case. Figure 5 also indicates that the max-
imum cross-flow velocities have decreased for the an-
gle of attack test case. It is therefore concluded that
the streamline deflection angle reduces as o increases.
However, the normal Mach number increases and the
leading edge shock becomes stronger. Figure 9 shows
the variation of unit Reynolds number, Re. based on
the boundary layer edge conditions for the two cases
considered. It can be seen that, for the case with in-
cidence, the edge unit Reynolds number is higher and,
as the experimental evidence shows in figure 8, the
transition has moved further forward. It is therefore
concluded that the second mode of instability rather
than pure cross flow is responsible for the onset of
transition. As explained before, the increase in unit
edge Reynolds number is due to the bigger effect on
compression of the gas in comparison to an increase
in its temperature at the boundary-layer edge due to
the leading edge shockwave. This ratio might be ex-
pected to decrease as the sweep angle is increased due
to a possible weakening of the leading edge shockwave,
however the reverse is indicated on figure 9 which can
be explained by examining the expression given for the
effective angle of attack, . in Eqn (12). As the sweep
angle increases, a, also increases, causing a stronger
leading edge shockwave to form, hence increasing Re,.
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6.5 Wall heat transfer and code validation

The wall heat transfer for different test cases has
been computed in terms of the Stanton number, St,
defined by

St = ——= N
pooQoo(Hooo ‘Hw)

(14)

1.4M2 cos’A cos’a uw(%%).,,

" RewPr(10+0.2M2, — Zx)

(taking v = 1.4).

Figure 10a shows the distribution of Stanton num-
ber when the free-stream unit Reynolds number is
52x10%/m. As expected, Stanton number and heat
transfer decreases with increasing sweep angle due to
a reduction in My, n and the strength of the leading
edge shockwave. In figure 10a, the solid lines give
Stanton number distribution for M, = 8.8 whereas
the dashed lines give similar distributions for My, =
12.0. For the test cases considered, there is almost
free stream Mach number independency. Computa-
tional data is also compared with the experimental
heat transfer data(!®) converted to Stanton number
distribution which may introduce up to 7% error due
to uncertainty in calculating po, and Cpy, for the cold
reservoir conditions of the Imperial College gun tunnel.
There is also a 2% variation in the free stream Mach
number, from My, = 8.8 to 9.0, which can introduce
a 4% error in the M2 term of Eqn (14). Deviations
from the experimental data can be noted immediately
downstream from the transition point, but otherwise
the agreement between experiment and the data ob-
tained from the ISPNS code is remarkably good. The
computations indicate an almost linear behaviour of
the Stanton number distribution when both axes are
plotted logarithmically. There is about 7% scatter in
the experimental data but in the range x/L = 0.01 to
0.7 there is good agreement with the numerical data.
This would lead to the conclusion that not only is the
ISPNS code validated but also the infinite swept as-
sumption is justified.

Similar remarks apply to the results presented in fig-
ure 10b obtained for the medium Reynolds number test
case. There is an excellent agreement for sweep angle
of 50°, but slight over and under predictions exist for
sweep angles of 60° and 70° respectively. The higher
levels of Stanton numbers obtained for this test case
compared with the high Reynolds number test case
are due to the influence of Re., term in the denomina-
tor of the Stanton number definition. Otherwise, the
actual heat transfer rates are expected to be at least
three times smaller for the medium Reynolds number
test case. Figure 10c shows that the heat transfer, and
therefore Stanton number, increases when the delta

wing is at an angle of attack, mainly due to an in-
crease in the strength of leading edge shockwave. Oth-
erwise, the shape of the curves are similar to the ones
reported above and there is good agreement with the
experimental data up to the transition point.

7. Concluding remarks

The knowledge of transition location and its implica-
tions on heat transfer, drag and trim characteristics
are vital in the design of swept wing aerospace planes
such as HSCT aircraft. The results of the present pa-
per are summarized in the following statements:

o It is important to verify and distinguish between the
sources of transition eg. the attachment-line con-
tamination, cross-flow instability, Gortler or T-S in-
stability.

e High-speed flows over swept-wings with sharp lead-
ing edges lead to generation of a shock wave which
in turn produces a pressure gradient behind it. The
edge unit Reynolds number, Re,, is a maximum near
the leading edge and subsequently decreases towards
its free-stream value. Increasing the sweep decreases
the shock wave strength but,

e the Re, varies only slightly with A; it decreases.

o the combined effect of the pressure gradient and
A causes a generation of a cross- flow in the vis-
cous layer which can lead to instabilities. The
cross-flow Reynolds number, Re., increases with
sweep angle and is shown to reach a maximum
in the region of weak interaction.

o Re. increases almost linearly with tan A up
to A = 80°.

. transition front moves forward (experimen-
tally observed).

+ Re. increases almost as M2 but is indepen-
dent of Reoo.

The last statement may have major implication for
aero-space planes that rely on the upper atmosphere
for re-laminarisation.

e Angle of attack, o, reduces the production of cross-
flows and Re, mainly due to a reduction in stream-
line deflection angle, ¢.

e The strength of leading edge shock is increased
which also increases Ree.

e The variation of Re. with A is small but is in-
creasing! as the effective o increases with sweep,

which implies a stronger leading edge shock wave.
e Experimental observations indicate that transi-

tion front moves forward.
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Table 1 Summary of the numerical results

A 40° 50° 60° 70° 75°
tan A 0.839 1.192 1.732 2.748 3.732
tran* | end | tran* | end | tran* | end | tran* | end | tran* | end

X/Lt Lam. | 1.000 | 0.689 | 1.000 | 0.482 | 1.000 | 0.207 | 1.000 —— 1.000
Reo, = 52:10° [ R — [ 18.37 | 24.95 | 25.18 | 33.30 | 34.14 | 42.49 | 46.66 | — | 57.60
a=0° B/10~* — 0.278 | 0.422 | 0.351 | 0.596 | 0.421 | 0.952 | 0.468 — 0.491
M., = 8.80 Ree,m/lﬂb — 3.794 | 2.619 | 3.794 | 1.837 | 3.795 | 0.793 | 3.796 — 3.801
X — 181.6 | 247.3 | 249.6 | 332.1 | 339.8 | 422.2 | 458.1 — 553.4
x/Lt Lam. | 1.000 | Lam. | 1.000 | Lam. | 1.000 | 0.689 | 1.000 — 1.000
Reo = 18:10° ™R — [17.95| — | 2463 — |33.60 | 48.66 | 49.23 | — | 56.66
a=10° B/107* — 0.506 — 0.637 — 0.766 | 1.092 | 0.916 — 0.884
M., = 8.80 Re. ,/10° — 1.099 — 1.909 — 1.099 | 0.761 | 1.101 — 1.103
X — 173.0 — 239.1 — 327.6 | 470.2 | 476.1 — 527.4
x/LT — 1.000 | 0.551 | 1.000 { 0.345 | 1.000 | 0.165 | 1.060 | — | 1.000
Reg, = 52:10° [ R — [ 1272 16.66 | 17.02 | 22.00 | 23.05 | 27.14 | 31.56 | — | 40.16
a=2° B/10~4 — 0.166 | 0.289 | 0.209 | 0.426 | 0.244 | 0.642 | 0.265 — 0.300
M, = 8.80 Re, . /10° — 4.349 | 2.399 | 4.354 | 1.505 | 4.368 | 0.732 | 4.404 - 4.462
X — 95.93 | 135.5 | 132.8 | 181.3 | 175.4 | 228.4 | 232.7 — 305.4

* experimentally observed(19)

1 L=72.5589 c;n g 04§

0.03

o

*

v

Re/m=52x10° ; a=0°
onset of transition'™

Re./m=15x10°

onset of transition‘"

—m- Re/m=52x10" ; a=2"
onset of transition

(18)

Fig 5. Variation of maximum cross-flow velocity with sweep angle and free-stream
unit Reynolds number
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Fig 8. Variation of cross-flow Reynolds number with sweep
angle for the angle of attack test case.
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angle and angle of attack, a
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Fig 10a, Variation of Stanton number with sweep angle and
free-stream Mach number.
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Fig 10b. Variation of Stanton number with sweep angle
for the medium Reynolds number test case.
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