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Abstract

The use of stability analysers based on the linear
stability theory and coupled with the e method in
flowfield calculation procedures (Viscous/Inviscid In-
teractive methods, Navier-Stokes solvers) has been
impeded by the fact that they require tremendous
amounts of information, knowledge and interaction
from the user. This paper clearly identifies the tasks
that demand this interaction and proposes a system-
atic procedure in order to obtain a linear stability
analyser suitable for integration in wing performance
calculation procedures. The emphasis is put on the
description of a systematic methodology for the loca-
tion and identification of the instabilities present on
a wing. Integration of such a procedure into a lin-
ear stability analyser will result in improved efficiency
and ease of utilisation. This systematic methodology
is based on the matching of tabulated solutions of a
model (self-similar) boundary layer with the actual
(non-similar) boundary layer growing on a wing. The
results obtained so far are very promising. They show
that it 1s possible to represent the stability character-
istics of the compressible three-dimensional boundary
layer of interest by those of a model boundary layer.

1 Introduction

The ever-present goal of reduced fuel consumption for
airliners and business jets has pushed aircraft design-
ers into looking at ways by which skin friction drag
can be reduced. A promising avenue lies in maintain-
ing laminar flow over the longest possible portion of
the wing, as a turbulent flow produces more friction
than a laminar one. Cebeci and his co-workers (1:2)
have demonstrated the significant influence a proper
prediction of transition can have on the evaluation of
the flow characteristics about airfoils at high angles
of attack and low Reynolds numbers. It is there-
fore necessary to be able to predict where the lam-
inar/turbulent transition will take place on a given
design, under given flight conditions.
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The linear stability theory, coupled with the "
method, has proven its usefulness in predicting tran-
sition, and has been developed to encompass a wide
range of flow conditions and geometries. The stability
analysers developed until now, though, have mostly
been confined to a diagnosis role, to explain the tran-
sition behaviour on a configuration and its given flow
field, and have yet to be used in flowfield calcula-
tion procedures (Viscous/Inviscid Interactive meth-
ods, Navier-Stokes solvers). This comes from the the
fact that they require tremendous amounts of informa-
tion, knowledge and interaction from the user. Among
the tasks that demand intense interaction are: (i) the
location and identification of the instabilities present
(i.e. where instabilities will appear and what their ori-
entation and wavelength will be), (i) the selection of
the critical frequencies that will trigger transition, and
(iii) the proper tracking of constant-frequency ampli-
fication maxima in the integration of the n factor.
These problems need to be addressed in a system-
atic way if an efficient stability analyser, appropriate
for incorporation in a global performance calculation
procedure, is to be developed. Such is the goal of the
research project being currently undertaken.

A systematic procedure for the selection of the crit-
ical frequencies has been proposed and described by
Masson et al. 3 In this paper, a systematic methodol-
ogy for the location and identification of the instabil-
ities present on a wing is proposed. This systematic
procedure is to be integrated into a linear stability
analyser, thus improving its efficiency and making it
easier to use.

2 Proposed Methodology

The location and identification of the instabilities
present on a wing, i.e. the determination of their in-
ception point, as well as their orientation and wave-
length, is conducted with the use of known tabulated
solutions of a model (self-similar) boundary layer.
Schemes for the rapid evaluation of the stability char-
acteristics of 2-D incompressible flows have been pro-
posed by Stock and Degenhart (), Dini et al. (®),
and Gaster and Jiang (®) amongst others . These
methods assume that the velocity profiles on an air-
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inviscid streamline

Figure 1: Infinite swept wing flow

foil can be well represented by the Falkner-Skan fam-
ily of self-similar profiles (the method of Dini et al.
also uses modified Green profiles for separated flows).
A matching procedure is used to evaluate the stabil-
ity characteristics of the actual (non-similar) bound-
ary layer profiles of interest from those of the model
boundary layer profiles. The calculation of n factors
is conducted directly from the model boundary layer
stability characteristics. The proposed methodology
is an extension of the 2-D incompressible matching
method of Gaster and Jiang to 3-D compressible flows,
using profiles from a modification of the Falkner-Skan-
Cooke family (7). It is intended to provide a rapid and
systematic identification of the instabilities that need
to be considered in a “conventional” linear stability
analysis, but not to completely replace the stability
analysis.

2.1 Model Boundary Layer

To construct the database of stability characteris-

tics, it is necessary to have available a family of

boundary layer profiles describing the flow on a three-
dimensional wing in compressible flow. For attached,
two-dimensional, incompressible flow, the self-similar
Falkner-Skan solutions have been used by many au-
thors (4=6), A similar approach is used in the present
work, where a one-species variant of the model pro-
posed by Dewey and Gross (7) has been selected. This
model provides a family of compressible boundary lay-
ers on an infinite swept wing. Fig. 1 represents the
flow under consideration and the coordinate systems
used.

The z-momentum, z-momentum and energy equa-
tions of the proposed model boundary layer are, re-
spectively:
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The velocity, u,w, and temperature, T, (or en-
thalpy, H) profiles are defined by
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A prime (') denotes differentiation with respect to n,
the normal-to-the-wall coordinate. Subscripts w and
e represent quantities at the wall and at the boundary
layer edge, respectively, and uo, is the component of
the freestream velocity Us, in the z direction. The
independent coordinates (x, y) have been transformed

to:
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The boundary conditions (adiabatic wall) are:
£(0) = £'(0) = 9(0) = 6'(0) = 0 (12)
f'(ne) = g(ne) =6(me) =1 (13)

The external flow is assumed isentropic, and there-
fore

at the wall
at the edge
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(14)
with Tp the stagnation temperature.
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It should be noted that for an incompressible flow
(0 = 0) with constant density and viscosity, Egs. (1)
and (2) reduce to the Falkner-Skan-Cooke equations.

Egs. (1) to (3) are discretised using centred differ-
ences on a non-uniform mesh, yielding second-order
accuracy for the first derivatives. Starting from ini-
tial linear profiles, an iterative procedure is used un-
til the velocity and enthalpy profiles have converged.
The non-linear system of equations for f’, ¢ and ¢
is linearised using successive substitution, or Picard,
linearisation.

For a prescribed surface temperature (or equiva-
lently a given value of the t,, parameter), this yields
tridiagonal systems of equations which can be solved
using Thomas algorithm. Since a second-order accu-
rate scheme is used to discretise the adiabatic-wall
boundary condition, the tridiagonal structure is lost
for the energy system of equations, but can be re-
gained using the Sherman-Morrison formula. A guess
of t, is used to start the calculations. A new value of
t, is calculated after each iteration, from the non-zero
value of 6, and the definition of ¢,,:

=t + (12! (20)

At convergence, 8,, = 0 is obtained.

2.2 Matching Requirements

Physical quantities of interest can be obtained from
the above definitions of the five similarity parameters:

ML = sy @

tan?A = ;—i}i_—l (22)

u? =26, Ty (0 +1t, — 1) (500)2 (23)

w? = 26,To (1-1,) (24)

T, = Tp (ts —(o+t,—1) (:oo>2) (25)
1-—1t t 1) { 2= ’

Y LALA L ()

te= (0 4+t —1) (;{3)2

where M, and M, are the Mach numbers related to
Ue and V. (= \/uZ + w?2), respectively.

For the matching with the actual boundary layer
growing on a wing and the calculation of the stabil-
ity characteristics, it is useful to define a coordinate
system that is aligned with the streamline at the edge
of the boundary layer (21,2 system in Fig. 1). The
velocity profiles in this system are:
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The matching procedure uses the incompressible
shape factors in the streamwise and crossflow direc-
tions, defined as:

bz,
o = == 29
b= g 29)

bz,
O (30)

where
o
Uy

bp, = 1~ —1d 31
= [ (-8 (31)

[o 0]

wy

b,, = ——d 32
2 ‘/0 Ve ( )

o0

Ui Uy
= —|1-—=]d 3
o0 2
wy

= —t=1] d 4
As mentionned earlier, there are five non-

dimensional parameters that specify a given self-
similar boundary layer: o, t;, t,,, 8 and u./us. The
aim of the matching procedure is to determine the
combination of these parameters that will produce a
model boundary layer having stability characteristics
similar to those of the actual boundary layer of inter-
est. In this work only adiabatic-wall boundary layers
are considered. In this case, there is only one possi-
ble value of ¢, for a given combination of the other
parameters. The o and u./uc parameters can be ob-
tained directly from the flow conditions of the physical
boundary layer, by inverting Egs. (21) and (26):
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For the determination of the remaining two param-
eters (¢, and §) it is necessary to require that some
“measurable” properties of the model boundary layer
be as close as possible to the same properties mea-
sured on the actual boundary layer on the wing. Fol-
lowing the approach taken in two-dimensional incom-
pressible flows, the incompressible shape factor in the
local streamwise direction (hg,), is matched. This
should ensure closeness of the streamwise velocity pro-

files (u1/V.). By extension, the second property may

be chosen to be the incompressible shape factor in the
crossflow direction (h;,). This is one of the options
considered in this work. The possibility of using the
maximum crossflow velocity and the non-dimensional
crossflow-velocity derivative at the wall as matching
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properties is also considered here. The latter quanti-
ties are defined as:

Wi, = mMax WV: (37)
by, dw
¢ O dun
wy, = V. dn |, (38)

2.3 Linear Stability Theory

The basis of the linear stability theory is the decompo-
sition of the instantaneous flow variables into a mean,
steady part and a time-dependent perturbation of a
sinusoidal form:

1(2,9,2,1) = Q(y) + §(y)e’ T+~ (39)

where ¢ represents any of the flow variables (i.e. the
velocity components u1, v, wy in the streamwise (z;),
wall-normal (y) and crossflow (z1) directions, the pres-
sure p and the temperature T'). Q(y) represents the
laminar mean flow, which is assumed to be parallel,
while o and § are the streamwise and crossflow wave
numbers of the perturbation and w its complex fre-
quency.

After substitution of Eq. (39) into the governing
equations, subtraction of the laminar mean flow so-
lution and linearisation, a homogeneous system of
five second-order ordinary differential equations is ob-
tained. Given homogeneous boundary conditions, the
task then reduces to the resolution of an eigenvalue
problem for the determination of the values of the
complex parameters «, § and w that yield non-trivial
solutions.

The eigenvalue problem provides two real relations,
but there are six real parameters to be determined.
Basic assumptions about the nature of the eigenvalues
are therefore required. It is customary to specify that
one or two of the parameters be pure real numbers. In
the case of the temporal stability theory used in the
present work, o and @ are assumed to be real. One
can see then that the real part of w, w,, corresponds
to the frequency and its imaginary part, w;, to the
temporal growth rate of the perturbation.

Since the eigenvector, ¢, depends only on y and the
mean flow has been assumed parallel, it is possible
to apply a local analysis, i.e. the determination of
the stability characteristics at a given point on a wing
involves only the local boundary layer properties, no
information is required from the neighbourhood. This
is the essential feature that allows pre-calculated sta-
bility characteristics of model boundary layers to be
used for the identification and location of the instabil-
ities in the actual boundary layer growing on a wing.

3 Results

To demonstrate the capacity of the model boundary
layers presented in Section 2.1 to adequately estimate

Inf. matching

SW #2 [wi,,, | h., | wi_
A(°) 25 49 49 39
s — 10927 ] 0.927 [ 0.978
8 — 10310 0310 | 0.310
ha, 0.415 | 0.415 [ 0.415 | 0.420
h,, | -0.044 | -0.044 | -0.044 | -0.035
W1,ee | -0-060 | -0.060 [ -0.060 | -0.045
wi, | -0.102 [-0.131 | -0.131 | -0.102
™ 1.188 | 1.190 | 1.190 | 1.190

Table 1: Matching parameters — Inf. SW #2

the stability characteristics of the actual boundary
layer growing on a wing, three test cases are consid-
ered. Comparisons between the stability characteris-
tics calculated with the actual boundary layer profiles
and those obtained with the model boundary layer
profiles selected with various matching parameters are
presented. The actual boundary layer profiles on a
wing were calculated using the characteristics method
of Houdeville et al. (® In the discussion of the results
that follows, these boundary layers and their prop-
erties are referred to as “exact”. It is important to
note that the stability characteristics presented in the
paper have been normalized with V, as the reference
velocity and é,, as the length scale.

3.1 Infinite swept wing

The first test case concerns an infinite wing with a
sweep angle of 25° and a supercritical profile. This is
the wing referred to as Wing #2 in Ref. (3). The flow
conditions under study are: Mo, = 0.855, Cr = 0.40
and Re=11.0-10°. Fig. 2 shows the exact boundary
layer profiles on the wing at /¢ ~ 0.2, in a region of
strong favourable pressure gradient. Also shown are
the model boundary layer profiles that were obtained
by matching h;, and one of the following quantities:
h.,, wi,,, or w,,. The values of these matching pa-
rameters are summarized in Table 1.

To verify the pertinence of using Eq. (36) to de-
termine the parameter u./uq directly from the exact
local Mach number, M, model boundary layers were
calculated for a range of values of u, /uc. It was found
that the solution that matched the exact T, was in-
deed the one for which M. was matched.

The matching is excellent for the streamwise veloc-
ity and temperature profiles, but more significant dif-
ferences are observed in the crossflow velocity profile,
related mainly to the height at which the maximum
velocity occurs. This distance seems to be indepen-
dent of the matching parameter used. Tests have indi-
cated that it depends mostly on [, which is closely re-
lated to the streamwise shape factor h;,. It is also im-
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Figure 2: Boundary layer profiles — Inf. SW #2

portant to notice that the sweep angles for the model
boundary layers (49° and 39°, see Table 1) are not
equal to the actual infinite wing sweep angle (25°).

The stability characteristics calculated with the ex-
act boundary layer are displayed in Fig. 3. In this fig-
ure, as in all other stability diagrams presented, the
shades of grey represent the amplification rate (w;)
of the instability , while the value-labelled lines rep-
resent its frequency (w,). As expected for a bound-
ary layer without a streamwise inflection point, there
is only one significant amplification maximum, corre-
sponding to a crossflow instability. Fig. 4 presents the
stability characteristics for the model boundary layers
of Fig. 2.

The overall agreement between the exact and model
stability characteristics is quite good. The position
(wave number and orientation) of the maximum cross-
flow instability is well reproduced by the model boun-
day layers, albeit with lower amplification rates, espe-
cially for the w}  matching. This was to be expected,
since the latter model solution has a smaller maximum
crossflow velocity than the exact boundary layer.

As the proposed model boundary layer is also to be
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used to identify the instabilities that are relevant in
the estimation of transition, i.e. the calculation of n
factors, it should provide a good representation of the
maximum amplification, and its associated wave ori-
entation and wave number (wave vector), as a func-
tion of frequency (w;,,,., ¥ and k vs. w,). Fig. 5
presents this evolution and the associated wave num-
bers and wave orientations for the exact and model
boundary layers. The model boundary layer with
wy,,., Matching shows less amplification than the ex-
act solution for frequencies below 0.03. Its maximum
amplification rate is w;, .. = 0.0037 at a frequency of
0.02. This compares with a maximum amplification
of 0.0042 at w, = 0.015 for the exact boundary layer.
Above w, = 0.03, the amplification rate of the model
boundary layer becomes increasingly larger than that
of the exact one. Neutral amplification is reached at
wr =~ 0.073 in the model boundary layer calculations,
compared to approximately 0.059 in the exact ones.
The amplification levels of the w{ -matched model
boundary layer are significantly lower than the ex-
act ones over the whole range of unstable frequencies
(Wier = 0.0022 at w, = 0.02, neutral amplification
at w, = 0.055). The bottom part of Fig. 5 shows that
the orientation of the most unstable wave is well rep-
resented by both model boundary layer solutions, and
so is the wave number.

3.2 NASA AMES wing

For the second test case, we investigated the stability
of the boundary layer in a region of mild adverse pres-
sure gradient on the NASA AMES swept wing (°).
The flow conditions for this case are: M, = 0.833,
a = 1.75° and Re = 14.3 - 10. More details about
the wing geometry and detailed stability calculations
can be found in Ref. (9). Fig. 6 shows the exact
boundary layer profiles on the wing, compared with
the model boundary layer profiles obtained with the
three matching methods. The matching parameters
are presented in Table 2. Once again, the inflected
streamwise velocity profile and the temperature pro-
file are in near-perfect agreement, but differences are
significant in the crossflow velocity distribution. The
wall-derivative matching produces a maximum cross-
flow velocity that is only one-fourth of the exact one.
The shape factor and maximum velocity matchings
produce nearly the same result, but with a maximum
that is significantly closer to the wall. It should be
noted that the exact boundary layer profile exhibits
two points of inflection, but all the model boundary
layer solutions have only one point of inflection.

We next present on Figs. 7 and 8 the stability dia-
grams obtained with the exact boundary layer and the
W1 ,4,- and w]_-matched model boundary layers. The
results for the h,, matching should be very similar to
those of the maximum velocity matching. Fig. 7 shows

Inf. SW#2
W, matching
- dw/dy matching

80F
v |

40

20

sl
b3
S
3

800

Figure 5: Evolution of w; ., — Inf. SW #2

that three local maxima of amplification are present,
which is typical of a region of mild adverse pressure
gradient. The highest levels of amplification are en-
countered in the region around ¢ = —50°, but it is ex-
pected that the most significant region of the diagram,
for transition prediction, is that around ¢ = 50°. This
assertion is justified by the fact that instability ampli-
fication on a wing usually starts near the leading edge
with crossflow waves (at ¢ ~ 90°). As waves travel
downstream and the crossflow instability attenuates,
it seems logical to track the evolution of the stream-
wise maximum that is closer in orientation. The model
solutions show only two instability maxima, the cross-
flow local maximum being absent.

Fig. 9 shows the evolution of the maximum ampli-
fication rate and the associated wave number and ori-
entation as a function of frequency. Only the cross-
flow (label (1)) and positive streamwise (label (2))
instabilities have been considered. For frequencies
below 0.025, the maximum amplification of the ex-
act boundary layer belongs to a crossflow wave. The
bottom part of Fig. 8 shows that at low frequencies,
the most unstable direction for the model boundary
layer solutions goes towards 90°, but this is related
to the streamwise local maxima, and the equivalent
of branch (1) of the exact solution is absent from the
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NASA matching

AMES [ wy, . | h,, | wi
ts — [ 0.940 ] 0.944 [ 0.996
B — ] -0.057 | -0.057 | -0.057
he, | 0376 0.376 [ 0.376 | 0.374
h,, | -0.011 [ -0.012 [ -0.011 | -0.003
Wi, | -0.016 [ -0.016 | -0.015 | -0.004
wi, | -0.010 | -0.036 | -0.035 [ -0.010
7 1.286 | 1.287 | 1.287 | 1.287

Table 2: Matching parameters — NASA AMES wing

model boundary layer solutions. The maximum am-
phification occurs at w, ~ 0.05 for the exact and both
model boundary layers. The value of this maximum
is overpredicted by about 20% by the w;,, -matched
model boundary layer and by about 6% by the w]_-
matched one. The amplification levels predicted by
the wy_,_-matched model boundary layer are larger
than the exact ones over the whole range of unstable
frequencies, while the w] -matched solution shows a
better overall agreement. These differences can be at-
tributed to the value and distance from the surface
of the maximum crossflow velocity. The lower part of
the figure also shows that the wave orientation and di-
rection are in slightly better agreement with the exact
solution (branch (2)) for the wall derivative matching
than for the maximum velocity matching.

3.3 ONERA M6 wing

The final test case concerns a boundary layer in a
strong adverse pressure gradient on the ONERA M6
wing. The flow conditions in this case are: My, =
0.84, a = 3.06°, Re = 11.7 - 105%. The results of de-
tailed calculations were published in Refs. (9,10). The
boundary layer profiles corresponding to the match-
ing parameters given in Table 3 are compared to the
exact solution on Fig. 10. The crossflow velocity pro-
file exhibits two maxima (in absolute value), and it
is obvious that none of the model boundary layer so-
lutions comes close to representing it. It should be
noted that the w;_,_  matching was applied to both
maxima, denoted by the subscripts “low” and “up” in
the figures. It can be observed that the distance of
the crossflow maximum from the surface is the same
for all the model boundary layer profiles, resulting in
a positive maximum that is further from the surface
(W1mes 10w and w)  matchings) or a negative maxi-
mum that is closer to the surface (w1,,,, ., and h;,
matchings).

Fig. 11 shows the stability characteristics calculated
with the exact boundary layer profiles. Three local
maxima can be observed. The most important one is
at ¥ ~ —60°, but it is expected that the instabilities

. NASA AMES swept wing
4 Station (78,14)
Boundary layer profiles comparison

%] M_=0.833 (- 6=0.1219)
M, =1.308 (- uju)
Kig Re; = 3596

2} NASA AMES wing
i v W, Matching

° h,, matching

° dw/dy matching

sk i X
-.%20 -.015 -010 -.005 0.000
w,/V

le e

9611 TR

Figure 6: Boundary layer profiles — NASA wing

with a positive ¥ will play a more important role in
transition, for the same reason as given in the previous
section. The stability diagrams obtained by matching
both crossflow velocity maxima and the crossflow ve-
locity wall derivative are presented on Fig. 12. The
pure crossflow local maximumis absent from all model
boundary layer calculations. The wave number and
orientation at which the two streamwise maxima oc-
cur are well reproduced. The better overall agreement
with the exact solution seems to be obtained in this
case for the model boundary layer with wj  matching.
This is confirmed by Fig. 13, where label (1) refers to
crossflow instabilities and label (2) refers to stream-
wise instabilities {of the exact boundary layer solu-
tion, Fig. 11). The model boundary layers obtained
by matching ws,,,, ,,, and wj  provide levels of am-
plification that are very close to the streamwise branch
(2) of the exact boundary layer solution, with the w}_-
matched results being slightly closer up to w, ~ 0.18.
The wy,,, ,,-matched model boundary layer produces
levels of amplification that are up to 70% higher than
those of the exact boundary layer. This is explained
by the fact that the maximum crossflow velocity for

478



1.00

75

.50

25

0.00

NASA AMES swept wing
M_=0.833
Station (78,14): M, =1.308 Re; = 3593

Stability characteristics

75 50 25 0 25 50 75

Figure 7: Stability characteristics — NASA wing

1.00F

75}

.50

25}

0.00

1.00

a5}

50}

25

0.00L

Model boundary layer - w,__matching
M_=0.833 M,=1.308 Re,=3593
t =0.9401 B =-0.057

Stability characteristics ;

75 50 25 0 25 50 75
v ()

Model boundary layer - dw/dy matching
M_=0.833 M,=1.308 Re;=3593
t. =0.9964 B=-0.057 ®

Stability characteristics

Figure 8: Stability characteristics — Model BL (2)

NASA AMES wing
_______ w,., matching

dw/dy matching

004} s "

- m 18

80
v

40

20}

Figure 9: Evolution of w;,,, — NASA AMES wing

this boundary layer occurs much closer to the surface
than the negative maximum of the exact boundary
layer.

3.4 Summary of Results

The model boundary layers are defined by five sim-
ilarity parameters: ty,, 0, u./uc, B and t;. The
adiabatic-wall boundary condition determines the first
of these (ty), as a function of the other four. The
freestream Mach number (My,) and the Mach num-
ber at the edge of the (exact) boundary layer (M.)
directly provide two more parameters (o and e/t ).
The last two parameters are related to the local sweep
angle and pressure gradient and have to be identi-
fied by matching some global properties of the ve-
locity profiles. The streamwise incompressible shape
factor (hy;) has been found to provide a very good
representation of the streamwise velocity profile, even
in strongly decelerated flows. It has also been ob-
served that the value of the pressure-gradient param-
eter (8) is almost uniquely determined by this shape
factor. The matching of the crossflow velocity pro-
file is less straightforward. The distance of the cross-
flow velocity maximum from the surface and the pres-
ence of multiple crossflow velocity maxima are features
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ONERA matching

LI IV T I T
ts — 0.997 | 0.993 [ 0.975 [ 0.986
B — | -0.180 | -0.180 | -0.180 | -0.180
hs, 0315 | 0314 | 0314 | 0.316 | 0.315
h., | -0.036 | 0.012 | -0.018 | -0.036 | 0.027
w,,, | 00171 0.017 0.036

-0.024 -0.025 | -0.048
wi, | 0.094 | 0.044 | -0.064 | -0.125 | 0.095
7™ 1.348 | 1.361 | 1.361 | 1.360 | 1.360

Table 3: Matching parameters — M6 wing

that have a strong influence on the stability charac-
teristics. Three different crossflow matching param-
eters have been tested: the crossflow incompressible
shape factor (h;,;), the maximum crossflow velocity
(wr1,,..) and the crossflow velocity derivative at the
wall (w] ). In accelerated flows (8 > 0), where the
importance of the crossflow velocity profile is greatest,
the w;,, -criterion seems to produce the best agree-
ment of velocity profiles and stability characteristics,
with the h,,-criterion being almost equally good. It
should be pointed out, though, that only one test case
has been conducted for favourable pressure gradient.
Two test cases have been studied for decelerated flows
(B < 0), where streamwise instabilities become domi-
nant. These tend to show that the wj  matching pro-
vides a better representation of the streamwise insta-
bilities than the other matching criteria, even though
the resulting model boundary layer may show a cross-
flow velocity maximum that is many times greater or
smaller than that of the exact boundary layer.

4 Conclusions

The essential features of a linear stability analyser
suitable for integration in wing performance calcula-
tion procedures have been identified. One of these
features is the systematic location and identification
of the instabilities present on a wing. A procedure
capable of achieving this task has been proposed in
this paper. This procedure is based on the use of
pre-calculated stability characteristics for a family of
model boundary layers to represent the stability char-
acteristics of the actual boundary layer growing on
a wing. The three-dimensional compressible model
boundary layers are defined by five similarity param-
eters.

The results obtained so far look very promising.
They show that it is possible to represent the stabil-
ity characteristics of the compressible boundary layer
growing on an arbitrary three-dimensional wing by
those of a model boundary layer. More tests will be
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Figure 10: Boundary layer profiles — M6 wing

required in order to identify the best matching pro-
cedure for the crossflow velocity profile, keeping in
mind that what must ultimately be reproduced is not
so much the velocity profile itself but the boundary
layer stability characteristics. A criterion that inte-
grates two or more of the parameters used so far, such
as that proposed by Stock and Degenhart () for in-
compressible 2-D flow, might be useful. The model
boundary layer used in this work is valid only for at-
tached boundary layer flow. The possibility of using
a 3-D compressible extension of the modified Green
family of profiles (%) to represent separated boundary
layers will also be investigated.
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