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A NEW RECONFIGURATION CONCEPT FOR FLIGHT CONTROL
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1. Abstract

A new concept for the reconfiguration of a flight
controller in case of control effector failures is pro-
posed. Failurc types of reduced control surface
effectiveness, stuck surface, reduced actuator rate
limit, and reduced actuator deflection limit are
considered. A comprehensive process model forms
the basis for the controller and the reconfiguration.
It is divided up in an aircraft model describing the
flight dynamics and a control effector model
describing the dynamics of the actuator system and
the control surface system. Every failure case can be
described by changing the corresponding
parameters in the control effector model.

The controller contains both the control
effector model and the aircraft model. The control
system has to be adapted in order to have intact
actuators take over the lost functionality of the
impaired ones. The inherent redundancy in most
modern actuator systems is the main prerequisite for
such a substitution. The qualitative and quantitative
information about the fault is supposed to be
available from a failure detection and isolation
process, called FDI process in the following. The
information is used to adapt the control system via
predefined knowledge based means. During recon-
figuration the model parameters are updated based
on the failure information.

A genetic algorithm is applied to take care
of those impacts of the fault that cannot be quanti-
tatively gauged. Such an adaptation basically
involves an optimization to alter the model
parameters via a specific strategy within predefined
limits in order to maximize control performance [1].
Linear and nonlinear failure types can be estimated
by measuring the aircraft inputs and states. The
conservation of the estimation results during
missing excitation of the aircraft can be realized
easily.
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2. Nomenclature

Matrices are written in capital bold letters, vectors
in bold letters, and functions in italic letters.

Symbols: Description:

A difference

Y flight path angle

o bank angle

o angle of attack

B angle of sideslip

P air density

£ ailcron deflection

© pitch angle

c cost value

g transfer function

k gain

L, roll damping coefficient

L, aileron roll effectiveness

P, Q. T roll rate, pitch rate, yaw rate
T time constant of first order lag
u input variable

v, true air speed

X state variable

y output variable

Indices: Description:

b body fixed coordinates

C command

FE failure case

i), k counting indices

M model

NF normal case, no failure

FB feedback

TR translator

FF feedforward

R controlled output variable
FBM model feedback

CM command for actuator model
RC command for controlled output

variable



3, Introduction

Overviewing existing reconfiguration concepts {2]
mainly linear failure types are investigated. These
are described by changing the input matrix or the
dynamic matrix of a model state space
representation. Often a changed control surface
effectiveness or a stuck surface are taken into
account without considering nonlinear failure types
for example a reduced rate limit or a reduced
deflection limit.

A second disadvantage of the existing
concepts is the time for the calculation of new con-
troller parameters after the fault has occured.
Further the convergence of the calculation must be
guaranteed. The risk of missing convergence is
avoided by determining the parameter sets for each
failure case in advance and storing them in the flight
computer [3]. The disadvantage of this method is
the great amount of storing space required for the
vast number of possible failure cases.

Our reconfiguration approach tries to avoid
the disadvantages listed above. There are three
goals for the development:

1. The amount of controller parameters to be
stored in advance has to be as small as
possible

2. The calculation time for the new controller
parameters after a fault has occured should be
as short as possible.

3. The variety of failure types that can be
considered should be as large as possible.
Nonlinear failure types such as a reduced rate
limit should be included.

The first part of the paper introduces the controller
structure and its reconfiguration meeting the
objectives compiled above. The second part
presents the application of the genetic algorithm
optimizing the reconfiguration.

4. Control Effector Model

Besides the nonlinear aircraft model the control
effector model in the state space representation
provides the basis for the controller structure, the
reconfiguration, and the genetic algorithm.

A single component of the control effector
system is shown in Fig. 1. An actuator drives a
control surface.

te. > Actuato] >[Surfoc:e] ,,,,,,,_,,,

Fig. 1: Control Effector Model
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u. is the controller command for the surface
deflection. The actuator model comprises a first
order lag including a rate limit 4, and a travel
limit u_ . uis the actual surface position.

[u<u 6))

max max

ﬁ::;—(—u+k~uc) li<u
The actuator failure types taken into account are a
reduced rate limit, a reduced travel limit, and a total
actuator breakdown with the surface stuck at an
arbitrary position.

The control surface produces the force
vector T and the moment vector m (about the center
of gravity of the aircraft). Both depend on the
surface position u and the magnitude of the surface
area a. The air density p and the true air speed V,
are additional influences:

f
(m) =b(P,VA,a)‘kFE'u ’

Concerning the failure types only a reduced surface
area is considered modelled by the factor k.

el0.1] 93]

5. Basic Controller Structure

5.1. Introduction to the Structure

The reconfiguration concept is founded on a special
controller structure. This chapter presents the basic
ideas underlying this structure.

A reconfiguration of a controller means
making it execute the following task:

If there is a damaged component in the control
effector system, forward that part of the command
that cannot be fulfilled to other components in
order to fulfil the pilot's commands as in the no-
failure-case.

Many reconfiguration concepts come up with a
standard controller structure to execute this task - a
simple feedback structure .generating control
commands from the error between measured and
commanded values. So the reconfiguration has to
focus on the controller gains. The drawback is the
necessary reconfiguration effort in case of nonlinear
failure types. These failure types may require a high
order controller with many parameters difficult to
design. This means much calculation time for
redesigning the controller in such failure cases.
Our approach wants to avoid this by building up a
special controller structure that can automatically
do the reconfiguration task mentioned above. This
solution considerably reduces the reconfiguration
effort.

The comprehensive aircraft model is used
to generate control commands by a feedforward part



[4]. Using the: explicit actuator model of Eq. (1)
such a feedforward structure can easily realize the
reconfiguration task even for nonlinear faults. If the
feedforward part has sufficiently precise  in-
formation about the process it can overtake the
control task of

of

e the generation command

following.

satisfactory

So there remain for the controller feedback part the
tasks of

e stabilization, and
e disturbance rejection.

By this the influence of the actuator rate and travel
limits on the feedback commands is considerably
reduced because the feedback command amplitudes
are smaller. In this way a robust but simple feed-
back structure can be found that need not be
reconfigured in case of changed travel or rate limits.

5.2. Single Output Case

The following simple example illustrates the de-
velopment of the controller structure and is shown
in Fig. 2:

Yre o !
Process
_ | Trans-
'91,9' o

Fig. 2: Basic Controller Structure for Single Output
Case

Consider a system with one controlled output y,
that is controllable by a primary input u, and a
secondary input u,. The secondary input is only
used in the failure case to support the impaired
effector system of u,. The transfer function form is:

ye=(& gz)(zj

Building up the structure a feedforward element is
introduced to transform the pilot's commands into
inputs for the failure free case. In the failure free
case the commands are fulfilled by the actuators
without rate or deflection saturation. To leave the
illustration simple the commands are generated by

3
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the inverted transfer function comprising the

process information:

Ugey & gl‘[' Yre - 4

The command u,;, is filtered by an actuator model
according to Eq. (1) that is updated by the actual
values for rate- and travel limitsu and u__ .
The redistribution of commands according to the
reconfiguration task works as follows: A daisy-
chain is installed around the actuator model of u,.
The difference of u,, and u., is the part Au, of
the command that has to be transformed into a
command for the secondary input u, in order to
fulfil y,.. The missing contribution of u, to the
output is;

max, |

)

As soon as the actuator model is saturated because
of the reduced deflection or rate limit in the failure
case, the signal Au, is calculated. If the actuator
model is not saturated Au, is set to zero. Otherwise
the dynamic of the first order lag would cause a
Au, signal despite the absence of failures. u, can
be calculated by

AYRC = gl'Aux

(6)

The function g;'-g, "translates” Au,(t) into wu,(t)
to compensate the actuator failure. Therefore this
component is called translator in the following text.
Assuming that u, fulfils the command the desired
output is fulfilled as in the failure free case despite
the rate and travel saturations of u,.

The feedback commands are added to the
command for the primary actuator model. The
feedback is not activated because of the equality
Ve () = Ve (. If u, cannot carry out the
commands of the translator, the output equality
doesn't apply, ¥, () # Yg(1). In this case the feed-
back is activated to make the process follow the
desired output as good as possible.

If there are other secondary inputs
available this controller structure can be augmented
easily to integrate them. Defining a sequence order
for the secondary inputs, components of an actuator
model, a daisy-chain, and the respective translator
are formed and connected.

u, = gzq.gl.Aul .

5.3. Multi Output Case

The structure concept built up in the chapter above
can be easily augmented for a greater number of
controlled output variables, see Fig.3. The
translators and the actuator models were united into
banks of translators and actuator models:
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Fig. 3: Basic Controller Structure for Several
Control Outputs

The model of the failure free aircraft is used in the
feedforward block. m controlled output variables
and | input variables u;, u, ,u,,... have to be chosen
as primary inputs for the failure free case (m<1).
Every input that can be replaced by a group of other
inputs creating the same trajectory Yy, (t) has to be
connected to those inputs via a translator. The
differences Au,, Au; Au,,..., summarized by Au,
are generated by the daisy-chains and directed to
the respective translators. Every translator uses a
group of inputs that must not contain the input to be
replaced. The feedback commands are added to the
inputs of the primary actuator models.

In the failure free case every primary
actuator model can fulfil the command wuy;
Au=0, u, =0 and u, =0. If some saturated
actuator models are not able to fulfil their
commands the translators are activated by the signal
Au, such that wu.=uy+u,. The output
trajectory is similar to that of the normal case,
Yr (0= Y (D=¥,c (0. If Au cannot be translated
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successfully into secondary inputs because of travel
or rate saturations in the secondary actuators, the
output  differs = from the desired output
Yo (D2 ¥, (). By this the feedback is activated
making the process follow y,. as good as possible.
The feedback contributes to the control command
such that u, =wu +u, +u,,.

5.4. Realization of the Concept

The realization of the concept presented in the
section above makes a modification of the
controller structure necessary. According to the
structure the choice of the feedback variables is
restricted to the controlled output variables. They
are chosen as

ve=[V. v @]

Flight control experiences {5] show the necessity of
feeding back additional variables such as the roll
velocities p,, ¢,. I, angle of attack o, and
sideslip angle B in order to gain sufficient control
performance. For determining the feedback error
command values have to be generated to compare
with the measured values. For this reason the
controller structure is augmented by an aircraft
model, the block "A/C Model", generating the
desired commanded values for the feedback, see
Fig. 4. It contains the control surface model of Eq. 2
and the nonlinear flight dynamics. Thus this block
together with the block "Act. Model Bank"
represents the comprehensive aircraft model. The
actuator model outputs u,, are fed into the a/c
model. The feedback of Fig. 3 has changed into a
model feedback.

Q)

Ure

Fig. 4: Augmented Controller Structure

The left half of the structure up to the block "A/C
Model" forms the feedforward part of the control-
ler. The commanded values for the actuator models
are now the feedforward commands for the aircraft.
Thus an explicit model following structure is cre-
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ated comprising a comprehensive model of the air-
craft in the feedforward part. By this the trajectories
x and y of the aircraft should follow the state and
output trajectories x,, and Yy, of the model. The



model feedback and the process feedback have
proportional and integral parts.

6. Controller Reconfiguration

The types of failure were introduced during the
control effector modelling. Every failure type re-
quires different reconfiguration actions. They have
one aspect in common: the model updating relying
on the information from the FDI procedure.

The second step is to compensate the
failure by modifying the input commands. After that
the genetic algorithm is activated to optimize the
model  parameters to maximize controller
performance.

6.1. Reduced Surface Effectiveness

In the aircraft model the failure parameter k., of
the corresponding control surface is updated
(Eq. (2)). This type of failure can be simply
compensated by increasing the surface deflection.
Hence the modified command for the actuator
model is:

1

=— U

u
CFE
k

®
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FE

The gains of the process feedback referring to the
impaired control input have to be multiplied by

ke -
6.2. Stuck control surface

The control surface and the actuator remain in an
arbitrary position. The actuator model is updated by
setting the actuator state u of Eq. (1) to the fixed
surface position and the gain k and u to zero. The
failure is compensated automatically by generating
the Au signal. By this the respective translator is
activated and generates the commands for the
secondary inputs. The neutralization of the
disturbance input of the stuck surface is automati-
cally included.

The process feedback matrix has to be
replaced by a new one using a secondary input
instead of the damaged one. The failure gain ma-
trices are determined in advance and stored in the
flight computer.

6.3. Reduced rate limits

The affected actuator model is updated by changing
the parameter u_ . The failure is compensated
automatically by generating the Au signal as soon
as there is a rate saturation in the actuator model.
By this the respective translator is activated and
transforms the commands for the secondary inputs.
The process feedback need not be reconfigured.
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6.4. Reduced travel limits

The affected actuator model is updated by changing
the parameter u, . The failure compensation is
done automatically by generating the Au signal as
soon as the actuator model is saturated. By this the
respective translator is activated and transforms the
commands for the secondary inputs. Again the
process feedback need not be changed.

7. Identification of Model Parameters by the
Genetic Algorithm

The automatic parameter identification begins after
the information of the FDI process has been ex-
ploited for reconfiguration. It adapts the A/C model
to the real aircraft. The A/C model, not necessarily
linear, is given as

%, = %o u,.0] )

with the parameters p to be tuned by the genetic
algorithm. The task is to:

1. Measure u, x, and x of the aircraft

2. Optimize p so that the dynamics of the model
correspond to the dynamics of the aircraft

3. Use p in the model and the controller

The cost function the genetic algorithm has to
minimize is derived from Eq. 9:

Ax =[x~ f(xu,p) (10)

7.1, Introduction to Genetic Algorithms

Mother nature has had time over billions of years to
develop an algorithm to optimize her creatures. This
means that the genetic optimization algorithm itself
is the outcome of the profoundest optimization
procedure ever applied on earth. This genetic
algorithm, called evolution, has created systems like
the albatross, dynamically soaring hours and hours
over the sea without a single wing beat, or the skin
of a shark, that generates micro-turbulence for
significant drag reduction. Both are examples of
fascinating biological phenomena that we scientists
are just beginning to understand and utilize to make
our aircraft more efficient. So - if life successfully
uses the genetic algorithm to optimize and adapt its
systems, it seems to be a good idea to apply the

- same strategy to technical optimization problems as

well.



1.2. Selection, Crossover. and Mutation

Based on the biological model the technical genetic
algorithm defines a population of individuals, all of
them having different properties. A certain fitness
(or cost, depending on whether a maximum or a
minimum 1s looked for), has to be calculated for
every individual in a user supplied fitness function.
This fitness function is the mathematical description
of the optimization problem, gets the characteristics
of an individual as its input, calculates the fitness of
this individual with regard to the problem and
forwards this fitness to the genetic algorithm.

Under the control of the genetic algorithm
every individual gains certain access to a mating
pool. As the fitness of an individual represents the
probability to appear in the mating pool, "good"
individuals get a higher chance to reproduce than
individuals with a lower fitness (survival of the
fittest, selection).

In the recombination phase members of the
mating pool are chosen arbitrarily two by two. They
exchange their characteristics and generate children
that have properties similar but not identical to
those of their parents (crossover). Since individuals
with greater fitness have a higher probability to be
selected for reproduction, the children's generation
is very likely to have a higher mean fitness than
their parents. Looked at from the geometric point of
view the new population as a whole has converged
one step closer to the optimum. This does not
automatically mean, that the best individual of the
new generation has a higher fitness than the best of
the parents. In general, it is just the mean fitness of
the whole generation that is increased [6].

Starting from a widespread initial popula-
tion, that ideally covers the whole parameter space
(Fig. 5 Left), the population converges, contracts,
and shrinks towards the optimum in the middle (Fig.
5 Middle), until finally nearly all individuals are
concentrated close to the optimum (Fig. 5 Right):

Fig. 5: Population Development

Unfortunately the described procedure of selection
and crossover has one great drawback: Along with
the convergence the population loses properties. If
for example one property to be optimized is the
color of the individuals, all colors (blue, red, white,
black, ...) should be present in the initial population.
If now the optimum itself is blue, all non-blue
individuals will be substituted by blue individuals in
the end. This is okay, as long as the optimum is
static and does not move. It becomes fatal, if the
optimum changes its properties. Sticking to the
example, all of a sudden blue is out, and red would
be optimal. Unfortunately there are no more red
individuals left and it is impossible to generate red
children from blue parents. Such a pedigree popu-
lation would have no chance to find the new red
optimum "out of the blue".

The usual trick to get round this problem is
to introduce mutation. By mutation in every
generation a few individuals have their properties
changed arbitrarily, positioning them more or less
far away from the latest optimum. If now a new red
optimum has cropped up anywhere else in the pa-
rameter space, unreachable for those formerly op-
timal blue masses, a few individuals get their color
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changed to red by mutation. These individuals
suddenly have a much higher fitness than those blue
ones and therefore get a much higher chance to
produce children. A few generations later most of
the blue individuals have died out and the whole
population gathers round the new red optimum.

8. Implementation of the Genetic Algorithm

During the last 30 years hundreds of different im-
plementations of genetic algorithms have shown
that the algorithm itself is a very flexible tool that
can be modified and adapted to fit about every
optimization problem. One of its greatest benefits is
the fact that you can find a biological analogy for
almost any implementation question. Nature,
society, and even politics are full of more or less
perfectly working optimization strategies that can
successfully be implemented into genetic algo-
rithms.

For our on-line identification problem
there are further advantages of the genetic algorithm
in opposition to conventional methods like
least square methods:



o The model to be identified need not be linear.

e The problem of missing excitation with the loss
of identification results can be solved easily.

8.1, Different Optimization Tasks

Four main different optimization problems can be
solved by the genetic algorithm:

8.1.1. Static Optimum

In general this is the easiest task. The optimum is
constant, it does not change or move. The popula-
tion starts from a uniform distribution, converges,
finds the global optimum, and quits. A one-
dimensional example would be to find the inde-
pendent variable x that minimizes the cost-function
X

ex)=1+x+x" +x" +x*

(1D

8.1.2. Moving Optimum

If the location of the optimum is not constant, but
moves around or suddenly appears somewhere else
(for example after a sudden fault), the optimization
algorithm must be able to follow the optimum on its
path through the parameter space. The genetic
algorithm mainly uses the mutation to send out a
certain percentage of the population far away from
the present optimum having those individuals
search the whole parameter space for new optima.
Slowly moving optima are mainly followed by re-
combination of present high-fitness individuals. Eq.
(12) shows a simple example of a cost function with
a moving (t = time) optimum.

C(X,t)z1"1'[X'*'X2"}"X3'|'X4 (12)

8.1.3. Identification of Dynamic Systems

If we want to use the genetic algorithm for the
adaptation of a feedforward controller or a model,
we run into the general on-line identification
problems. Consider the simplified linear roll
acceleration differential equation of an aircraft [5].
p=Lp+L3& (13)
Roll acceleration p, roll rate p, and aileron deflec-
tion & can all be measured in every sample inter-
val; the task is to identify the unknown constant
aircraft parameters L, and L,. This looks like a
simple underdetermined equation (system) with one
equation for two unknowns. So all we need is two
equations from two different times to solve for the
two unknowns.
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p(t) =L,p(t,)+L&(1)

p(tl) = an(tl)-’- Léé([l) (14)
Unfortunately the measurements in a real-world
aircraft are not at all ideal. Dropouts can occur,
signal noise is always present; the latest two
measurements could be totally disturbed. As a con-
sequence the two calculated parameters would be
absolutely wrong and useless. If used in the actual
feedforward controller, they could even harm the
performance of the aircraft.

The usual way to deal with noise is to
filter. One possible alternative is to filter the signals
directly, before they are used in the parameter
identification process. The second way stores more
than two old measurements in an information matrix
and forwards the corresponding overdetermined
equation system to an equation solver [7],[8].

p(t) = Lpp(tr)‘*'L&&(tn)
p(t) : Lp(t,)+ Lél‘,(tz)

p(tn) = Lpp(tn)+ Léé—'(tn) (15)

In such a simple linear case the most effective re-
gression algorithm would be a singular value de-
composition of the information matrix to solve the
overdetermined equation system in a least squares
sense [9].

p=Lp+LE  with  p=[p(t) ) -~ p(t)].
p=[p §][tj
p-[p é][],:“} = Min

Sk

(16)

The genetic algorithm offers a third, more elegant
way to take care of underdetermined equation sys-
tems and disturbances in the measured data [9]. No
external storing or filtering of the data is necessary,
the algorithm per se has enough inertia to directly
handle one set of measurement data at a time and to
suppress noise or dropouts. If for example a short
signal peak occurs because of a measurement error,
the optimum will abruptly jump to another location
in the parameter space and jump back a few time
samples later. Even if, by accident, one individual
should find this new, but "wrong" optimum, it
would take more than just a few generations to build
up a new population in that region. As soon as the
fake optimum disappears, all mistaken individuals
will die out, i.e. the renegade part of the population
will move back to the true optimum.

The same low pass filter characteristics of
the genetic algorithm that successfully damp the
disturbances are automatically utilized to handle the



underdetermined Eq. (13). Let the cost function to
be minimized be the absolute error of Eq. (13).

oL, L,)=|p-L,p-Lg - Min an

For every new [p p & ] measurement data set Eq.
(17) can be geometrically interpreted as another
cost valley:

[N

-0 1o

-0 -0

Fig. 6: Different Cost Valleys

All three valley bottoms in Fig. 6 have only one
point in common, which is the unknown optimal
parameter vector.

L, gh:pl]

With every excitation of the aircraft the measure-
ment vector [p(t) p(t) §(1)], that represents the
dynamic response of the aircraft, generates an os-
cillation of the valley around its fixpoint. The
higher the frequency of the excitation and the re-
sulting aircraft response are, the faster the oscilla-
tion of the valley will be. The genetic algorithm will
now initially position his individuals all across the
two-dimensional parameter space. Quickly all
individuals on the hillside will be sorted out be-
cause of their high cost. Only those individuals
around the optimum will survive and produce chil-
dren. Their cost is constantly low, no matter how
the valley is oriented.

The convergence speed of the genetic
algorithm has to be carefully coordinated with the
frequency of the aircraft response. If the genetic
algorithm is much faster than the motion of the
valley, the whole population will converge like a
drop of water at a random point of the valley
bottom, not necessarily at the optimum. With the
slow motion of the valley this point might wander
around in the valley bottom, without becoming
stationary at the optimum.

In a real-time genetic algorithm the con-
vergence speed can easily be controlled by the
number of generations per sample interval. One can
calculate hundreds of generations whenever one
gets new information about the process to identify,
or one can wait decades of sample intervals before
using a new measurement for the next generation.
The genetic algorithm should on the one hand
suppress the influence of disturbances and not try to
follow excitation and fast system dynamics. On the
other hand it should willingly track longterm
parameter variations. Its convergence speed

(18)
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(frequency) therefore should be obtained by the
traditional tradeoff between the highest parameter
variation frequency and the lowest noise frequency
(and the system response respectively).

8.2. Conservation of the Identification Results
During Missing Excitation

Sufficient excitation is necessary for identifying the
dynamics of a system. Using the genetic algorithm
the impossibility to gain further information about
the system during missing excitation can be
interpreted as a stillstanding cost valley. The
optimum is no longer visible and identifiable. All
the individuals lying at the bottom of the valley
have the same optimal cost value zero. The problem
are situations like in Fig. 7. The cost valley from
(Fig. 6 Left) is seen from above:

10

10

Fig. 7: Frozen Individuals During Missing Excita-
tion

There is no excitation so that the valley does not
move. The bottom line of the valley runs from the
left side across the optimum at the point [1 1]
(black cross) to the right side. A big part of the
population, namely the individuals No. 2, 3, and 4,
have approached the optimum very closely.
Unfortunately individual No. 1 has a better cost
than the rest of the population. Creating new
generations this would wipe out the well converged



individuals No.2,3,and 4 and making up new
individuals near to the alleged best individual No. 1.

This can be avoided by a simple measure:
The possible best cost value is zero. Defining a
threshold ¢, all individuals with cost values
between zero and ¢, are considered as "good
enough". So this part of the population represents
the acquired information about the system
parameters and is excluded from the crossover and
mutation process respectively copied into the next
generation. These individuals "get frozen". The
grey area in Fig. 7 marks the area holding the
individuals that have to be copied because they are
better than c_ . Individual No.5 is not good
enough and may converge into the grey area.

The compromise of this measure can be
found in the reachable accuracy of the identification
setting up such a "freezing area". As soon as an
individual is better than ¢, the convergence is
stopped. Such an individual is prevented from a
better convergence to the real optimum.

9. Flight Experiments

DLR's in-flight simulator ATTAS (Fig. 8) was used
as test bed for the validation of the concept. In
September 1993 flight tests were conducted to
examine the controller adaptation by the genetic
algorithm and the explicit model following
controller concept for reconfiguration. Tracking
tasks were designed with and without elevator
failures such as a reduced control effectiveness and
a stuck elevator. Further flight tests are planned for
the end of August 1995 to verify the complete
reconfiguration concept.

Fig. 8: DLR’s In-Flight Simulator ATTAS
(Advanced Technologies Testing Aircraft System)

9.1. Flight Test with Genetic Algorithm

Tracking task experiments were designed to
compare a fixed and an adaptive feedforward
controller after a 50% elevator effectiveness
reduction [10], [11]. The pilot’s task was to follow
a moving pitch bar on his flight display as accurate
as possible. The parameters of the fixed
feedforward were calculated offline prior to the
flight experiment by pseudo-inverting a -linearized
model of the undamaged aircraft. The adaptive
controller on the other hand used a genetic
reconfiguration algorithm to tune these parameters
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in order to minimize the control error. No extra
knowledge based structural reconfiguration took
place ahead of the adaptation. The parameter
boundaries, limiting the parameter space the genetic
algorithm could search, were chosen to cover any
reasonable fault.

Fig. 9 shows the time histories of two flight
experiments. In both experiments the elevator
effectiveness reduction takes place after 100
seconds. During the first experiment the pilot has to
manage the reconfiguration ”in his head”; he has to
increase his commands in order to compensate for
the reduced actuator effectiveness. In the second
experiment the genetic algorithm identifies the
actuator fault and optimizes the feedforward gain
matrix. Obviously (Fig. 9) the pilot has much less
difficulties to fulfill his task, after the genetic
algorithm has adapted the control system.

0.15,

With GA

Commanded
Pitch Angle

6/radt

0.05f

-0.05}!

130 140 150 160 170 180 t/sec 200

t Adaptation Successful

100 110 120

Fault t

Fig. 9: Flight Test Results with and without Genetic
Algorithm

The above observation is underpinned by Fig. 10,
which indicates the integrated (mean) error between
pitch angle task and actual pitch angle, both for the
fixed feedforward (no genetic algorithm) and the
adaptive feedforward under the control of the
genetic algorithm. While the errors of fixed and
adapted feedforwards are about equal, as long as the
actuator fault is not present (0 - 100 sec.), the fixed
feedforward error increases significantly after the
occurance of the fault at 100 seconds. The error
with the adapted feedforward shows only a slight
increase which is due to the fact that the feedback
controller is not adapted.
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Fig. 10: Error of Fixed and Adaptive Feedforwards
with Elevator Fault after 100 Seconds

During the flight experiments the pilots were asked
to comment on their workload and the way the
adaptation process influenced the handling qualities
of the aircraft:

Tab. 1: Pilot Comments during Flight Experiment

"Bit more work"

"Distinct learning
process”

"Tends to shoot over” | "Controller is getting

faster”

"Almost like the intact
elevator”

"Works slower"

"You can learn to live
with it"

Even though the pilots have not been asked in this
first flight test to quantitatively assess aircraft
handling qualities via a scale, such as the Cooper-
Harper-rating scale, their comments clearly
underline the fact that genetic algorithms can
definitely reconfigure control system parameters
after a fault in the actuator system.

9.2. Flight Test with Model Following Controller

In a second flight test the reconfiguration
capabilities of the explicit model following
controller were examined using Cooper-Harper-
Ratings. The failure was an elevator stuck in the
trim position. The flight task was to execute a so-
called "bathtub manoeuvre" (Fig. 11). Starting the
test run at an altitude of 15,000 ft with an indicated
airspeed of 190 kts the pilot had to deccelerate the
aircraft down to 160 kts and keep the altitude
constant. In a second phase a descent with a vertical
speed of -500 ft/min with constant speed down to
13,000 ft was to be done. After the pilot had
stabilized the aircraft at this altitude the manoeuvre
continued in a reversed manner:
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180 ks 160 kts 160 kts 190 kis
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15,000 ft 15,000 ft
- 500 ft/ min + 500 ft / min

13,000 ft
Fig. 11: Bathtub Manoeuvre

In the first run the pilot had to manage the
reconfiguration by himself using the trim button on
his sidestick generating a stabilizer command. The
thrust levers were available as second input. The
stabilizer had a rate limit of 0.125 deg/s rendering
the stabilization of the aircraft difficult what can be
seen in the altitude time history of Fig. 12:
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Fig. 12: Altitude Trajectory Without Controllér

Obviously the weakly damped phugoid mode was
the main difficulty for the pilot. An adequate
performance was not attainable with a tolerable
workload expressed by a Cooper-Harper-Rating
of 7 for this run. In the second run the pilot was
supported by the reconfigured controller. Its
controller structure compared to the structure that
was used for the genetic algorithm. For
reconfiguration purposes it was augmented by a
control mixer that redistributed the commmands of
the damaged elevator to the stabilizer. The control
law was a "pitch rate command-attitude hold-law".
By deflecting the sidestick a pitch rate was
commanded. By returning the stick to the neutral
position the controller reduced the pitch rate and
switched over to the hold mode as soon as the pitch
rate had sufficiently decreased. The controller
commanded the stabilizer while the pilot set the
thrust levers. Fig. 13 shows the altitude time history.
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Fig. 13: Altitude Trajectory with Controller



The phugoid mode was well damped now. The
execution of the bathtub manoeuvre was
considerably improved by the controller. This
resulted in a Cooper-Harper-Rating of 5. The runs
with and without the controller were repeated
several times to confirm the results. Concerning
speed tracking there was no improvement by the
controller to be found in comparison to the runs
without controller.
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