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Abstract. For the satellites launched into
relatively low circular orbit (height of the orbit
less then 400 km) aerodynamic satellite stabili-
zation can be used. It orients the axis of symme-
try of the satellite along the tangent to the orbit.
Aerodynamic restoring torque in pitch and yaw
is provided by a special very light stabilizer.To
damp transient oscillations of the satellite one
uses two single-degree-of-freedom gyros con-
nected with the satellite body through a viscous-
spring restraint. The gyro rotor is linked to the
satellite through a damping device, and the oscil-
lations of the satellite cause its precession pro-
ducing dissipation of energy of oscillations of
the satellite-gyros system. Moreover, the single
degree-of-freedom gyros produce additional re-
storing torques in yaw and roll when the system
deviates from its equilibrium orientation. The
aerodynamic and gyroscopic restoring torques
are used to provide three-axis aerodynamic
stabilization of the satellite. A similar aerody-
namic stabilization system was installed, for ex-
ample, in the Cosmos - 149 and Cosmos-320
russian satellites. Semipassive aerodynamic
stabilization system can be used in small satel-
lites to investigate physical processes in the at-
mosphere and to determine atmospheric parame-
ters. Here general investigation of the attitude
motion of small satellites with aerodynamic
system is given. Main directions of study: non-
linear equations of satellite attitude motion,
equilibria, stability of equilibria, optimal pa-
rameters.

Equations of motion

We consider the attitude motion of a
satellite under the action of gravitational and
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aerodynamic torques. Equations of the attitude
motion of the satellite can be written in such a
way ©:

Ap+(C-B)gqr=M_ + M,
BG+(A-Cyrp=M_+M,,
Cr+(B-A)pg=M_+M,;

)

p=(a+w)a, +7,
g =(d +w)a,, + f cosy,

r=(d+w)a, + fsiny;

@

Here

M, = 3—;{—(0- B)ayas,,

M, = 3_;%(‘4'(:)“33“31’ 3)
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M, =b2Z, 6~c.t,

a ga’

M, =c,X,-a,Z

gTa?

M, = agif, ——nga,

4

VY v,
= —Q au % T, 9 +'I—;a31 )
Vy V.
= “Q( a, + v — 9n +‘I7z‘6132], %)

vV V v
Z,= —Q(”‘)'('an +-Z-a23 +_V_z_a33);

Vv |4

X y zZ
X ay ay, ag
Y 4y ay Ay
Z ds; as, ds3

325



a,; =cosacosf,
a,, =sina siny —cosa sin f cosy,
a,; = sina cosy + cosa sin 8 siny,

ay = Sinﬂ’

a,, = cos f cosy, 6)
a,,; =—cos 3 siny,

a, =-sina cos f,

a,, = cosa siny +sina sin g cosy,

a,; = cos@ cosy —sina sin ff cosy;

Vy =, p,,(1+ec05¢9) —Q p cosi,

Vy = Q p sinicosu,

V, =w, p.esinf,

V:=Vi+V] +V},

u=w@,+0, @)

o = w,(1+ecosh)’,

-/% = w}(1+ecosh)’,

2 _
@Dy =77,

b
1 2
Q = —z—p‘V SCx’

a, B, y are the angles of pitch, yaw, roll (Fig. 1),
defining the orientation of the central moments
of inertia axes of the satellite Ox; Oy, Oz with
respect to the orbital coordinate system OXYZ
(OY is the normal to the orbital plane, OZ coin-
cides with the local vertical); 4, B, C are the
central principal moments of inertia of the sat-
ellite; p, g, r are the components of the absolute
angular velocity of the satellite in the frame
Oxyz; Mg, Mg, Mg, are the components of the
gravitational torque; M, M, M, are the com-
ponents of the aerodynamic torque; a,, b, ¢, are
the coordinates of the center of pressure in the
frame Oxyz;, Vy, Vy, V7 are the components of
'the velocity of the satellite mass center relative
to the atmosphere in the frame OXYZ, p is the
distance between the mass centers of the Earth
and the satellite; @ is the true anomaly; e is the
eccentricity; i is the inclination of the orbit; w is

the angular velocity of the orbital motion; p, is
the parameter of the orbit; u is the Earth’s
gravitational parameter; @, is the argument of
perigee; Q is the angular velocity of the Earth’s
rotation about its axis; Q is the drag of the at-
mosphere; p. is the atmospheric density; S is the
cross-sectional area of the satellite; C, is the
drag coefficient. In equations (1)-(2) the point
denotes differentiation with respect to time t.

In deriving of expressions (4), (5) (7) it was
assumed that the atmosphere is completely car-
ried away by the rotating Earth, the influence of
atmospheric drag on translation motion of the
satellite can be ignored, the effect of the atmos-
phere on the satellite attitude motion is reduced
to the aerodynamic drag force applied to the
center of pressure and directed against the ve-
locity of the satellite’s center of mass with re-
spect to the free air stream.

Influence of the atmosphere rotation

We consider first the effect of the Earth’s
atmosphere rotation on the satellite attitude mo-
tion in a circular orbit (¢ = 0). Then with 7= ayt
as an independent variable, equations (1) has the
form:

Ap+(C—B)gr-3(C- B)ay,ay; =0,
BG+(A-Cyrp -3(A-C)ayay, +

_{V v
x,(-—ViaB +7/Y—a23)= 0, 8)
Cr+(B—-A)pq -3(B- A)a;a,, -
_{V vV
Kl(—l-/{{—an + —Vlan) =0.
Here
Vy 1-¢& cosi
4 \/(1—~g cosi)’ +&7 sin’i cos’u
% _ £ siznz' cosu ’ ©
\/(1 ~ & cosi) +&2sin’i cos’u
_ Qg Q
K=—"%, &€=""
@y Wy
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It can be seen from the equations (8), (9) that
the rotation of the atmosphere is reduced to the
existance of a forced solution that depends on
the parameters &;, & i and has the form (¢is a
small parameter):

a=q,+ea;+
B=B+epf+- (10)
Y=Vt EY +e

By substituting the solution (10) into (8) we ob-
tain (up to 6‘2)2

a=0,
B = 4, cosu, 1mn
y =4, siny,
where
x(y-De . .
TS R
XE
4, =_—~_—-(x-l)(y-l)-1 sini,
K, 3(B-C)
x=——, y=——
A-B+C A-B+C

If aerodynamic torque is zero (Qag = 0) or
the satellite moves along an equatorial orbit (i =
0), the amplitudes of the forced solution (11) are
equal to zero. In a polar orbit the amplitudes of
the solution (11) achieve the maximal values. If
the gravitational torque is negligibly small in
comparison with the aerodynamic torque then

a =0, B =¢sinicosu, y =-¢sinisinu. (12)

In the altitude range from 300 to 1000 km the
parameter & weakly depends on the altitude and

ati = 65° £sini = 0,06. This value of &sin i
corresponds to A, = A4,=3,5°.

Equilibria and their stability

Let us consider the attitude motion equations
of the satellite at e = 0, Q = 0. Then

Ap+(C - B)gr -3(C - B)a;,ay; =
hay —ha,

Bg+(A4-CO)yp -3(4-C)aza; =
ha,, - hay;,

Cr+(B-A)pq -3(B- Aa,a;,, =
hay, - ha,,.

Here,

h=-0a,/a,

h,=—0b, | o,

hy=-Qc, /.

Equilibrium orientations of the satellite in
the orbital coordinate system correspond to the
stationary solutions @ = const, § = const, y =
const of (13) and are determined by the follow-
ing system of equations:

(13)

(C- B)(azzazs -3a5,a3,) = }72“13 - i'—aalz’

(4- C)(a23a21 - 3a,,a,) = Eaau - Ealss (14)
(B- A)(a21a22 -3a,ay,) = ha, —ha,,

System (13) posses the integral of energy

1

5(,4;‘52 +Bg? +CF?)+

3

-2-[(A—C)a321 +(B—C)a322]+ 15)

1
-2-[(3— A)ak, +(B-Cay] -
(Eall +];2a12 +E3a13) =hy -

Here

P=D-0y,d=q-Ayp, ¥ =F-0y "

Using left-hand part of the integral of energy
(15) as Lyapunov function, it is possible to in-
vestigate stability of any stationary solution of
system (14).

It is possible to show that the stationary so-
lution

a=0, B=0, y=0 (16)
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exists if 4, = h, =0, i. e. the center of pressure is
situated on axis Ox of the satellite. The sufficient
conditions for the stability of the solution (16)
are the following:

3(4-C)+h >0,
(B-A)+h >0,
B-C>0.

(17)

For aerodynamically stable satellite (the center
of pressure should lie behind the center of mass)
h > 0. It follows from (17) that the stability of
the satellite in pitch and yaw can be provided
with the aerodynamic torque if 4 is big enough.
The stability in roll depends on the gravitational
torque only.

Aerodynamic stabilization system

The aerodynamic stabilization system of the
satellite is based on the properties of the stable
equilibrium solution (16). The successful opera-
tion of the stabilization system depends on a
damping device. As a rule, in passive stabiliza-
tion systems are used the following types of
dampers: viscous-fluid or eddy-current magneti-
cally anchored spherical damper, magnetic hys-
teresis rods, gyrodamper.

The attitude motion of satellites under the
influence of gravitational and aerodynamic
torques was investigated in many papers “. But
the practical implementation of the aerodynamic
stabilization system has been effected in the rus-
suian satellites “Space Arrow” (Cosmos-149,
Cosmos-320) ">, These satellites were placed
in low orbits to investigate physical processes in
the Earth’s atmosphere and to determine atmos-
pheric parameters. This stabilization system is of
special interest, since it represents the first (and
unique up to the present) use in space technol-
ogy of the aerodynamic principle of satellite
control in pitch and yaw.

To obtain aerodynamic stabilization the
satellite carried an aerodynamic stabilizer in the
form of a trincated conical surface. It was placed
off from the satellite body at a distance of about

4m by four tubes (Fig. 2). The aerodynamic
stabilizer of this construction provides aerody-
namic restoring torque with a comparatively
small increase of the aerodynamic drag force.
Attitude control of the satellite in roll and
damping of transient oscillations in pitch, yaw
and roll angles is accomplished with the aid of
gyrodamper (two single-degree-of-freedom gy-
roscopes). The angular momentum vectors of the
gyroscope rotors in the equilibrium orientation
are situated in the local horizontal plane, sym-
metrically relative to the normal to the orbit
plane. The functioning of the satellites Cosmos-
149 and Cosmos-320 with aerodynamic stabili-
zation system in the orbit was quite successful.
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Fig.1. Orientation angles pitch (a), Fig.2. The Cosmos-149 Satellite
yaw (), roll (»)

329



