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Abstract

The basic theoretical results for the problem of minimiz-
ing loads in the nonequilibrium atmospheric reentry with
subcircular velocities are generalized. For the class of ini-
tial conditions under consideration, descent vehicles fail to
attain the quasistationary gliding regime prior to the mo-
ment of passing peak loads which, as a result, can reach
excessive values. Similar regimes are realized in returning
spent components of space transport systems, during test
suborbital flights and in the case of emergence orbiter
recovery after ascent abortion.

The investigation is based on direct matching analyti-
cal solutions for the state and adjoint equations in charac-
teristic regions with negligible and dominant influence of
aerodynamic forces.

The analysis is given to the structure of the optimal
aerodynamic and thrust control, as well as the effective-
ness depending on the vehicle parameters and initial
conditions. It is proved that the optimal control structure
changes when the velocity at the reentry trajectory apogee
reaches a critical value V,;;. The physical meaning Ve, is
that it is the initial velocity at which the reentry loads are
extreme. The critical velocity is estimated analytically. It
is proved that the critical, in terms of maximum overload,

velocity rises as the L/D-ratio decreases not exceeding

1 / V2 of the local circular velocity. At L/D>1.8, the criti-
cal velocity degenerates, because the reentry overload
decreases monotonically with initial velocity increase. A
high accuracy of coinciding these estimates with the nu-
merical integration of the equations of motion is shown.

Some examples of practical applications of the results
obtained are indicated.

1. Introduction

In returning spent components of space transport systems,
during test suborbital flights, recovering reentry vehicles
after orbital ascent abort and in other similar cases, the
atmospheric reentry occurs at velocities which are smaller
than the local circular velocity.

The practical experience in operating with space
rocket vehicles and the results of theoretical investigations
testify that the atmospheric reentry at subcircular veloci-
ties can result in loads acting on the vehicle and its com-
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ponents which exceed many times (occasionally by orders
of magnitude) loads characteristic of descent from orbit.

For example, occasions are known that spent boost-
ers did not stand the atmospheric reentry loads. As a result
of the failure, booster’s parts were scattered over the area
exceeding the alienation zone.

On April 5, 1975, when the space vehicle "Soyuz-18-
1" was inserted into the orbit, the third-stage engine failed
to start. Following the emergence separation from the
launcher, the vehicle performed a suborbital flight to land
safely. However, while entering the dense atmospheric the
cosmonauts V. Lazarev and O. Makarov had to endure
overloads exceeding 20g.

The analysis of possible aftereffects due to orbital
insertion abort which was carried out at earlier stages of
designing the aerospace aircraft "Buran" reveals that after
the emergency separation from the second stage the dy-
namic pressures during the atmospheric reentry can ex-
ceed the admissible limit several tens times.

The problem of reducing loads during the non-
equilibrium reentry of vehicles at subcircular velocities
was considered in earlier publications of the author -3
(first two articles are published only in Russian). Among
the publications of other authors, the works “D should
first of all be noted. The integrals of state and adjoint sys-
tems, as well as the laws of optimal control of a rather
general form which are contained in these articles may be
used, in particular, to study the problem of minimizing
loads for suborbital trajectories. The analytical solutions @
369 are based on the method of matching the solutions of
equations for Keplerian motion for the initial flight arc
and equations of Allen-Eggers 19 for the flight section in
the dense atmospheric layers. The existence of the adjoint
sysfﬁr)n integrals for Keplerian trajectories was first shown
in “

The advantage of the analytical solutions lies in the
capability of performing a qualitative analysis and a
quantitative assessment of the influence of the system pa-
rameters and disturbances on the functional rather than in
the derivation of formulas for a "fast" prediction of the
functional in terms of a current state vector (as for real
flight conditions, the application of the exact formulas
often proves to be a more complicated approach than a
numerical integration of the equations of motion).

The present article employs approximate analytical
zero-order @ solutions which yield accurate assessments
of the functional and describe properly the behavior of the
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influence functions (adjoint variables) on the reentry tra-
jectory. By applying the Bli. . formula U2 t0 assess varia-
tions in the functional for varying right-hand sides of the
equations of motion and varying parameters of the control
and the state vector it is possible both to investigate
qualitatively the optimal control structure and to estimate
quantitatively the influence of these factors on the func-
tional with an adequate accuracy. In particular, the article
contains some analytical estimates of the effectiveness of
reducing maximum loads during the atmospheric reentry
by using aerodynamic control, thrust and variations in the
initial conditions. Besides, the influence of assumptions,
used in the mathematical model, on the functional are
evaluated which make it possible to adjust the model pa-
rameters according to real flight conditions and which can
be applied to increase the accuracy of predicting the func-
tional in terms of local state vector.

The effectiveness of applying the analytical relations
is confirmed by exact numerical solutions of the state and
adjoint equations in a wide range of parameters. The cal-
culations are performed using the program package
"ASTER" for indirect trajectory optimization )

Some applications of the obtained analytical results
to solve practical problems are indicated.

2. Problem statement

The dimensionless equations for the vehicle center of
mass in the vertical plane over the spherical nonrotating
Earth are as follows:

V= (—upv2 +Pcos<p)/m —siny/l?2 =F,
v = (prv2 +Psin (p)/(mv) +

1 )vcosy
R R =F, 1
( T . (1)
h=vsiny =F,
. P
m=-—=F_,
c

where (1) means differentiation with respect to time t,

te[t;,t], vis the velocity, y is the flight path angle, h is the
altitude, m is the mass, p is the density of the atmosphere,

for the exponential atmosphere model pze'ﬂh, P=const=
900, P is the thrust-to-weight ratio; ¢ is the thrust angle-
of-attack; c is the velocity of gases issuing engine nozzles;
u=acp, K=c/cp, ¢, Cp are the aerodynamic effective
lift and drag coefficients, a, = pgRgF/(2m;) is the di-
mensialization parameter, Rg is the Earth's radius, pg is the
atmosphere density at sea level; F is the reference area, m;
is the initial mass.

Let us consider a general-form functional to be
minimized:

P=q .= maxq= min, 2)

where g = pfnv. (3)

The function g is in proportion to the dynamic pressure
when

K, =1, K~=2 4)
and to the heating rate at “5)
K,=10.5;3 <K, <35 . (5)

In what follows, convective heating rate will be estimated
under assumption that""?

K, =0.5; K,= 3.25 . 6)
Let us assume that a flight starts at velocities v; which
1
JR'
viyR; <1, (7)

and at sufficiently great altitudes where the gravitational
forces are considerably in excess of the aerodynamic
forces:

are smaller than the local circular velocity v, =

n=u 1+K2p,v,.2<<n,,z1. (8)

Unless otherwise specified, we shall consider only a
coasting flight: '

P=0. )

Let a problem be stated to find an optimal control by
using the aerodynamic drag coefficient

COmin S Cp S Cpmax s (10)
the effective aerodynamic lift coefficient
CLminS CL £ CLmax (11)

and the thrust vector of the propulsion system with a rela-

tively small characteristic velocity margin AV pa- when the
thrust action may be considered as a small disturbance of
the coasting flight () Also, we shall determine an optimal
arrangement of the reentry trajectory portions, where the
application of the above-outlined controls ensures a
maximum reduction in the functional, and shall estimate
qualitatively the effectiveness of optimal control actions

(O]
Su using sensitivity functions 8_
u
In order to solve the stated problem we shall intro-

duce adjoint equations

— =, (12)
dt ox

where x={v,y,h,m} is the state vector and F = X,
¥ = {¥,,¥, ¥V} is the adjoint vector.
Let at the point of attaining a maximum q(t):

K, F,
r=1: gﬂ:(—K,,BF,,+—"\7"—]q=O,

dt (13)
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the transversality condition be imposed in the form
K,q

0~(5) -{%

Then, in accordance with the Bliss's formula “2), the solu-
tion of set (12) and (14) simultaneously with set (1) and
(13) yields the functions of the influence of current state
vector variations on the functional (2) and (3):

0-BK, q,O}. (14)

(15)

In accordance with the maximum principle(ls) for the set

(1), the functional (2), (3) and the transversality conditions

(14), the optimal control is governed by the following
¥, >0,

relations
{ ¥, <0,

o = Crma» T,>0,
Lort = 1 Crppin> Py <O,

sin¢ ‘=————k55———'coscp =____"§_'!l’___
0] > t
" ,/(vlyv)z w2 ‘/(vlyv)zarwf

If variations in c¢p and ¢, are limited by the equality
cp = cp{cy), then

CDmax’

C =
Dopt
P CDmin 4

(16)

\PY

2
Y, v

2
dc,, _ d'c,

2
de,

¥

v

{Cﬂopt ’ CLo;it }: <0.

de,

3. Approximate analytical solution

It is obvious that the problem of reducing loads during the
atmospheric reentry is actual only when these loads are
great

> 1
ty

ny =[u 1+K2pv2:| an
Thus, the reentry vehicle passes successively two regions:
the "upper" region where the aerodynamic forces are small
(see condition (8)) and the "lower" one where the aerody-
namic forces dominate over the gravitational and inertial
forces (see (17)).

For the analytical solution to be obtained let us assume
that the trajectory is obtained by matching two sections.
In the upper region, the aerodynamic forces in (1) can be
neglected and the vehicle moves along the arc of an el-
lipse in accordance with the Kepler's laws. In the lower
region, the aerodynamic forces dominate, on the contrary,
while the gravitational and inertial terms in (1) can be
neglected (hypothesis of Allen-Eggers ®). From here on,
the variables in the upper region will be denoted, if neces-
sary, with superscript (), and in the lower region with (+).

©)

The regions will be matched at a certain conditional alti-
tude h. of the upper boundary of the dense atmospheric

layers (Fig. 1)
h,: m/1+_K—"Tpv2 =n, =1, (18)
provided the state vector is continuous
(19)
Fig. 1. Nonequilibrium reentry trajectory.
Suppose that
Cp =const, ¢, =const, [ =const. (20)

Under above-outlined assumptions made in the set of
equations (1), (12) and (14) we have the following first
integrals:

"Upper" region

s (21
2Ah

uy(1-AR)

(1—AF)\/1+

AR 2(1-uy)-ah(2-uy)
1-Ah  uy+Ah(2-u,)

=1

siny

- 2_
=A—-———B(Vz LS ¥, =Atgy;

(22)

where uy =VZR,, Ah = 1-I?'/F?0 ; A, B, C are the inte-
gration constants governed by the matching conditions;
the subscript (0) refers to the trajectory apogee.
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"Lower" region

+ ( + )uK
cosy =cosy,+{p —p,)—,
p
eXp{Y*" } asK #0 (23)
. K
v =v, .
exp e _p"u , asK=0
Bsiny,
LIJV ‘qmaxKv/V+’ IT“_cDKhﬁp pf;
st
(1 51.n}/ ],—1(-, asK=#0
siny,
¥ = Gk, - . ae’ (24)
(l-p—]—ctg7+, asK=0
pr) 2
2K
\{Jr;=qmath(1—p+/pf)7 &=—Kv£-,
where we have by virtue of (13)
pee .
=-—"—siny;, 25
P 2 Vi ( /)
and with due consideration of (23)
Az(cosx—\jnlz—/lzcosa;(), ask =0
siny; = 1+ 4 (26)
siny, , asK =0
A= Ky , cos;(:cosy—,uK—e-.

Kn-K ]

The constants A, B, and C in (22) are found from the
conditions of matching the adjoint vector ¥ (transversality
conditions). By virtue of (18) and (19) we obtain

- 2 -
\PV =\P:_ 5, \}Iyqu;a

h=h,:
B.

¥, =Y, +¢£,, ‘I",;,:‘I’,‘,;+%, 27)
(¥TF)" =(27F) .
Hence %Y
1+aep,,/(wpf)+(1—vff?*)D
&= G K e )
A=QqunK,D>0,
=1+va,,a)+(1—aep./pf)/D>1 (28)
vi(1+ o) ’
1-a@p./p; +(1—va,)D
C=qukit+o a9(1+cu) > O max K

ctgy.(1-siny, /siny;)/K, asK =0,
where D= 2
ctg 7*(1—p*/pf)w/2, asK =0,
2
w=—ﬂ7§5.

Note that unlike the papers ©9 we did not make assump-
tions concerning smallness of . Although w~1/B, where
B ~ 900 (for Earth), but VR < 1 in the range of subcircular
velocities under study and the condition ® < 1 looks, at
first glance, as an additional limitation. Let us show that in
fact this condition stems naturally from the hypothesis of
Allen-Eggers. Really, the condition (13) implying the
termination of the trajectory for the full system (1) takes
the form:

. 2
Py (12 )
2u a®pv; R;

Comparison with the similar condition (25) within the
framework of the hypothesis of Allen-Eggers for the
lower region reveals that they coincide only when

2
®pviR;

However, for the class of functionals under study (see (4)

<1 ' (29)

and (5)) 1 = Ky =1, we have in the lower region that
& 2K,

d(v*R*) ) )
——L =~ ypv*R+v-siny <0,
dt
) 1 1
ie., 5—>——7.
vsz?f2 vaf

Thus, it follows immediately from (29) that

o < 1. (30)

Thus, we have proved that the condition (30), which sets a
lower bound on the range of velocities and altitudes under
study, follows from the assumption on the capability of
representing the reentry trajectory in the form of two
matched sections.

From "equiaccuracy” considerations of the above-
outlined formulas the condition (30) should be taken into
account to simplify the formulas (28).

Altitude A+ of region matching

The formulas (21) to (28) allows one to determine ex-
plicitly the state trajectory based on the initial conditions,
as well as the functional and adjoint variables as the func-
tions of a current state vector, provided it is possible to
find explicitly the altitude hx from the condition (18). By
considering (21), this condition can be written in the form
of a nonlinear equation with respect to h« or as a recurrent
relation:
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hsk) = —~1—ln

h,
2(ho —-hﬁk_ﬂ) ,(31)

v§(1 + k) )(1 +hg)

N1+ K23 1+

where hfo) =hy.
From this it is easy to obtain
6h*) = —on*".

Hence, corrections to hx in each iteration are alternative to
diminish very fast in geometric progression with a de-
nominator of (-@). By this is meant that in view of the
condition (30) it is necessary, remaining within the
framework of the hypothesis accepted at the beginning of
the article, to confine the consideration only to the first
iteration

1 n
-l
B uvi+ek? 2

which yields the value of hy with a relative error of no
more than ©.

h, (32)

Accuracy analysis for analytical solutions

The approximate analytical solutions of the state and ad-
joint systems (21) to (28) are compared with the results of
numerical integration of the sets (1) and (12) when
¢, = const, cp=const and P=0 in the subcircular range
of initial velocities v, < 1. Fig. 2 shows the state trajecto-
ries. Respective adjoint functions are given in Fig. 3. It is
seen that the analytical formulas yield a qualitatively cor-
rect description of variations in the state and adjoint vari-
ables for the complete range of initial velocities.

h, km 7 |
] IL/D =] l
80
Y J
40 P, ”) ]
o —— analytical
7 —e— numerical
20 . . —t

08 10

Fig. 2. Reentry trajectories for different initial velocities,
g=pv?, u=6000, h,=100km.

00 02 04 0.6

The most discrepancy between the analytical and nu-
merical estimates is noted for ¥, (Fig. 3), which is ac-
counted for, however, by an absolute smallness of this
variable comparable with o, i.e., of the quantity that was

neglected when applying to the approximate motion
model (see (30)).

The adjoint variables in (22), (28) and (24) are in pro-
portion to gy, and the basic error of the formulas (22) and
(24) is caused by the error of the analytical estimate of
Qmax - It is possible to refine the estimate of q,,,, within the
framework of the approximate model under consideration
by trying to "adjust" formally some parameters of the
model to achieve the coincidence of the functionals in the
numerical and analytical solutions.

b
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Fig. 3. A comparison of analytical (—-) and numerical
(—=-) adjoint functions ¥, = 2%—’;% for differ-
ent initial velocities; g=pvZ, p=6000, /1,=100km.

The conditional overload nx at the point of matching
the upper and the lower regions can serve as one of such
parameters. It follows from (27), (28), and (31} that the

influence of nx on the functional is given by the relation

O max _ £oh, =W, on,

Qnax *

, where W, ~aw.
qmax

Thus, in view of (30) it may be inferred that the analytical
solutions are not sensitive to small variations of nx. Nev-
ertheless, a substantial deviation in n« enables the com-
pensation for the analytical estimate error for Gy, The
compensating values of the formal parameter n. are
shown in Fig.4 .

4. Optimal control

The optimality conditions for aerodynamic control in the
"upper" region coincide with (16) because the aerody-
namic forces do not enter the equations for the "upper"
region and they can be considered only as disturbances. In
the "lower" region, the aerodynamic force coefficients are
taken to be constant, therefore, the conditions (16) are
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Fig. 4. The matching-point overload », for the coinci-

dence of the analytical and numerical functional
estimates; g=pv?, u=6000, #,=100km.

satisfied in the "lower” region if ¥, and ‘I’; are of con-
stant signs. Let us prove that such is the case. Really, by
virtue of (1), (12), and (24),

+

L= _vcosy¥, =(Dkacosy£>O
at Py

and, according to (14), ¥,; =0. Hence, in the lower re-
gion t € (t*,t,) we have W, <0. From (24) it follows
¥ >0.

Thus, the optimality conditions for aerodynamic control in
the "upper” and "lower" regions are governed by the same
conditions (16).

The optimality conditions for thrust angle-of-attack
(see (16)) are valid for an approximate motion model only
when thrust-caused reentry trajectory disturbances are
small.

Substituting the integrals (21) to (28) in (16) gives (3)
(Fig. 5):

R _ JComaxs v>1/\/Eorh<h*
Ot ) Cpmins vV <1Band h>h,

_ Cimax> ¥ < 0
CLopt - Cimins V> 0
s st
7r+arctg(1—Sl_n—yJi, asK 0
. Sinyy K (33)
¢0pt = & +
ﬂ+arctg(——- ctgy” (1—p—n, asK=0
| 2 Pr
arctg——t—g—g—/———, asv<1/\/§
oo, =1 Bv© -1
- tgy” '
arcth > 1—Jtsigny', asv>1/\/§
Vv -

As is obvious from (33) and Fig. 5, there are two
types of optimal control laws. The type II differs qualita-
tively from the type I by the presence of a region in the

vicinity of the apogee in which the vehicle should accel-
erates but not decelerates in order to reduce maximum
reentry loads.

Since v - 2 vy, therefore the excess of the velocity at
apogee Vg over a critical value v, proves to be, according
to (33), the indication of appearing such a region. The
conditions for existence of a certain type of optimal con-
trol laws are following:

thetypel - ¥,,>0,
the type Il - ¥,, <0,
where , 4 is the velocity-adjoint variable at apogee.

The critical velocity is found from the equation
. V3B(vo,hy,K) -1

Ve, =Vo(hg,K): 0=y o= . (34)
0
It can be shown that for a high velocity
ov .
Lait (35)
oK

therefore, the highest critical velocity corresponds to bal-
listic vehicles with K=0. At K= 0, we obtain from (22),
(23), (25), (26), (28), and (34) that

—y? =
Up =V Ao =

1+ BAE(1—AF)[ 2 (1—AF)2(1+£):]

- ot ]

where g=(1—a)%—, B = BR,>
— /Py

velocity at apogee related to the local circular velocity ve.

(36)

ug is the critical
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mmmr - the boundaries of the domain under study

Fig. 6. A comparison of the analytical (—) and numerical

(—e-) calculations of the critical velocities vo=vgp,

for different apogee altitude h,, L/D-ratio and
functional type.

If the functional is a maximum dynamic pressure

(overload) then @=0 and € =0. Thus, it follows from
(36) that

Uy < maxmax uq (K,AE) =uy(0,6) =

-0 1
=55 < maaxuo(0,5) =5

5
where 8 = J% is a small value (& < 0.075 for Earth).

Hence, if functional ® = max pv2 then
t

Vi 1
uo___cnts

Ve W2

(37

. - 1
In this case, the limit case u, = > corresponds to the reen-

try of a ballistic vehicle into an atmosphere with an infi-
nitely great parameter f3.
If the functional is a maximum heating rate (see (3)), it
is possible to derive the estimate
2

Ug £ max_ug=1-—
K,AR,B 2

(38)

from (36) with an accuracy up to terms ~ €.
In the case corresponding to (6), it follows from (38) that

05 3.26

max Verie/Ve = 0.92 (for ®=maxp v "), (39)
t

i.e., the type II of optimal control laws is realized for ne-
arcircular initial velocities.

In general case, the type I of the optimal control laws
is realizede in a domain

Verit, min(ho, K=FiX) < Vo < Verit. max (ho, K=fix), (40)
where the boundaries Vet min and Ve max are two
branches of the critical velocity dependence (34) on the
apogee altitude hp and correspond to two solutions of the
equation (34), if the solutions exist for the used L/D-ratio.

The typell is optimal outside the domain (40).

The analytical estimations of the domains (40) are in
line with the numerical integration results (Fig. 6) even in
a vicinity of the validity limit due to the condition (30).

Fig. 7 shows the domains (40) for functionals (3),(4)
and (3),(6) in details. The left boundary Ve min for func-
tional (3), (6) (the heating rate) is not shown because it
lies outside the velocity range under consideration (see
Fig. 6) and corresponds to a vicinity of zero. When the
functional is the maximum dynamic pressure the type I of
the optimal control laws exists only for vehicles with K =
L/D < 1.8. At L/D > 1.8, the type II is optimum for
every initial condition {vp, hp}under study.

Verit min Verit max

h O kmq 0/8
800

“‘O“ o

g=pv2 q=p0-5\3.25

T T T T

0.0 02 04 vy, 06 0.8 1.0

Fig. 7. Critical initial regimes with respect to the maxi-
mum dynamic pressure and to the maximum heat-
ing rate (numerical integration results); p=6000.

T

Effectiveness of control

The analytical expressions (22) and (24) for the adjoint
variables allow the effectiveness of reducing maximum
loads due to small control actions to be estimated using
the Bliss's formula "? for a variation of the functional
s0=PTox], =¥Toxl,+ | ¥, Fat, (41)

where §,F is the variation of right-hand sides of equations
of motion due to a control variation. By small control ac-
tions are meant here control variations which exert a
quasilinear integral influence on the functional. In particu-
lar, finite increments of the control parameters (cp, c., P)
during a small time interval ("needle" variations) can be
considered small.
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Fig. 8. The effectiveness of the small optimal control ac-
tions on the reentry trajectory.

According to (41), the relative effectiveness of a local
optimal variation in the effective lift coefficient for the set
(1) is given by the quantity

il s e @
t dc, [cp ot @

It follows from the integrals (21) to (24) and (42) that
W,, increases monotonically with the dynamic pressure

except for some vicinity of the final point x; at which
W, =0 by virtue of the transversality conditions (14)
(Fig. 8). .

Similarly to (42), the relative effectiveness of a local
optimal variation in the aerodynamic drag coefficient is
defined as follows:

) %]

&
W. = c—o— = 2 .
%~ " aenjogat P @

According to (21) to (24) W, , increases monotonically

with the dynamic pressure excluding, probably, the vicin-
ity of the apogee where there is a local maximum W, at

the apogee velocity vy such that the type II of the controls
laws is optimum. It should be taken into account that in

the latter case some reduction in the functional g, is

attained when the coefficient cp decreases in the vicinity
of the apogee (see (33) and Fig. 5).

Let us define the effectiveness of a local optimal start of
engines as

& 1

T v )

W = 5

(43)

2
k4 ¥
lilvz + (_!_.) 4 ,
char v c

where Sv,, = P8t is the variation of the dimensionless
characteristic velocity of the propulsion system. The
analysis of the derivative

Bzv(z,Hg

oo Ay oz
RS

= , where z =
D VoA, w \?
J w2+ (—7—)
v

reveals that the function W; (y) can be of two types (see

>

Fig.8): at vy<v, W7 has one minimum at the apogee,
while at v,>v,, there are two zero minima of W, at
y=2%y,0< v, <l Y | , and a local maximum at the apogee.

Under assumption that Ah is a small value it is possible to
obtain that

1>v, R, >1-2Ah,
i.e., the second type of the function W, can exist only at

near circular velocities.

The analysis of the derivative W, for the lower region
gives that when the inequalities

ltgy.|< K+2—(2—_—‘?;) 1+—;~i——— ; (K #0)
Kao’ V4 + K222 (44)

and vi>C

are satisfied we have W5 <0 and a maximum effective-
ness of employing engines is achieved at the moment of
entering the dense atmospheric layers (h = hx). The con-
ditions (44) for ballistic vehicles (K =0) are satisfied a
fortiori at v, > ce®? . If the conditions (44) are violated,

for example, when reentering at small velocities, the best
moments of employing engines to reduce maximum loads
can be within the lower region (see Fig. 8).

5. Influence of initial conditions

The upper section is a Keplerian trajectory, therefore ini-
tial conditions are governed by two parameters, for ex-
ample, by the altitude hyand the velocity v, at apogee.

By virtue of (15), the influence of {v,,h,} on the func-
tional q,,,, is described by the functions

e _ =ABV§ -1
L o vo
(45)
Himax _ :AB~HO‘
dhy " RZ
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Fig. 9 shows the behavior of the influence functions
¥, which are obtained from the approximate formulas

(22) and (28) and by numerical integration of the sets (1)
and (12). The disagreement is caused primarily by the
error of the analytical definition of q,, .

As follows from (45), the initial velocity v;, at which
the local extremum load is attained when reentering, co-
incides with the critical velocity v,; (34) governing the
change of the optimal control structure. The left branch
Verit. min(fl0) of the curve v,; = vy(hy) consists of local
minima of the function Gma( Vo) (Fig. 10). The right branch
Veriemax(Fo) 1S @ set of local maxima of the function Grad Vo),
i.e., the most dangerous initial velocity v, in terms of loads
acting during the reentry. Fig. 7 presents values of the
critical velocity v, for different initial altitudes h, and
L/D-ratios. The results obtained using the approximate
formulas and by numerical integration (Fig. 6) are in a
rather good agreement between each other and with the
estimate (37) and (39).

] 200 —
| — analytical 300 —
] ical 400 —
| numerica 500 —
-0.010+ . f
0.2 0.4 0.6 0.8
Vo

— P

Fig. 9. Velocity-adjoint variable y, = at apogee

[e]
as a function of the speed v,, and altitude h, at apo-

gee for ballistic and lift vehicles; g=pv?, n=6000.

Earth rotation effect

The Earth rotation effect can be reduced only to an altera-
tion in matching conditions for the state system at the alti-
tude h«. To do this, let us assume that in the upper region
Egs. (1) describe the motion in the inertial coordinate
system, while in the lower region they represent the mo-
tion in the noninertial coordinate system fixed to the rotat-
ing Earth.
Let the jump conditions

v, =V, +8v,; vi =7, +8Y,

Imax, )
kefm =" h,=a00km
20000—7350\“—- Veritmin | |
+1300 = ><\(/Vcrit max
\
15000 ==L <\
2 N\
200 | | TN
10000 ~—te——t— _ \i\\\\
0, | | IR\
[ R ~N
00 | ™ \-\
5000-
\\ \~
0 )
0.0 0.2 04 0.6 0.8 1.0

&

Fig. 10. The functional qg,,,, = n?gx pv? as a function of
the apogee velocity v, for different apogee alti-

tude ho; L/D=1.5.

be satisfied at the point of region matching in transiting
from the inertial coordinates to the noninertial ones. Be-
cause the vertical velocity component in this transition
does not change

8(v*sin 'Y*) = 0,
variations of dv« and Syx are interrelated:

dv,

&y, =—tgv,
vll!
Assuming that the matching altitude hx remains un-

changed it is possible to find a variation of the functional
from (41) with due consideration of the Earth rotation:

& =¥ v, +'¥, 6y, =

¢KV[1-[1-2Z:j£g_&]5v—*, asK %0
siny;) K

@[Kv ~K, +K, ﬁi}m,

f

asK=0

where &V, =8v, Jv,.
Since n, = up,,vf < pp],v,2 =n,, then
P2 < pv? < pv? and, hence, p, < p;.
Thus, at K= 0 we have
ﬁﬁs(Kv—K,,)é\?,,. (46)

If K=#0, that

cosy, = 1- 7;2 /2, we obtain

then, assuming siny = ¥¢;
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56=KV(1—ae—Ik*—J5V, (47)

If the functional @ is a maximum dynamic pressure
(2 = 1) the estimates (46) and (47) take the form:

K#0
K=0

where 6v, is the relative velocity increment at the moment
of entering the dense atmospheric layers due to the Earth
rotation.

Effect of variations of atmospheric parameters and aero-
dynamic characteristics

Real dependencies of the aerodynamic characteristics on
flight regimes (Cp,(h.v),¢, (h,v)) and the parameter B on
the altitude h: B(h) can be taken into account in the first
approximation within the framework of the accepted
model (20). To accomplish this, averaged values of these
parameters (ED,EL,E) should be used as constants (20).
The averaged values will be found from the condition of
coinciding the functional for real and averaged parameter
values. Variations in the functional for varying parameters
(20) will be estimated within the first variation of (41).
Then, using the integrals for the state and adjoint systems
in the lower region (23) and (24) we obtain

[apn® (-2
7 v v Tt K(In(v, /ve)-Kp/K,)
5 f’phﬁ (h)an
d Pr hep./pr— (P./pf-1/ﬂ " Pty Epﬂ

(if Bh, > 1)

The state variables under the integrals are taken for the
nominal trajectory with parameters (20).

Applications

The theoretical investigation results concerning non-
equilibrium atmospheric reentry are applied to solving a
number of practical problems mentioned in Introduction.
Various means and techniques of reducing maximum
overloads in entering the dense atmospheric layers are
compared when solving the problem of returning spent
components of space transport systems with the employ-
ment of the analytical estimates of the optimal control
effectiveness, the solutions of the adjoint system and the
functions of the initial state vector influence on the func-
tional. Among them, the capabilities of stabilizing vehi-
cles at optimal angles of attack, of using brake flaps and
parachute systems in optimal regime, as well as of opti-
mizing separation conditions are analyzed.

A complex investigation of the problems regarding re-
covery of the orbiter and the crew for different kinds of
space transport systems as a result of emergency orbital
insertion abort is carried out. Three types of techniques
are considered. The first type implies the control optimi-
zation by applying standard means available in the orbiter
(brake systems, roll and angle-of-attack control, orbital
maneuvering engines etc.). The second type suggests the
application of special auxiliary means (for example,
emergence recovery system engines intended in the
schedule flight only for emergence sideways deflection of
the spacecraft from the start position). As for the third
type, it presumes optimal variations in the initial condi-
tions of emergency reentry. Because the initial conditions
of emergency reentry correspond to the ascent conditions
according to the schedule program, an admissible range of
the trajectory parameter values is identified starting with
which the orbiter can reentry without exceeding permis-
sible loads. It is suggested that the above-outlined limita-
tions on the suborbital portion of the schedule ascent tra-
jectory stemming from the requirements for fail-safety
should be called "the ascent corridor"™” by analogy with
an “entry corridor” in the problem of reentry with super-
circular velocities™®”

In all the listed problems, the application of the ana-
lytical solutions for the adjoint variables and the func-
tional with taking account of corrections for real charac-
teristics of the atmosphere and the vehicle ensures an ade-
quate accuracy.

Conclusions

The problem of minimizing maximum dynamic pressure
(overloads) and heating rate is investigated for non-
equilibrium entering the dense atmospheric layers with
initial velocities which are significantly lower than the
local circular velocity. It is shown that direct matching of
analytical solutions for the state and adjoint equations be-
ing valid under conditions of the Keplerian motion on the
initial trajectory section and the Allen-Eggers hypothesis
on the final coasting trajectory section in the dense atmos-
pheric layers makes it possible to investigate with a high
accuracy the optimal control laws, their effectiveness and
the influence of the vehicle characteristics and initial
conditions on the functional.

It is established that the optimal control laws with the
application of the aerodynamic drag coefficient and the
thrust vector can be of two types. The first type proves to
provide the vehicle deceleration within the whole reentry
trajectory. As for the second type, it ensures the vehicle
deceleration only on the trajectory portions lying below a
certain altitude. At higher altitudes up to the apogee, the
minimization of peak loads is achieved due to the vehicle
acceleration. The physical meaning of the boundary sepa-
rating the optimality regions of these control laws in the
plane of apogee velocity Vp -apogee altitude hp is in the
fact that it corresponds to critical velocities Vo=Vnu(h) at
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which the loads are extreme in the regime of entering the
dense atmospheric layers.

It is proved that the critical velocity rises as the vehicle
L/D-ratio decreases. If the functional to be minimized is a
maximum heating rate the critical velocity is within the
near circular range.

If the functional to be minimized is a maximum over-

load then v, is not more than 1 / \/E of the local circular

velocity. For vehicles with L/D = 0, the second type of the
optimal control structure is realized when the velocity at

apogee is Vo Ve & 1/ V2.1t 1.8>L/D>0, the dependen-

cies Vo=Vi(ho) describe closed curves bounding simple
connected domains inside of which the first type of the
control laws is optimal, and outside the second type. On
further increasing when L/D>1.8, the optimality region
for the first type of the control laws becomes degenerate
and, accordingly, the second type proves to be optimal
within the whole range of subcircular velocities under
consideration, a maximum overload diminishing mono-
tonically as the initial velocity V,, at apogee increases.

The approximate analytical relations cited above can
be applied to solve practical problems as concerns the safe
atmospheric reentry of spent components of space trans-
port systems, vehicles performing test suborbital flights,
recoverable vehicles because of orbital ascent abort etc.
For these purposes, real aerodynamic characteristics, the
dependence of the atmospheric density on altitude, the
Earth rotation effect etc. can be taken into account rather
accurately within the approximate trajectory model under
consideration by means of a special choice of parameters
of this model based on the analysis of the first variation of
the functional and the influence functions.
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