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Summar Y

The acoustics of shear flows is relevant to the
transmission of sound through the boundary layers of
aircraft fuselages, to the modes of sound in nozzles, and
to sound propagation in shear layers. Yet, there is only
one exact solution of the acoustic wave equation in the
simplest case of an unidirectional shear flow, namely for
the linear velocity profile, and for low Mach number
mean flow. In the present communication we report on
four new solutions: (I) a solution for the linear shear,
which is distinct from, and arguably simpler than, those
in the literature; (II) the solution for an exponential
shear flow, representing the asymptotic suction profile of
a boundary layer; (III) solution for a parabolic shear flow
in a duct, including eigenfrequencies and eigenmodes;
(IV) besides the preceding cases of sound in low Mach
number mean flow, a solution without this restriction,
viz. for the linear shear. The distinctive feature of the
acoustics of shear flows, is the existence of singularities
of the wave equation, corresponding to critical layers,
where sound waves can be reflected or absorbed. This
may explain the cases of strong attenuation of sound,
e.g. in fuselage boundary layers, which approximate
methods, like ray theory, are unable to account for.

§1 - Introdyction

There exists an extensive literature (see [1,2] for
reviews) on approximate methods of study of sound
propagation in shear flows. The simplest case would be
an unidirectional shear flow, and only one case of exact
solution exists, viz. for a linear velocity profile. This
solution has been obtained in terms of parabolic cylinder
functions [3], Whittaker functions [4,5] and confluent
hypergeometric functions [6,7]. By matching the linear
shear(s) to uniform stream (s), it has been used to model
{3-7] sound transmission through boundary layers and
shear layers, and acoustic modes in a duct containing a
shear flow. One important feature of the acoustics of
shear flows which has not been fully recognized in the
literature, is the presence of singularities in the wave
equation, corresponding to critical layers, where the
Doppler shifted frequency vanishes, ie. wave
propagation would be impossible in ray theory. Of
course, ray theory breaks down near a critical layer,
because at singularity of the wave equation acoustic
energy need not be conserved. Thus, sound waves may be
absorbed or reflected at a critical layer of a shear flow;
this cannot be studied by numerical methods, which
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break-down at a singularity of the wave equation. The
presence of a critical layer is often implicit, yet often
goes unmentioned in the literature. For example, all
solutions of the acoustic wave equation in a linear shear
flow [3-7] use a series expansion about the critical layer,
sometimes without mentioning its mathematical and
physical significance.

In the present communication we report on four
advances on the acoustics of shear flows: The first (I)
concerns a new solution for sound in a low Mach
number linear shear flow, which is distinct from the
existing ones, in that it splits the wave field into
components which are symmetric and skew-symmetric
relative to the critical level. The linear shear has been
matched to an uniform stream, to represent a boundary
layer with a ‘kink’ in the velocity profile, i.e. a
discontinuous vorticity. We present (II) the exact
solution for sound in an exponential shear flow, for
which the vorticity decays smoothly from the wall to the
free stream. Another case (III), is the acoustics of a
parabolic shear flow, in a parallel-sided duct; this is a
boundary-value problem, which is not of the Sturm-
Liouville type, leading to the conjecture that critical
layers separate flow regions with distinct
eigenfrequencies and eigenfunctions. All of the three
preceding cases (I to II), as well as the literature, concem
sound propagation in a low Mach number shear flow,
and we give the first solution without this restriction, for
a linear shear (IV). We precede the discussion of these
four cases, by a short derivation of the acoustic wave
equation in a high-speed shear flow [§8,9], in a form
emphasizing the role of singularities or critical layers, in
the specification of solutions.

§2 - Acoustic wave equation in a high-speed shear flow

We consider an unidirectional shear flow:

U=U(y)e,, M
for which the material derivative reads:
d/dt = HA+T.V = 8/ot+ U(y)a/ox . @

The two components of the linearized momentum
equation read:

du/de+U’v +pglapldx =0, (3a)
dvidt +pglapldy =0, (3b)

where u, v are the x,y-components of the acoustic
velocity perturbation, p the acoustic pressure



perturbation, po(y) the mean flow mass density, U(y) the
mean flow velocity, and prime denotes derivative with
regard to the transverse coordinate, viz. U’ = dU/dy. For
isentropic mean flow, the equation of continuity reads:

c~2dp/dt = —p (Jw/dx-+ovidy), (@)
where c is the adiabatic sound speed (5a):
=(9p/dp), = Wo/Po » (5a,b)

given by (5b) for a perfect gas, where v is the ratio of
specific heats. Elimination between (3a,3b,4) and use of
(5b), leads to the acoustic wave equation in a high-speed

shear flow:
o2p
V(log ¢2).Vp-V2p B2V~ =
)» (log ¢2).Vp- p}' W

d[_(l dp

dt}de\c2 at 0 ©

the sound speed c is related to the stagnation sound speed
¢p by the adiabatic relation:

e} = -[(r-1)/2u(y)?, @

and thus is constant c(y) = ¢g for a low Mach number
mean flow U? << ¢2, but not otherwise. The wave
equation (6) relates to the Lilley equation [8,9], and is
best interpreted starting from the simplest cases.

In the case of a medium at rest U =
the classical wave equation [10}]:
U=0=U" c¢2d2p/dt2-V2p=0.
For a low-Mach number mean flow,
convected wave equation:

U2 <<c2, U'=0: ¢2d2p/dt2 ~V2p= O]
which holds also [11,12] for a non-uniform, steady
potential mean flow, If the Mach number is unrestricted,
the sound speed is not.constant, and we are led [13,14] to
the high-speed wave equation in a potential flow:

o A1 dp) 1 2

U'=0: dt(c2 dt} V(LZ) Vp-V2p=0.
In the case of quasi-one-dimensional propagation in a
duct of varying cross-section S(x), the Laplacian is
replaced by the duct operator [15,16]:

V2o -;—a—a-S aa ,peo, (11ab)

and acoustic pressure by acoustic potential; thus we
obtain the high-speed nozzle wave equation [17,18]:

0, (6) reduces to

®)
it leads to the

(10)

d{1dp) 1 dcop 1a(ap)
Py, L
dt(c2 dt /) 2c¢ dx Ix Sox\ ax =0 12

which simplifies, at low Mach number, to the low Mach
number nozzle equation [19,20]:

UZ<<c2: d2pldi2~{c2/S)(a/ox )(Sap/ax =0, 13)
and in the absence of mean flow, to the hom equation:

U=0: 32p/ot2—{c2/S)(a/ax)(Sop/ax )=0). (14)
Both these linear acoustic wave equations (8-10; 12-14)
and their non-linear generalizations [21,22], are of
second-order, i.e. allow acoustic waves propagating in

opposite directions. The coupling to vorticity in the
mean flow:
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d

_[1dp

92p
At L. 1
dt{c? de2 }*2 axay 13

leads to a third-order wave equation (6), even for low
Mach number mean flow (15).

U0, Uec?:;

Since the mean flow quantities depend only on the
transverse coordinate y, it is convenient to use a Fourier
decomposition in time t and longitudinal coordinate x:

+ oo

p(x,y, =] [ P(y; k, 0)ei(®-kx)dkde | (16)
where P is the acoustic perturbation spectrum, for a wave
of frequency ® and longitudinal wavenumber k, at
position y. In the case of low Mach number mean flow
(15), it satisties the wave equation:

(0= KUP"+2kU'PHo-KU ) (0-KU)Yc2- k2 |p=0,  (17)
which has a singularity or critical level y = y, where the
Doppler shifted frequency vanishes:

0=w«(y.)=0-k Uy.). 18
At the critical level P cannot be determined from P, P,
and thus numerical methods can fail: (i) a method with
constant step, is likely to ‘jump over’ the singularity,
and give erroneous results; (i) if a step ‘hits’ the
singularity, then an “overflow” P”(y.) = oo results; (iii) a
method with variable step, like the Runge-Kutta method,
would reduce the step to zero as the singularity is
approached, and never go beyond. Thus an analytical
solution is needed, at least in the neighbourhood of the
critical layer.

The wave equation (17, 18):

©+P"-20} P+, 0 /c2-k2 |P=0), (19)
can be written in a Sturm-Liouville like form:

-2
L LY Y . ) ) 0)
dy\ of dy Ca o?

but the eigenvalue A = -k? appears in several terms (18).
Thus the results of Sturmian [23] theory:
- there is an infinity of eigenvalues;
- the eigenfunctions corresponding to dxstmct eigen-
values are orthogonal;

- the eigenfunctions are complete, i.e. any square-
-integrable function is a linear function of them,
may all fail. It can be shown, in the case of the parabolic
shear, that there is no single set of eigenvalues and
eigenfunctions, holding across critical layers.
The role of the singularities in the solution of the wave
equation, and the physics of sound near critical layers, is
best illustrated by a sucession of examples.

$5 - Soun il

Mach number linear sh

The (case I) linear shear flow (Figure I1):

Uly) = gy, @n
with constant vorticity ¢, has a critical layer (18) at:
ye = w/kq 22



The change of variable:

E=0+(yYo =1-(kg/w)y=1-yly,, (23a)
®(E) =P(y;k,0), (23h)
places the critical layer at the origin (y = y. implies

€. = 0), and the wall at the point unity (y = 0 implies
€ = 1). The wave equation (17,21):

ED”-20"+0E(BE2-1) =0, (24)
involves two dimensionless parameters:
a=(wq)’, B=(w/k)? (254,b)

namely, the square of the ratio of wave frequency to flow
vorticity (25a), and B (25b), which is unity B = 1 for
horizontal propagation ® = k¢, B > 1 for obligue waves
® > ke, B < 1 for evanescent waves. Since the only
singularities of the wave equation (24) are the critical
layer £ = 0 and the point at infinity § = oo, a series

expansion about the critical layer has infinite radius of

convergence. Besides, the critical layer is a regular
singularity of the equation, so a power series solution
exists:

@0(6)=¢° T a, (0",

with index ¢ and recurrence formula for the coefficients
a, to be determined. Substitution of (26) in (24) leads to
the recurrence formula for the coefficients:
(n+6+1)(n+c—2)an+1 (G) = 0y (0')_0*[3ﬂ n-3 (G) @n
If we setn=-1, we obtain 6(c - 3) ag = 0. If ag = 0, then
a, =0 foralln = 1,2,... in (27), and a trivial solution &
= 0 results (26). Thus ag# 0, s0 6(o - 3) = 0 is the
indicial equation, which has roots ¢ = 0,3. The upper
root ¢ = 3 leads to:

@3(8)= T a, ()& =F(E)

which is an odd function of distance from the critical
layer, and the lower root to an even function of distance
from the critical layer:;

(26)

(28)

®y(E)= zoa,,(o)gh =G(&), (29)
n=

The general integral is a linear combination of both:

Y =yly.: P(y;k,@)=c;F(I-Y Her G(1-Y), (30)

where the constants of integration are determined from
boundary conditions (§10). The plots of odd (Figure 2)
and even (Figure 3) wave functions, show that the
oscillations of the acoustic wave ‘die out’ near the critical
layer Y = 1, so that there is small variation of acoustic
pressure up to the wall 0 <Y < 1, in contrast with the
oscillations of the acoustic pressure away from the wall
Y21

We consider next (case II) an exponential shear
(Figure 4.
U(y) = V(1-e-¥L),
with independent choice of free stream velocity U(eo) = V,
and boundary-layer ‘thickness’ L. The critical layer (18)
is located at:

(K1)
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y.=-Llog(1-Q), Q=w/kV, (32ab)
which shows that there are three cases: (i) if the Doppler
shifted frequency is positive in the free stream ® >k V,
then it is positive everywhere ® >k U(y), and Q2 > 1 in
(32b) shows that y, is complex in (32a), i.e. there is no
critical layer; (ii) if the Doppler shifted frequency is
negative in the free stream © < k 'V, then it is positive at
the wall @4(0) = @, it must vanish in the boundary
layer, and € < 1 in (32b) implies real yc > 0 in (32a);
(iii) the borderline case @ = k V concerns the critical
ayer in the free stream Q = 1 or y; = oo,

The change of independent variable:
g = e YL A-Q) = e~ (rye)L, 33)
places the critical layer y = y at position unity {. = 1,
and the free stream y = oo at the origin { = 0. The
transverse wavenumber in the free stream is:

k= \/(m —KU)*/c2 -2 =idL, G4

so that {% ~ eiky i.e. We have propagating waves etiky

in the free stream if (@ - kU)? > k2c2, and unstable eky
and surface e~XY modes otherwise. The change of
dependent variable:

P(y:k, 0) = LYH(L),
leads from (17,31,33) to the differential equation

(1 )GH "+ (1420} (1-20) | H+{ 20-A2 (1 2 ) [H=0,

(35

(36)
involving the parameter:
A=s(w-kV)L/c, €n)
which is dimensionless like 9 in (34):
B=vK2-AZ, K=kL. (38a,b)

The differential equation (36) has regular singularities at
the free stream £ = ), and the critical layer { = 1, and an
irregular singularity at { = o, i.e.y =- co below the wall.
Thus there are (Figure 5) three pairs of solutions, i.e. one
pair around each singularity § = 0, 1, oo, with radius of
convergence limited by the next singularity. To cover the
whole flow region, we may need analytic continuation,
between pairs of solutions. For A = 0 we would have a
Gaussian hypergeometric equation (36), where { = oo
would also be a regular singularity. In general A #0, s0
{ = o is an irregular singularity of the extended
hypergeometric equation (36). The Frobenius-Fuchs
method applies near the regular singularities { = 0,1, but
not near the irregular one { = oo,

§7 - Modes in a duct with a parabolic shear flow

We consider (Figure 6) a parallel-sided duct, with
walls at y = 21, containing (case III) a parabolic shear
flow
Uly) = Ug (1-y*/L2), (39)
with velocity U = U(0) on axis. The critical layer(s) are
(18) located at:

y. =1fLA1-Q, Q=w/kU,, (40a,b)
showing that there are four cases: (i) for sound
propagation downstream k > 0 with ® =k Uy, the



Doppler shifted frequency o,(y) = o - k U(y) 2 0 is
positive except on axis ®,(0) = ® - k Ug = 0, which is
the critical layer; (ii) for sound propagation downstream
k > 0 with Doppler shifted frequency positive on axis
® > k Up, there is no critical layer; (iii) for sound
propagation downstream k > 0 with Doppler shifted
frequency negative on axis ® < k Uy, there are two
critical layers (40a), symmetric relative to the axis; (iv)
for sound propagation upstream k < 0, the Doppler
shifted frequency is always positive @« (y) > ®, s0 there
is no critical layer in the flow region, i.e. for Q < 0 the
critical layers (40a) are outside the duct iyl > L.

The change of variable:

2
(=(y/L)[1-Q), P(y;k,0)=y(Q), @1ab)
puts both critical layers at the point unity { = 1, which
is a regular singularity of:

(0w H{(V2352)y 4| (@1 M2 (1)
{[xa-mya]o2)? - thy =0,

where M is the Mach number on axis and K the
dimensionless horizontal wavenumber:

M=U,/C, K=kL. (43a,b)
The axis of the duct { = 0 is also a regular singularity,
and { = « an irregular singularity, so the differential
equation (42) is of the extended hypergeometric type.
Using rigid wall boundary conditions, the first eigenvalue
k; of the even mode E; is given in Table 1 for fixed
frequency € and several Mach numbers, and vice-versa in
Table 2. The corresponding plots of the even
eigenfunction, show that the acoustic pressure increases
towards the wall, more so for lower Mach number
(Figure 7) and lower frequency (Figure 8).

42)

The preceding three solutions Cases I-III in §5-7)
concerned sound in a low Mach number shear flow (15,
17), and we considernext a case (IV) without restriction
on Mach number (6), leading (16) to the wave equation:
(@—KU)P"+[2KU' +(w - kU)c' /c]P’

+(@-KU)|(@-KU)? /2 - kz]P =0,

Introducing the stagnation sound speed ¢q from (7) and:

e=4(r-1)/2, 45

we obtain the wave equation (44):

(0— kU)(c% - 82U2~)P"+[k(co -e2U2)-e2U(w- kU)]

2U' P +(0 - kU)| (@ - KU)? —k?(c} ~ £2U2) [P = 0;
/46)

which has up to five singularities: (i) the critical layer for
sound (18); (ii) two critical flow points, where the sound

speed vanishes:
U(ys)==co/e=2coy2/(y=1); @D

c(ys)=0:
(iii) the points at infinity y = + o may also be

singularities,

(44)
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We consider again a linear shear flow (21), this time
without restriction on Mach number, and make the
change of variable:

{ = yly.=kqylo, P(y;k,0)=T(L); (48a,b)
which places the critical layer at the point unity, leading
to:

(1-p2g2)(1-)T"+2(1- ul’C)T'j
+ofl- g)[l— n2g2 —{3(1~C)"]T= 0,

which involves the same two dimensionless parameters
(254, b) as in the low Mach number case, and, in
addition:

p=eo/key=4B(y-1)/2. (50)

The differential equation (49) has four singularities, viz.
three regular singularities, at the critical layer {=1, and
critical flow points {= *1/W, and an irregular
singularity at infinity { = oo, A differential equation with
four regular singularities is reducible to Lamé or Heun
type, and since in the present case one of the singularities
is irregular, we have an extension of this type. Although
there are four pairs of solutions, we never need more than
two, to cover the flow region, which lies between the
wall and the critical flow points. There is one case
(Figure 9), when the critical flow point y, > 2y, is
farther from the wall than twice the distance of the
critical layer, when the solution around the critical layer
covers the whole flow region.

“9)

89 - Solutions which are finite or have logarithmic
singularity at the critical layer

In the case of the low Mach number linear shear flow
(Case I; §5), the sound field was finite at the critical
layer, for the linear shear, but in all other cases it has a
logarithmic singularity there. We illustrate this with the
case (IV; §8) of linear shear flow with unrestricted Mach
number (49). The change of variable

n=({-1)/(1/p=1), T(E)=R(n), (51a,b)
Places the critical layer {=1 at the origin n = 0, one
critical flow point {=1/p at point unity 11 = 1, and the
other at:

C=-1/p, n=(u+1)/(u-1)=j, (52a,b)
so that the differential equation:
(1) (=R =2 v(u-1)] RY 3

2 .
—o 1=Up) (1) (=i B2/ | R=0,
has regular singularities at =0, 1, j. The Frobenius-
Fuchs expansion about the critical layer:

Ry(n)= X b,(c)n"+o, (54)
n=(0
Leads to the recurrence formula for the coefficients:
i(n+o+)(nm0-2)b, 4y = 2[#(i-1)|(mo)(no-2)0,,
4{(xj (1-1p)"~{n+o-1)(n+0-2) | b, _, (55)

ut (1_1/“)2 [(l+j)bn—2_(l+{3/j2 )bn—3 }’
Setting n=-1, leads to the indicial equation
o{c —3) =0, which has roots ¢=0,3. The upper root
¢ =3, leads to a solution:



R3(n)= Z(})n(3)n“+3 ~0(n3), (56)

which vanishes at the critical layer. The lower root
corresponds to a solution Rg(m) which is a constant

multiple of (56), so that a new, linearly independent
solution, is specified [23, 24] by:

- )
R = lim —|o R ;
o(n)= lim = o[ s(m)] (57)
The latter has a logarithmic singularity:
Ro(n) = Rs(n)logn+Ry(n), (58)

which is dominated by (56), so that the sound field is
finite at the critical layer:

— oo . a
Ro(n)= ng(;l,.(O) n", d,(0)= ;gog[obnm)]. (59)

The logarithmic singularity:

log ~ log(§ 1) ~ log(y - y. ), (60)
involves a phase jump of i%, as the critical layer is
crossed, viz. ¥ — Y, changes sign, and %in is added to
the logarithm. The sign of the phase jump is determined
[25] from:

logn ~ log(¢ - 1) ~ log(Kay / @), 1)
by giving the frequency a small negative imaginary part
®=®-1id, corresponding to a perturbation growing
slowly with time:

exp (iot) = exp (iGt) exp (t5); (62)
Substitution in (55) gives: .
logn ~ log(kqy / @ — 1+ igkyd / @), 63)

so that the phase is O for y>y, and —ir for y<y,,
viz. a phase jump of —ix. We plot in Figures 10 and 11,
respectively the modulus and phase of the acoustic
pressure, versus dimensionless distance from the critical
layer

10 - Choice of surface wave or radiation conditions, and
wave reflection and absorption at the critical layer

In Figures 10 and 11, the two constants of
integration ¢y, ¢ in a general solution of the type
P(y;k,0)=R(n) = ¢; R3(n)+c; Ro(n), (64)
were determined by requiring the acoustic pressure to
vanish at the critical flow point
P(y,;k,0)=0, (65)
and normalizing the acoustic pressure to the valve at the
wall:

Q(Y) =P(y;k,0)/ P(0;k, w). (66)
There are other possible types of boundary condition,

which we illustrate in the case of the exponential shear
flow. The solution about the free stream:

P(y;k,@)=C, P.(y;k,@)+C_ P_(y;k,0), (67)
consists of outward P, and inward P_ propagating waves
for k real in (34), and unstable P, and surface P. modes
for imaginary k. Thus in the case | —kV|> ke of real
k, we select an outward propagating wave by setting
C_ =0, and an inward propagating wave by setting
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C, =0; in the case |o-kV|<ke of imaginary k, a
finite sound field in the free stream requires C, =0. In
both cases one constant of integration is determined.

The solution (61) has radius of convergence limited

by the critical layer. In the neighrourhood of the latter it
is replaced hy:
P(y:k,)=c¢; P(y:k,@)+c; Pa(y;k, 0), (68)
where Py is finite at the critical layer,and P; has a
lograrithmic singularity. The two ‘arbitrary’ constants ¢y,
¢y in (62) are related to C+ in (61) by analytic
continuation, i.e. the coefficients D in:

[H = [D+1 D> Cx} (69)

-1 -2} [Cz

are fixed, because we can have only two boundary
conditions. For example, the absence of logarithmic
singularity at the critical layer C; =0, would generally
imply C4 20 both inward and outward propagating
waves in the free stream, i.e. the critical layer reflects
waves. If we want to have only inward propagating
waves in the free stream (C, = 0; no retlection), then
C; 20 C, there is generally a lograithmic singularity
at the critical layer, which absords sound.

The second condition could be a boundary condition
at a wall. The spectrum of the transverse acoustic
velocity

+ 00
vixy.t)=[]  V(y:k0) ek dkdo, (0)
is related to that of the pressure (16) by (3b)
P (y:k,0) = -ipo[o -k U(y)] V(y:k, @). an

Since the flow velocity is zero at the wall, this
simplifies to:
P (0;k,0)=-i py ® V(0;k,0). 72
In the particular case of sound reflection from a rigid
wall, the normal velocity is zero, and thus the normal
derivative of the acoustic pressure vanishes:
P (0:k,0)=0. 73)
Another case is a moving wall v(x,0,0), with velocity
spectrum:
| I A ;

=[] v(x,0,t) emi(kx-0t)qx g,
4M= _
which causes an acoustic pressure gradient (72). Another
case, of partial reflection and absorption, is a wall with
impedance Z:

V(k,0)=

74

P(0;k,0)=Z V(0;k,0); 5)
this leads to a boundary condition:

L P'(0:k,0)=~(ilz) P(0;k,0), (76)
where:

ZEZ/p() ol (77)

is the dimenssionless impedance.

We illustrate in Figure 12 the logarithm acoustic
pressure, normalized to the value at Y = y/L = 10, versus



dimensionless distance from a rigid wall. The case of an
impedance wall (Figure 13) differs mainly in a downard
instead of upward inflexion of the acoustic pressure near
the wall. The preceding two cases were surface waves,
which decay monotonically towards the wall, In the case
of propagating waves:

Q(Y) =log{P(y:k,®)/ P(10L;k, )}, (78)
the logarithm of amplitudes:
Re(Q) = log|P(y;k, )/ P(10L;k, @)} (79)

shows amplitude oscillations (Figure 14), with phase
jumps:

Im(Q) = arg{P(y:k, 0)} - arg{P(10L; k, )},

at the nodes of the mode shape function (Figure 15).

(80)

§13 - Discussion

The existence of critical layers for sound in a shear
flow, has been sometimes mentioned in the literature as
‘turning points’ [9,26]. The role of critical layers in the
acoustics of vortical flows, is as important as for internal
waves in atmospheres [27], inertial waves in rotating
fluids {28], or waves in viscous [29,30] and ionized
[31,32] media, subject to magnetic fields [33,34] or Hall
currents {35,36]. Although all these subjects sound
different, they have in common [37,38] singularities of
the wave equation, where wave absorption, reflection or
transformation are possible. The figures concerning
sound in shear flows have exhibited a number of
phenomena which could not be accounted for in potential
flows, and even less by ray theory.
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Eigenvalues for first even acoustic mode, for
three Mach numbers, and fixed dimensionless
frequency.

Eigenvalues for first even acoustic mode, for
three dimensionless frequencies, and fixed
Mach number.

Table 1
M ki
0.1 0.468195
0.3 0.41293
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(Q =0.5)
Table 11
Q K
0.6 0.561843
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1.0 0.936485
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Legends for the Figures

Sound propagation in a linear shear flow.

Waveforms skew-symmetric relative to the
crifical layer.

Wavetorms symmetric relative to the critical
layer.

Sound propagation
houndary layer.

in an exponential

Radius of convergence of three pairs of
solutions.

Acouslic modes in a duct with a parabolic
shear flow.

First even eigenfunction, for fixed
dimensionless frequency, and several low
Mach numbers.

First even eigenfunction, for fixed low Mach
number, and  several dimensionless
frequencics.

Radius of convergence of solution about the
critical layer, for a critical tlow point more
than twice as far from the wall.

- Amplitude of acoustic pressure, normalized
to value at the wall,



Figure 11 - Phase shift of acoustic pressure, relative to .
wall value,

Figure 12 - Acoustic pressure of surface wave,
normalized to value at 10 boundary layer
thicknesses; case of rigid wall.

Figure 13- As Figure 12, for impedance wall.

Figure 14 - As Figure 13, for logarithm of ratio of
amplitudes of propagating wave.

Figure 15- As Figure 13, for phase shift measured,
from ten boundary thicknesses from the
wall.
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