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Abstract

The basic equation of energy for non-Newtonian fluid is
developed in a non-orthogonal accelerated curvilinear
coordinate system. Resulting equation is applied to
incompressible plane flows of power-law fluids together
with the equations of motion to investigate the effects of
longitudinal surface curvature on thermal boundary layer
flow. Possible similarity solutions including curvature
effects are given.

1. Introduction

Non-Newtonian fluids have a wide range of application in
the various manufacturings and processing industry such
as those dealing with plastics, polymers, foods and
journal bearing lubrication, etc.?. Some of the flow
problems appearing in these applications can be solved by
using the well-known boundary layer approximation.
Conventional boundary layer theory (i.e., first order
boundary layer theory) for laminar flow of non-
Newtonian fluids on any surface is based on the
approximation that the pressure change normal to the
surface is small enough to be neglected for thin boundary
layers. The second order boundary layer theory requires to
account effects of the surface curvature, the displacement
thickness and the vorticity. In order to correct the
conventional theory for the effects of longitudinal surface
curvature, one has to consider the pressure gradient
normal to the surface. Such consideration requires that
some additional terms have to be included into the
equations of the motion and the outer boundary condition
must be modified to account for curvature effects.

Modification for curvature effects of the conventional
velocity boundary layer theory for power-law fluids were
studied recently by the present authors @9, Their
numerical results indicated that convex surfaces have
lower skin friction parameters and greater boundary layer
thickness than concave surfaces.
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When the energy transport phenomena are considered,
the equation of energy must be investigated together with
the equations of motion. Among the investigators of the
conventional thermal boundary layer equation, Acrivos et
al.®;, Lee and Ames®, Thompson® and Chen and
Radulovic® may be mentioned. However, there appears
no solution available in the literature for the thermal
boundary layer. equation of non-Newtonian fluid flows
including curvature effects.

In the present paper, the basic equation of energy is
developed for incompressible, non-Newtonian fluid flows
in a curvilinear, non-orthogonal coordinate system.
Resulting equation is applied to incompressible plane
flows of power-law fluids together with the equations of
motion to investigate the effects of longitudinal surface
curvature on thermal boundary layer flow.

2. Basic equations

Consider an inertial reference system S with the origin
O and a non-inertial Cartesian reference system S’
attached to a body moving in an arbitrary manner relative

to the inertial reference S as shown in Fig.l. The
position of the origin O’ of the primed frame relative to

Non-inertial

Inertial frame frame

Figure 1: Inertial and non-inertial references



the barred frame is given by the position vector K. Let
@' (t) be the angular velocity of the frame S’ relative to S
and O be its center of rotation ., We may introduce also
another reference system S rigidly attached to the non-
inertial frame S’, but non-cartesian in general. The
transformation from S’ to S frame is purely geometrical
whereas the transformation from inertial frame S to the
accelerated frame S is a time dependent process ©.

The geometrical relation between the frame S and S is
given by

X=EF) =X (1a)

or
(1b)

X' = x'rx') xt = xexh

where ¥ and X' are the position vectors, X' and X" are
the position coordinates relative to the frames .S and Y,

respectively.

Following relations can be obtained from Eq. (1)
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Using the relations (2), the covariant coordinates of the
metric tensor can be obtained as

i = ﬂ/ﬂk =& = Zﬂ,ﬂk )
=1

and contravariant metric tensor is given by orthogonality
relation as

gjk'gkl =5 )

J

where ()‘; represents the Kronocker tensor. Christoffel

symbols can be determined from the following relations
[10]

I=1y= Lgm @"Zwt@""f—% . k=123
27t & ot
(5)

For an incompressible, non-Newtonian power-law fluid
flow, the equation of continuity. Cauchy's first law of
motion and the equation of energy are written in a

curvilinear, non-orthogonal coordinate system, as follows
(4.9
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where V, represents covariant derivative, p is the

pressure, o the density of the fluid, f the resultant of the
given orthonormeous force per unite mass, * a
permutation tensor, D/Dt the material derivative, 7' the
temperature, N the thermal conductivity which is a scalar
function of the thermodynamic state only (for example
X=N(7)) and ¢ the dissipation function for the non-
Newtonian fluid, oY the extra stress tensor, Cp spesific
heat per unit mass and

dAX =10 or U,

. , &)
GAX =W or W
Extra stress tensor in equation (7) is given by
o = u(s)D = p=[g"V, V7 + "V, V] (10)
2

where u represents the viscosity coefficient of non-
Newtonian power-law fluid and can be expressed as
follows 1112,

(n-1)/2

an

where n and p, are constant parameters called power-law
index and consistency, respectively 12, and

H(S) = p, s

s=2m(D°) = 2(D, D)) (12)

For an incompressible fluid, the dissipation function ¢ is
defined by

¢ =2u(D/ D) (13a)
or
(13b)



3. Example applications

3. 1. Similarity solutions with the method of separation of
variables

For two dimensional fluid flow, surface oriented
coordinate system illustrated in Fig. 2 is conveniently
used in order to investigate the flow problems such as the
general elliptical cylinders, the ditch or the mound, etc.

69 In Fig. 2 (o'x"x”?x”) denote the Cartesian
coordinates, while (0 x'x’x*) denote surface oriented
orthogonal coordinate system.

Substituting the following non-dimensional quantities
into the equations (6-8) and (10-13)

X = _x_, }7 = _}_)_Rel/(l*n) , ];’ =k LRe—I/(l+n)
L L
LI S Ay YCUN S (14)
v, U, L
= T-7T, _ _ _ N
T = , p = Pz , ﬂ - _;.‘.., N -
T,-T, pU, He N,
CU_pL 2
R€=£U:_"L",P i) «P Re¥*™ | o U,
Hy Ro CP(TW—-TQ)

and applying the boundary layer approximation for the
cases of w'=0 and &'=0, we can obtain the following
equations for two dimensional non-Newtonian fluid flow
in the 0,.X"X? plane of the surface oriented coordinate
system

a + —ﬁ—[(1+l}'y‘)\7] =0 (5)
& g
—a—li—+ u_ f?-f‘—+ v_ —é-[(l-!»k_f)z‘i]
ot l+kydx I+kyody
1 o5 [er Kk V[da
= e | — - — .
1+ky ox oy  1+ky 3y
(162)
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E_ g _ 9P (166)
1+ky 3y
oT # T _dT
— —— + V—
of  1+ky o% y
[\ oT | !
= __.__1_____.._.5_ (1+ky)ga_ —
1+ky 35 o7 | pr
— = -1 — k- 2 .
Egm__k G| | 2E_ - an
Pr|dy I1+ky oy I1+ky
with the following boundary conditions,
y=0 a=0, v=0 T=1I
18)

¥ = 7=U,

=
It
S

where, L,U, T, are the reference length, the velocity

and the temperature, respectively. 7 ,Re,Pr and E

represent the wall temperature and the Reynolds, Prandtl
and Eckert numbers, respectively. The non-dimensional

vorticity ¢ is given by
X 12

X 3

x’ Xx?

Xl

0 —ex !

(a) Orthogonal system

(b) Non-orthogonal system

Figure 2: Surface oriented coordinates systems
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We obtain the free stream velocity from the irrotationality
condition as

g =Y (20)
1+ky

then the pressure at the edge of the velocity boundary
layer may be expressed as,

T2 72
p=-150 L an
2 1+ky 2
where U, and U, are the potential flow velocity at the
wall and at the edge of the boundary layer, respectively.
U, depends on only the variable x . This function is
expressed for the wedge flows by

U, = =" (22a)
and for the Goldstein type flows by

U =e7 (22b)
where ¢ is any real constant except zero characterizing
the Goldstein flow.

Egs. (15) and (16) were obtained by Erim @ and Yiikselen
and Erim ®. They introduced the following non-
dimensional quantities into Eqs. (16)

= [FE/ ez
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to obtain the following generalized Falkner-Skan
similarity equation, as an application of the method of
separation of variables.

[Frlr__z(zn'I)AFn_*_"(n—]) AZFI}[FII-ZAFI]"_I
n n

+[FF 4 Ba-F? )1+ 4n]"" =0 @9
with the following boundary conditions:
n" =0, F(0)=F'(0)=0
(25
n’ =, F'(w) =1
where
m(n+1)
m(2n-1)+1
1/(1 +n)
@, = [ﬁ_Ui_, I m(2n—1)+1} (26)
i nin+l)
mn-2)-1

2
1+n

Yiikselen and Erim @ solved Eq. (24) with the boundary
conditions (25) for different values of the parameters n, A
and S, in order to investigate the curvature effects on the
velocity boundary layer. They concluded that convex
surfaces have lower skin friction parameters f'(0) and
greater boundary layer thickness than concave surfaces.
However, they did not studied the curvature effects on the
thermal boundary layer.

For the thermal boundary layers, if we substitute the
relations (23) and additionally 7 =@ into the energy Eq.
(17), disregarding the dissipation therm, the following
equation can be obtained for an isothermal right angle
wedge flow (5=0.5)

[0+ Z2[(1+4n 6" + 46 =0 @7
Pr
with the boundary conditions
n—0 f'=0, 6=1 or —aﬁ:Cons.
an
n-» f'=1, 6=0 28)
where
a3 = 'n—2/(l+n) (2/3)(I—n)/(l+n) (29)
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3.2. Group method for similarity solutions

The non-linearity in the equations of motion of non-
Newtonian fluid systems limit the applicability of its
similarity variables to the energy equation. Thus the
classical method of separation of variables for
determining similarity variables does not appear as a
general procedure to indicate the possible cases giving the
similarity solutions for complex flow problems. In
addition, Ames ¥ indicated that the method of one
parameter group transformation is a simple and
straightforward method to obtain similarity solutions of
partial differential equations. This method was applied
also successfully to the conventional boundary layer
equations of non-Newtonian power-law fluids ©. In this
method, the problem of searching for similarity variables
is reduced to that of solving for the invariant conditions
of a system of differential equations under a certain group
of continuous transformations. The conditions of absolute
invariants of the subgroup consisting of transformations
of independent variables enable us to give the similarity
variables ©'9, As an application of the method for the
velocity and the thermal boundary layer including
curvature effect of the non-Newtonian steady power-law
fluid flows, the possibilities of similarity solutions will be
treated below by using the one-parameter group method
because of its convenience and simplicity.

The thermal conductivity & of a fluid can, in general, be
regarded as a given function of the temperature and the
pressure @9, Although it has been postulated by Lee and
Ames © that the heat conductivity varies as a function of
the temperature only. They proposed the following
relation

R =T (30)
where » was a constant to be determined. For actual fluids
the thermal conductivity changes slightly with the
temperature and its dependence on the temperature can
often be disregarded for practical purposes ?9. On the
other hand, temperature dependence of the viscosity can
be approximated by a decreasing function of the
temperature @, At the same time the viscosity also varies
slightly with the temperature. This variation can be
disregarded for practical applications.

Introducing now into the Egs. (16) and (17), the stream
function given by

1%
1+ky 6y

€3]

Vo= -

=
it

Y ‘m

=l |

and the one-parameter linear group defined as
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x*=a"%
y*=a"y
Lo oyreavy &)
U =a™T,
k*=a"k
T*=a'T

and applying the constant conformaly invariant condition
for them leads to the following algebraic equations

a,+2a,-2a, = a,-2a, = (2n+l)a, -na, (332)

ata,~a,—a,=2a,~-ra;= (2a,-a,;)(1+n) (33b)

Because of the shear stress, the mechanical energy in the
interior of the fluid is dissipated as heat which flows out
to the surroundings. Consequently, a temperature
gradient is created in the fluid. At moderate shear rates,
as in the case of low speed flow, the temperature
differences due to dissipation are of course so low that one
can regard the fluid as an isothermal continum to a close
approximation.

Each of (33a) and (33b) contains two equations. However,
if the dissipation is neglected (33b) is reduced to one
equation. Thus we obtain the following three equations
with four unknowns

a, + (I-2n)a, + (n-3)a, =0 (34a)
a, —a, +a, =0 (34b)
a +a, -a, —a; =2a, ~ra (340)

This system of equations has no unique solution. This
difficulty may be eliminated by choosing a particular
outside flow field. For example, if wedge flow is
considered, the velocity field is obtained from Equations
(20) and (22a) as

T =2 (35)
1+ky
and it may be seen that
a, = ma, (36)

For the remainder of the unknowns there exist two cases
possible depending on the value of ;.



i) Case o, #0

For r=1 equations (34) and (36) yicld the following
relations

a, _(n-2)m+l (372)
a, n+1
@ _ (2n-1)m+1 (37b)
a, n+l
a, _ (n-1)(1-3m) (37c)

a, (m+1l)(r-1)

If we suppose that x* is the independent variable to be
eliminated, absolute invariants of J; group are

n=y/%
v =% f(n) (38)
T =3z o)

For r=1, the relation (37¢) is no longer valid. In this case,
absolute invariants of I} group can only be calculated for
m=1/3 as,

(39

where ¢ is an arbitrary real number [6]. This means that
the boundary condition for 7 on the wall is any power
function of % , namely

T =% (40)
This include a constant boundary temperature for t=0.
Moreover, as seen from (33) and (34), for the values
a, /a, =1/3
a, /a, =2/3 @41
a, /a, =2/3

there exist also a similarity solution for m=1/3 satisfying
automatically the energy dissipation term. In this
similarity solution the temperature field is expressed as

(“2)
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and the boundary condition on the wall becomes
T‘ = EZ/J ( 43)

Note that for the other values of m, there appears no
similarity solution.

Substituting the relations (37) and (38) together with (33)
into the equation (17) without dissipation term yields

i[(z +An) g ?]

@ g0 @ 00 _ 1 I

a, dn @ Jon Prl+dndn 7
44)
with the following boundary conditions
n->0 f'=0, 6=1 or ﬁ:0
on
45)
7—> oo f'=1, 6=0

If r=1, this equation is no longer valid. Therefore, for the
right angle wedge flow m=1/3 we must recalculate
similarity solution. Indeed, substitutions of the equations
(39) and (42) into Eqgs. (17) yield

2 1

3 1+An

1 1 7 o8
(0f -f0)-— ——[(HAU)—}
Pr l+An dn an

) f‘lf"-Af’l"" (f"=4f') =0 “6)
e

with the boundary conditions (45). For the isothermal
right angle flow, this equation can be written as

—2-f 0 + J—[A 0" + (1+A4n) 0”] +
3 Pr

Lfr-Af ) (14 An) = 0 @én

E
__lfu_Afr
Re

with the boundary conditions (45). For 4=0, without
dissipation term, this equation is the same as that of Lee
and Ames ©,

ii) Case @, = 0

In this case another group /7 named the spiral group may
be defined as in ©13



CL))

For I, group, the edge velocity may be written by the aid
of the equations (20) and (22b) as

cx

T o= (49)
1+ky

where ¢ can take any real value except zero.

Setting the relations (48) and (49) into Eqs. (16) and (17),
its invariant conditions require the following equations

2a, - 2@, = -2¢ = (n+l)a, - na,  (502)
a,-a -a; =2a, - ra, (50b)
The relation (50a) gives
a="Zc, g -2l 6D
n+l n+l
and
";zci
77 = )7/en+1
2n—l“_’
v=e" f(n) (2)
25
k= Ade™

Setting the relation (52) into eqn. (16) for velocity
boundary layer, one can obtain
)

n-1
A ., n—-2 A
[f )
-f'z] =0

fll— fl
1+ An

[

" 1
n 1+A17[ 1+ A4n

I |2n-1 A 1
+ T ——f 1"+ ;
1+An| n+1 1+An (1+An)

(53)
with the following boundary conditions
=0 for n=20
(54
1
"= Jor = o
1+ An "
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Substituting the following transformation to egs. (53)

An* = In(1+An)

(55)
E(n*) = f(n)
we obtain
2]F“-ZAF'Q"“’[F"'- 20n=D) 4oy 222D A’F'}
c n n

+ [2n_IFF” +1 - F'z]ez(""'“'" =0 (56)
n+l
with the boundary conditions
F'=0 Jor n* =0
(57
F'=1  for n* = ©

It is seen from (50b) that there is only a similarity
solution of the energy equation for Newtonian fluid flow
(n=1). This result was shown also by Lec and Ames © in
the case of conventional boundary layer flow.

In connection with the similarity solutions, Thompson's @
work will be the last example. His transformed
momentum equation for flat plate is not changed, but the’
energy equation is limited by local similarity. We can
generalize Thompson's solution so that curvature effects
are included in the similarity solution. For the generalized
case, the solution of the equation of motion may be
obtained easily by substituting S=0 in the equation (24)
with the boundary condition (25). For the solution of the
energy equation (17), the absolute invariants are

é« = y/fllz
T =g (58)
v, = %" [,($)
and from here
= ()
11 .
o= e - 59
TR 1+A¢[§f' ]

. w=(1-m)/2(1+n)
g=X n
E=4/%"

In the case of isothermal flow of the power-law fluid over
a flat-plate, disregarding dissipation term and setting the



relations (58) and (59) into (17) we can obtain the
following equation

s 00 1[ofpi00), 4 ,.00]_,
1448 8¢ Pr|dC ¢) 1+4¢ " 8¢
(60)
with the boundary conditions
6,(5)=0 for ¢=0 (61)
Zy)
8(¢)=1 or —L =0 or =
) (€ Py S ¢

The details of all these analysis has been given by
Yiikselen and Erim @9,

4. Numerical Results

Using a fourth order Runge-Kutta method modified by
Gill 09, the Eqn. (24) with the boundary conditions (25)
was integrated numerically by Yiikselen and Erim @, The
same method of integration was applied to solve of the
Eqn (27) with the boundary conditions (28), disregarding
the dissipation term.

Since the numerical method, its accuracy and precision
etc. was explained widely by Yiikselen and Erim !9 in
comparison with the results of other publications, detailed
calculation procedure is not given here. However, to see
how the method works in order to solve the similarity
equations of momentum and energy simultaneously, an
example application was made on the similarity equations
of momentum and energy given by Lee and Ames © as
following

snp e 2f (S [1-(f )T =0 6D

0"+ (2/3)Prfo =0 (63)
The comparison of the momentum equation was
previously carried out by Yiikselen and Erim @, and that
was found to be quite satisfactory. Comparison of the
energy equation is given in Fig. 3. Results of the present
method shows a very good agreement with the results of
Lee and Ames.

As a result of the numerical solutions of Eqn (27), the
Figs. 4 to 7 are plotted for several values of the power-law
index n, curvature parameter A and Prandtl number Pr.

Temperature profiles and corresponding velocity profiles
are illustrated in Fig. 4 for various values of Prandtl
number Pr. For the Prandtl numbers less than 3, the
thermal boundary layer is thicker than the velocity
boundary layer for the values of n>1, while the thermal
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boundary layer for n</ is influenced by the velocity
boundary layer which is thicker. The slope of the
temperature profile increase together with an increase in
the Prandtl number.

Most important effect of the surface curvature is the
modification of the temperature profile for large 7. Its
modification is imposed by the outer boundary condition.
On the other hand, the thermal boundary layer thickness
of the concave surfaces are slightly smaller than that of
the convex surfaces.

If a(x) denotes the coefficient of heat transfer at any x
point, Nusselt number can be defined as

Nu = a(x) L _ _ﬂ (64)
¥ R Jy =0
and, from here we can write
vu, (27 Re"™™) = 6'(0) (65)
This last equation indicates clearly that ¢'¢0) is a

measure of the local, non-dimensional coefficient of heat
transfer from the wall by the conduction. Consequently, it
is useful and sufficient to know the effect of the curvature,
power-law index and Prandtl number on ¢'¢(¢) instead

on the coefficient of heat transfer known as Nusselt
number Nuy.

For this purpose, the curves g'¢0) versus n for various
values of the Prandtl number and the curvature
parameter, and the curves @'(¢0) versus Pr for various

--------- Present results

44 o 0000 Leeand Ames [4]
\\-O‘ Pr =300

~ ~ L)

810 - v
'\Q\GNLL ~ . 100
2 -
| Q R n _ 10
o o66—o o 5
6=6—0—0——o—8 !
Pr=108
0 T T v 1
0 1 " 2

Figure 3: Comparisons for right angle wedge flow
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¢) Pseudoplastic fluids (n<1)

Figure 4: Curvature effects on temperature profiles
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Figure 5 : Effect of power-law index on heat transfer for various values of Prandtl numbers and curvatures
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Figure 6 : Effect of Prandt! number on heat transfer for various values of power-law index and curvatures
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Figure 7 : Effect of curvature on heat transfer for various values of power-law index and Prandtl numbers
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values of the power-law index, for different values of the
curvature parameter are presented in Figures 5 and 6,
respectively. They show that the influence of Prandtl
number on heat transfer for pseudoplastic fluids (n<1) is
more severe than that of dilatant fluids (>1).
Furthermore, for the dilatant fluids, the curves ¢'(0)
versus n for a fixed Pr varies so slowly that they can be
considered as constant values.

Figures 7 shows that the heat transfer decrease linearly
while curvature parameter A4 increases algebraically and
the effect of the curvature on heat transfer is small. In
addition, the quantities of heat transfer for convex
surfaces are greater than that of concave surfaces.
Furthermore, the curvature effect on heat transfer for
pseudoplastic fluids (#<I) is more severe than that for
dilatant fluid (n>1).

S. Conclusions

In this paper, the energy equation for non-Newtonian
power-law fluids is obtained in a non-orthogonal
accelerated curved coordinates system. The resulting
equations consist of a generalized form of the equations
due to Roberts and Grundman ©, for the non-Newtonian
constant density fluids.

As an application in two-dimensional case, the possibility
of similarity solutions for laminar velocity and thermal
boundary layer equations including the surface curvature
effects were investigated by using transformation group
method for non-Newtonian power-law fluids. This
investigation was made out in the cases of the wedge flow,
Goldstein type flows and non-constant heat conductivity
flow. It has been shown that the similarity solution of the
energy equation exists only for the right angle wedge
geometry. In the case of flat plate the solution is limited
by local similarity. For Goldstein type of flows, a
similarity solution was obtained for the equation of
motion while similarity solution for energy equation
existed only for Newtonian fluids.

Numerical solutions for right angle wedge flow have been
carried out. Its results have shown that the temperature
profile shape is modified by the curvature effects at the
outer edge of the boundary layer and the thermal
boundary layer thickness of the concave surface is smaller
than that of the convex surface. The heat transfer
decreases lincarly while curvature parameter A4 is
increasing algebraically and the effect of curvature on
heat transfer is small. But curvature effect on heat
transfer for pseudoplastic fluid (7<) is more severe than
that for dilatant fluid (n>1)
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