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An inverse-direct hybrid Navier-Stokes solver
using pseudo-analytic function theories, which can
deal with numerous parameters and variables ap-
pearing in the unsteady three-dimensional com-
Thanks
to the pseudo-analytic function theory, the inte-
gral operators of direct solvers were defined along
the physical boundaries besides inlet and outlet
boundaries and they can simply integrate with
the inverse method. An interchange of necessary
informations between direct and inverse methods
can be smoothly and sufficiently excuted without
any artificial technique. The application of present
method to a conventional blade designing is very
easy and can be done completely. In the present
paper the inverse method demonstrates the ideal
cases in which the data are supposed to be known
exactly and complete.

pressible viscous solvers, is presented.

Using the calculated re-
sults for the unsteady inlet transonic rotor flow
and the linear cascade flows with and without air-
injection, the numerical examples to reconstruct
the blade suction surfaces were successfully given.
The stabilitics in inverse computations for both
cases were very good and the code proved useful
for the cases.

Introduction

The need for engineering design of turboma-
chines with high performance and structual dura-
bility of blade rows has motivated engineers to de-
velop an inverse method, which accounts for un-
steady, three-dimensional. compressible. and vis-
cous effects. From an engineering point of view
mumerous parameters and variables appearing in
governing field equations with arbitrary boundary
counditions might be the objectives of evervday de-
signing. It is well-known that inverse modelling
ordinarily involves the estimation of the solution of
an equation from a set of observed data. In prac-
tice, we can measure only the function of data and
not derivatives and observational errors cannot bhe
completely avoided. Then many equations of the
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first kind for the current problems under consid-
eration are ill-posed and may certainly yield some
difficulties. Even the unsteady three-dimensional
compressible Navier-Stokes equation can only rep-
resent an aspect of low phenomena. Coarsely sim-
plified flow models or the discretized differential
equations lead to intrinsic ambiguities.i.e.. differ-
ent values of the parameters in the governing equa-
tions can meet the same measured or designed val-
ues and any errors act as a perturbation on the
equation. Detailed elucidation on the given or de-
sign data is essential. To reduce these ambignities
in the solution which are unstable the results of
experience accumulated by engineers and scien-
tists are inevitable. Apparently. such ncorpora-
tion only. may not improve the situation, bacause
that the governing equations might be nonlinear.
While in the ideal case when the data are supposed
to be known exactly aud complete ( the perfect
data ). it might be thought that an exact solu-
tion to an inverse problem would prove also useful
for the practical case and only the questions of
existence, unigueness, stability and construction
of the solution would be of great importance in
testing the assumption behind auy mathematical
model. However, when solving iuverse problems
numerically. the solution obtained by analytie for-
mula is usually very sensitive to the way in which
the data set is completed and to errors in 1t.

The main objective of the present paper is to
discuss the information content of the govern-
ing equation that certain coeflicients or the vari-
able terms or functionals of these coefficients or
the
can be determined in as stable and unique man-
ner. Owing to the pseudo-analytic function the-

-artable terms naccessible to measurement

ories, the existing direct solvers with integral op-
erators for the unsteady three-dimensional com-
pressible viscous cascade flows!D™H can be ap-
plicd to transonic Howtields with unsteady inlet
Body-fitted coordinates were natu-
rally employved.  Three different kinds of com-
putation surfaces. blade-to-blade. meridional and

conditions.



cross-sectional ones those allow any deflections
were introduced. The direct solvers gives the nu-
werical results through the iterative process and
the lnecorporation with an inverse solution can he
easily achieved. Now the current inverse method
uses a line integral and a successive iteration and
is shown especially for the cases of reconstruction
of profile shapes from the velocity or temperature
distributions. The inverse-direct hybrid method is
also applicable to the cases for setting of inlet low
conditions to meet a required performance and
for the considerations of inflow conditions in film-
cooling problems. the admissible order of distur-
banice level at the inlet, the permissible order of in-
let boundary layer thickness to maintain the suit-
able cascade performance. and so on. The theo-
retical concepts such as ¢nasi-conformal mappings
and the other conventional mappings may play im-
portant roles in the present method. The present
background of the theoretical method may guar-
antee the convergence of the numerical computa-
tion without sophisticated numerical optimization
technmiques or a cut and try approach. The dis-
cussed scheme here and the given numerical ex-
amples hoth may show that a variety of future
applications of the current method are promising.

Analysis

Principle of the Solution

Various types of inverse or design meth-
ods have been ordinarily proposed to provide ge-
ometries of cascades corresponding to a set of ob-
served or imposed data such as given blade sur-
face velocity or pressure distributions with geo-
metric constraints. Then, the solutions of the gov-
erning equations for such inverse problems of in-
terest are inevitablly ill-posed. Under the exis-
tence of strong shocks, on the other hand, the nu-
merous parameters and variable terms inaccessible
to measurement appearing in the unsteady three-
dimensional compressible viscous flow governing
equations are objectives of eveyday designings of
turbomachines with high performance and struc-
tual durability. A practical inverse or design solu-
tion, from the engineering point of view, should of-
fer numerical methods which can determine these
parameters and variable terms in as stable and
unique manner. Now a priori adequate in-
formations may naturally reduce the ambiguities
pointed out in the inverse solutions. To stress
on such informations, the main object of present
study is concentrated on the ideal case with the
perfect data. After integrating with the direct
solvers, necessary and sufficient informations for
the inverse method can be afforded. The present
method also proves useful for the practical cases
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mentioned above. Taking into account the entropy
variation through shocks, the present inverse tech-
nique uses the unsteady three-dimensional com-
pressible Navier-Stokes solvers(!)~®) In addition
to the foregoing field equations, boundary condi-
tions must be specified at the blade surfaces and
at the inflow and outflow boundaries. For viscous
flow simulations, a non-slip condition and a pre-
scribed heat flux or wall temperature distribution
are enforced along the blade wall surfaces.

Governing Equations for Unsteady Three-
Dimensional Compressible Viscous Flows

For the practical inverse or design problems in
engineerings, the governing equations should rep-
resent the possible flow phenomena in general.
The present inverse method uses the governing
equations for the unsteady three-dimensional com-
pressible viscous cascade flow with the arbitrary
inlet and wall boundary conditions" =% written
in the blade relative frame. Those are the con-
tinuity, momentum, energy, and diffusion equa-
tions, besides additional aerothermodynamic rela-
tions which shall be introduced, according to the
objective of designing. Using the cylindrical coor-
dinates ( z, ¢ , r ) and the corresponding veloc-
ity components( W, , W, , W, ).the governing
equations are written as follows. The continuity
equation is such that:
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The momentum equations in axial, circumfer-
ential,and radial directions are such that:
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Also the energy equation is such that:
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Here the notations, W, p, p, up ,w , I, T, s,
Cy , and q , indicate the relative velocity, the
density, the viscosity, the bulk viscosity. the angu-
lar velocity of blades, the rothalpy, temperature,
the entropy per unit mass, the heat capacity of the
fluid at constant volume, per unit mass. and the
energy flux, respectively. The inverse solutions for
the equations hitherto mentioned are common to
axial-, radial- and mixed-flow types of turboma-
chines. Therefore, the discussions hereafter. refer
only for the axial-flow type. Under the governing
equations there are no particular restrictions on
boundary conditions in the present solution. Ar-
bitrary unsteady and non-uniform inlet and outlet
flow counditions and various types of wall condi-
tions such as with or without air-injection or with
designed temperature distributions aud so on, are.
of course, allowed in the solution. For an abbre-
viated description here the diffusion equation and
the other acrothermodynamic relations for respec-
tive Howtields. arve not referred to.

Introduction of Complex Coordinates
and Velocities

We obtain complex forms of the given equa-
tions cited above through complex coordinates
and complex velocities as follows.

Complex coordinates:

:r7:£n+i’]n- (12)
(n = fn - é’ln‘ (13)
(n=1.2.3)
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Cowmplex veloeities:
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Iu the above definitions subfix n stands for the
three different kinds of computation surfaces. Also
we use derivatives with respect to z, aud ¢, such
that :
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Fundamental Equations in Complex Forms

Using the definitions shown above, the governing
equations are reduced to as follows (V=4
The fundamental equation for the comlex velocity
w, 1s such that :
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Also the reduced equation of energy is such that :
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On the direct solutions using the pseudo-analytic
function theories the unsteady three-dimensional
cowmpressible Navier-Stokes solvers with integral
operators, which can be applied to transonic
flowfields with unsteady inlet conditions and a
high degree of geomeyric complexity were already
presented! V=) The operators were defined for
initial houndary value problems®(®), The direct
solvers gives the results through the iterative pro-
cess and the integration can be easily achieved.
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Reduction of Fundamental Equations on
Solid Boundaries for Non-Slip Flows

On solid boundaries the velocity distributions in
the relative frame are zero or constant, except at
sinks or sources. The fundamental equations for
the comlex velocity w, at each time increments
are then reduced to such that :
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In cace of w; 0 = 0 , the coefficients, A(" 24 B“ 5 and
E) , are as f()l}ow
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Similarly the fundamental equation of energy is

written such that :
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The variable coeflicients in the above equation is
omitted.

Numerical Procedures

The information content of the governing
equation naturally dominates the stability and
uniqueness in the designing. Discussions for a
range of plausible and reasonable solutions in solv-
ing ill-posed flow problems numerically, are un-
avoidable. Moreover, the other various questions
remain unsolved. Instead of the general discus-
sion of existence, uniqueness, stability and con-
struction in a complete solution of inverse or de-
sign problems, here, only usefulness of an exact
solution to an inverse problem with perfect data
shall be demonstrated for the practical cases. As
was mentioned, ambiguities in the inverse solu-
tions can be reduced by incorporating of a priori
informations. Fig. 1 shows the present scheme
for designing of three-dimensional high approach
Mach number rotor blade contours, as an example
of inverse or design method. The boundary con-
dition on blade wall surfaces itself is the objective
of the current inverse problems.

Computation Surfaces and Paths

For the integration of the inverse solution with
the direct ones()=() the present solver uses three
different kinds of computation surfaces, blade-to-
blade, meridional and cross-sectional ones those
allow any deflections as shown in Fig. 2. The cur-
rent inverse method likewise the dncct methods
uses the integral representation with body-fitted
coordinates and can fix the solution through the
iteration. The figure also indicates the computa-
tion paths on these surfaves. The details of com-
putation paths on a blade-to-blade are shown in
Fig. 3. The solid and broken lines in the figure
indicate the computation paths for the direct and
the inverse solver, respectively. In the numerical
calculation, portions of both computation paths
not including reference points to be designed co-
incide with each other. The usual design factors,
the velocity distribution on blade suction surface
determining the gas dynamic performance and the
thickness distribution which determines the per-
formance of the vibration and strength of blade,
are the current objectives. Then the numerical
method is applied to the cases of reconstruction of
profile contours from the velocity or temperature
distributions on the blades. In the blade passages
several cross-sectional surfaces are employed.

Correction of Blade Coordinates

Introducing the pseudo-analytic funection theo-
ries (V=M variety tvpes of inverse problems can

be done. As a conventional design problem. here,
the method to give the unfixed blade coordinates,
using velocity or pressure distributions on them,
is shown as follows. After obtaining the velocity
distributions, the blade coordinate can be written
such that :
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Subfix N in Eq.(31) indicates the iterative calcula-
tion on the whole flowfield. The reverse expression
of formal derivative Ow, /0z, can be munerically
obtained through the following iteratives process.
In the first place the dependent variable w, at
each time increments in the fundamental equation
{22} is changed such that :
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Then the fundamental equation is reduced to such
that :
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Here &, can be given by a successive iteration as
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Now the formal derivative dw,/9z, is obtained.
The other formal derivative 0, /dz, can be
similarly given through the conjugate form of
fundamental equation such that:
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The reduced dependent variable is written such
that:

W(:n-Cn:t) = Ly’n(snzCn:f)
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The values of derivatives Jw,,/0s, and 0w, /0s,.
remaining terms in Eq. (31), can be replaced by
those for the direct solution given along the adja-
cent computation path, as shown in Fig. 3. Af-
ter substituting these derivatives in Eq. (31), the
unfixed blade coodinates can be finally assumed.
Just in the same way as described above the tem-
perature distribution can give the blade coordi-
nates. The entropy and the other parameters in
the governing equations can be deservedly utilized
in the designing in much the same way as the ve-
locity and temperature.
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Fitting of Given Values in Arbitrary
Locations

One may employ direct solvers in many design
problems. In the direct solvers for initial boundary
value problems!" =™ arbitrary boundary condi-
tions at the inlet and outlet can be assigned to
the coutrol surfaces. Cross-sectional computation
surfaces assumed as the control surfaces can be
arranged at any axial location of the flowfield.
The direct solutions were given using the inte-
gral representations. The pseudo-analytic func-
tion theory® yields a method of construction of
solutions acquiring at arbitrary reference points in
the flowfield some prescribed values. Through the
reference points, therefore, we may set the velocity
and temperature distributions together with the
other aerothermodynamic parameters and vari-
ables, appearing in the governing equations, as
follows( V),

For the velocity distribution:
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Also for the temperature distribution:

[Tn(Zn, Cn; tj )}N+1 =

oo
[N ]

[Tnz (Zn: f] )]N
43

+5 (2 (e Cas i)y

_Lf [®5 (2 Cai i)y
G 7

2t

[1 - RS (Z;wzn.l, - 'ezn;m(n))} d:;l (46)

where the term standing for the given reference
points in Eq.(46) 1s
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For the other parameters and variables the same
expressions alike (45) and (46) can be introduced

*(Zn,k = Zn,k+1 ) ce



and the design values at arbitrary locations in
the flowfield may possibly be given. Using dis-
cretized expressions for (45), {46) and the others,
we can numerically find the locations of the ref-
erence points. Consequently, we may feasibly use
the direct solutions in designings.

Numerical Examples

Consideration of the questions of existence,
uniqueness, stability and construction in a com-
plete solution of inverse problems, is of great im-
portance in testing the assumption behind any
mathematical model. Here the present inverse
method demonstrates the ideal cases in which the
data are supposed to be known exactly and com-
plete. Using the calculated results for the un-
steady inlet transonic rotor flow (U and the lin-
ear cascade flows with and without air-injection(®,
the numerical examples to reconstruct the suction
surfaces are shown. Since the computation paths
for the direct and inverse solvers, as shown in
Fig. 3. coincided or were parallel with each other,
the informations could be easily interchanged be-
tween the solvers. In Fig. 4. the computation
paths shown with broken lines on the different
cross-sectional computation surfaces in a blade
passage were to be reconstructed. Nine sheets
of cross-sectional computation surfaces were ar-
ranged in a blade passage and hundred reference
points standed for a suction side profile section
to be designed on a blade-to-blade computation
surface. Both codes were written in FORTRAN
for a HITAC $S3800/480 and are applicable to un-
steady three-dimensional transonic rotor flow cal-
culations. They proved useful for the practical
cases.

Unsteady Inlet Transonic Rotor Flow

A numerical result to stress on the important
roles of the unsteadiness and nonuniformity de-
tected at the inlet, was given for the axial tran-
sonic flow through the 23 bladed overhung ro-
tor without inlet guide vanes installed in MIT
Blow Down Facilities'!). In the computation of
the result!!), reflecting the experimental circum-
stances, some simplifications such as Prandt] num-
ber of 1.0 and the sinusoidal oscilation of the inlet
Mach number with 2.5 percent of an amplitude of
deviation, were assumed without loss of generality.
The tip clearance effect was omitted for the sim-
plification of the computation. The experimen-
tally supposed conditions such as the tip relative
Mach number of 1.30, radially constant stagnation
temperature rise. uniform inlet conditions and the
shockless through flow, were also introduced.

For the recounstruction of profile contour, we as-
sumed that the pressure sides of different profile
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sections were fixed and only the suction sides were
flexible, except for the sections at hub and tip.
Fig. 5 (a) and (b) show the first approximations
of the profile sections on the suction side near at
the tip and at the hub. respectively. The original
blade contour was constructed, using 6 cross sec-
tions from the hub to the tip and the hub ratio
was 0.5 at the leading edge. For the modification
of blade thickness the adjacent blade section was
referred and 30 percent of the differnce in thick-
ness between the sections was added or subtracted
to the original thickness. The code in the direct
problem, for the non-uniform case. consumed a
memory of about 600 Mega bites as working vol-
ume and approximately 3 hours of CPU time(1).
Using the detailed results from the direct prob-
lem, the current run of inverse code for the recon-
struction required 100 Mega bites and about 15
minutes of CPU time, additionally. To check the
sensitivity of soltion to the given data set and to
errors in it, the same code was applied to a con-
ventionally transformed cascade geometry shown
in Fig. 6 for the reconstruction of the pressure
side. The contours on pressure side at different
sections resemble each other for this case. Fig.
7 shows the original profile contour and its first
approximation in the run. Using the given data
and the first approximations, the code also recon-
structed the original profile with five digits. For
this case CPU time of approximately 10 minutes
was required.

Linear Cascade Flows With and Without
Air-Injection

The other numerical result to show the match-
ing between the non-uniformity at the inlet and
the assumed velocity distributions of filim-cooling
inflows?) was also used. Fig. 8§ shows the original
profile contour and the location of the slit. Acc-
cording to the experimental data. the result was
calculated for a linear cascade in an annular How-
field under the simplified condition that the in-
jected air and the main streain were at rooin tem-
perature and the radially varvied but azinmthally
uniform total pressure loss distribution at the in-
let, were assumed®). The test Reynolds number
based on the mass-averaged cascade outlet and the
blade chord was about 1.5 x 10° and the test inci-
dence at the mid span was -2.8 degrees. The caleu-
lated total pressure loss distribution maps without
and with air-injection were plotted with 10 per-
cent intervals, in Figs. 9 and 10. respectively. For
both cases the same first approximation of profile
contour on the suction surface shown in Fig. 8
was used. The profile was given such that 20 per-
cent of additional thickness was added to the orig-
inal suction surface and the pressure surface pro-



file was wnchanged. Emploving the given results
from the direct solution and the first approxima-
tio1, the above mentioned code was applied to the
Howficlds without and with air-injection. The re-
construction of the original profile was snecessfully
done both without and swith air-injection cases.
For the direct problem the code required a mem-
ory of about 400 Mega bites as working volume
and approximately 20 minutes of CPU time. For
the inverse caleulation additional 80 Mega bites as
working volume was necessary. For both cases the
additional 10 mimntes of run gave the converged
results with five digits of accuracy.

Conclusions

An inverse-direct hybrid Navier-Stokes solver us-
ing pseudo-analytic function theories, which can
deal with objectives of evervday designings in en-
. 1s presented. The incorporation and in-
terchange of necessary informations between di-
rect and inverse methods can be smoothly and
completely done. The present paper stressed on
the ideal cases with the perfect data. The appli-
cation of present method to a conventional design-
ing of blade contours was very easy and could be
done completely. The nunerical examples to re-
construct the blade suction surfaces for the un-
steady inlet transonic rotor flow and the linear
cascade Hows without and with air-injection, were
successfully shown. The stabilities in inverse com-
putations for both cases were very good and the
code proved useful for the cases.

gincering
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(b)Transformed cascade geometry
Fig. 6 Transformation of flowfield
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the first approximation
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Fig. 7 Reconstruction of profile section
on pressure side
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Fig. 8 Reconstruction of blade
contour with air-injection
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