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Abstract

In the present paper a numerical / experimental investiga-
tion is presented to address the ability of the solution of
the Euler equations to describe spiral-type vortex break-
down for sharp-edged delta wings. The configuration se-
lected is a 65° swept, cropped delta wing with and with-
out canard. The investigation is carried out at M, = 0.2
for two angles of attack, o = 10° and 20°. The experimen-
tal results include water and wind tunnel flow investiga-
tions, while the numerical study is carried out with the
CEVCATS code using a structured grid with about 1 mil-
lion points. The influence of artificial viscosity and grid
topology on the numerical solution is investigated. Al-
though the implemented numerical scheme is formulated
to provide steady-state solutions and hence not time accu-
rate, the results clearly demonstrate the ability of this
technique to describe spiral-type vortex breakdown. All
essential experimental findings known until now have
been closely reproduced.

Nomenclature
Cp drag coefficient
CL lift coefficient
<p pressure coefficient
Cp, tot. total pressure coefficient,
Cp, tot. = (Ptot."Poo) / Geo
Lk grid index system (Fig. 2)
k@ damping coefficient 2!
M Mach number
MC multigrid cycle, time step
P static pressure
q dynamic pressure
Re Reynolds number, based on root chord
length
T local turbulence level (Eq. 4)
t time
U velocity, U = ((u2+v2+w?) 1 3) 03
u, v, W velocity components
XY,z cartesian coordinate system in streamwise,

spanwise and vertical direction, origin at

wing apex
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o angle of attack
0,y transformation angles between vortex-fixed
and cartesian coordinate system (Fig. 4)

p density

Il 9p/at #i density residual

E.nC cartesian coordinate system, non-dimen-
sionalized by root chord length

n.¢ local cartesian coordinate system, non-di-
mensionialized by local half-span

Superscript

- mean value (Eq. 1)

’ standard deviation (Eq. 2)

* experimental fluctuation

Subscript

C canard

max. maximum value

min. minimum value

v vortex fixed

w wing

oo free stream value

1. Introduction

Vortex flows associated with separation from leading
edges play an important role in todays high-angle-of-at-
tack aerodynamics. The efforts of industry to increase the
performance and manoeuvrability of modern fighter as
well as supersonic transport aircraft result in slender wings
with sharp leading edges. At high angles of attack these
wings generate significant forces through a complex sys-
tem of vortices which is caused by the rolling-up of the
shear layer leaving the leading edge. The forces could be.
exploited to acrodynamic advantage as long as the vortices
are stable and symmetric, but this is limited by the onset of
vortex breakdown ! 2. This phenomenon produces large,
abrupt changes in forces and moments jeopardizing flight
safety. The prevention of vortex breakdown and hence the
possibility of improvements in the performance can be
reached by careful generation and control of the system of
vortices.

1189



Experimental investigations show that the fundamental
structure of the vortices is insensitive to the Reynolds
number since the flow is dominated by the vortices and
they are embedded in an essentially irrotational field 3.
Sharp leading edges guarantee the fixed location of the
primary separation and high Reynolds numbers reduce
the influence of secondary separations on the primary vor-
tex. Experimental investigations show also that the onset
of vortex breakdown is less influenced by viscous effects
but by pressure gradients 46,

For the mentioned geometries and flow conditions CFD
research has produced a number of methods based on ap-
proaches from linearized potential formulations ’ to the
Reynolds-averaged Navier-Stokes equations 812 where
vortices evolve as part of the solution. While the first ca-
tegory of methods is restricted to linear problems and the
location of vortices must be known a priori, the latter
leads to high computational costs and exhibits the lack of
a suitable general turbulence model, Methods based on
the Euler equations, without the specification of an ex-
plicit Kutta condition to enforce separation, are able to
simulate vortex sheets from the leading edge as well 1315,
Their computational costs are not as high, but they ne-
glect viscous effects. Nevertheless, they might be eco-
nomical tools to provide an insight into the system of vor-
tices over slender wings, especially for industrial
purposes.

The ability of methods based on the Euler equations to
simulate the phenomenon of vortex breakdown has been
reported in several papers 1618 However, a detailed ana-
lysis of the type of vortex breakdown described by this
numerical simulation - i.e. bubble or spiral - is missing in
the literature. The present paper focuses on the analysis of
vortex breakdown described by the solution of the Euler
equations. After a description of the studied configura-
tions as well as the boundary conditions of the experimen-
tal and numerical simulations, the essential results of the
simulation are presented.

2. Methodology

2.1 Configurations

For the investigation of the vortex breakdown phenome-
non the geometry of the International Vortex Flow Ex-
periment (IVFE) 15,19 with and without canard was cho-
sen. Between the experimental configurations exist geo-
metric differences concerning the leading edge and the fu-
selage, listed in Tab. 1. While these differences may affect
the position of the leading edge vortex, their influence on
the breakdown phenomenon can be neglected as the out-
line-shape of wing and canard remains the same. Figure 1
illustrates the geometric parameters of the experimental
configurations by means of the canard-on wind tunnel
model. In the numerical simulation both configurations,
with and without canard, do not include a fuselage but
only sharp edged wing and canard geometry in coplanar
arrangement.

fuselage wing application

crossection | section

configu- |leading
ration edge

rectangular {flat plate | water tunnel

canard-off | sharp
« flow visualization2®

wind tunnel
e probe measurements

canard-off | sharp [ rectangular | IVFE

19,26

water tunnel

rectangular | IVFE
« flow visualization?6

canard-on | sharp

wind tunnel, o0 = 10°
¢ probe measurements

canard-on | sharp | rectangular | IVFE

19,26

wind tunnel, o = 20°
e LDV measurements2’

canard-on | round |[circular, IVFE
below wing

Tab. 1 Experimental configurations.

Geometric Parameters
Canard
Aspect Ratio Ac =165
Taper Ratio Ae =04

Ji Sweep L. Edge Qg = 60°

2 Sweep T. Edge Qcrg =35°
Rel. Thickness t. =005
INPZINN

5
Wing
Aspect Ratio Aw =138
Taper Ratio Aw =015
Sweep L. Edge Qws= 65°
Sweep T. Edge Pwre= 0°
Rel. Thickness tw =005
Combination coplanar

l Span Ratio be/by =044

Fig.1 Geometric parameters of the canard-on wind

tunnel model.

2.2 Experimental Investigation

The experimental studies include wind tunnel measure-
ments as well as water tunnel investigations. They were
carried out at the Institute of Fluid Mechanics at Technical
University Braunschweig.

The water tunnel experiments are used for flow visuali-
zation at Re = 7500. The wind tunnel tests have been per-
formed in the 1.3 m wind tunnel (‘Géttingen-type‘, open
testsection). Three-component and flow field measure-
ments with a conical 5-hole-probe have been carried out at
M., =0.1 and Re = 1.4 x 10° for different angles of attack.
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LDV measurements at Re = 0.5 x 10° are provided in dif-
ferent planes perpendicular to the symmetry plane.

2.3 Numerical Simulation

The numerical simulation is based on the solution of the
three dimensional, compressible Euler equations in inte-
gral form using the DLR Euler code CEVCATS 20 The
spatial discretization of the solution algorithm is charac-
terized by a cell vertex scheme and central differences.
For the damping of numerical oscillations first and third
order dissipative terms are added to the governing equa-
tions, following Jameson et al. 21 In subsonic flow the ar-
tificial viscosity is decisively controlled by the user-de-
fined damping coefficient k). The larger the coefficient,
the smaller is the dissipation. Its influence on the the vor-
tex breakdown simulation has been investigated in the
present work. For the integration of the resulting system
of ordinary differential equations in time, an explicit five-
stage Runge-Kutta scheme is applied, making use of three
techniques to accelerate the convergence to a steady state:
local time stepping, implicit smoothing of the residual
and a multigrid method.

Fig.2 Grid with H-H topology (left) and C-O topology
(right).

For the calculations an algebraic grid with about 1 million
points arranged in a 14-block H-H topology was genera-
ted (Fig. 2). The flowfield above the canard is discretized
with 25 x 65 x 49 points in streamwise (i-), normal (j) and
spanwise (k-) direction. Each of the two blocks following
in streamwise direction - between wing and canard as
well as above the wing - consists of 49 x 65 x 49 points.
Further characteristics of the grid are the farfield bounda-
ry extension of approximately 2 wing chord lengths in all
directions and a minimum spacing normal to canard and
wing at the trailing edge of 0.001 wing chord lengths. For
the canard-off configuration the same grid was used, re-
moving the block of the canard. In order to study the in-
fluence of the grid structure, i.e. grid topology and distri-
bution of points, a second grid was generated for the
canard-off configuration, using a 1-block C-O topology
with 113 x 73 x 129 points in i, j, and k-direction (Fig. 2).
The distance between body and farfield is extended to ap-
proximately 10 wing chord lengths. Compared with the
H-H topology the grid clustering in vertical direction is
reduced, leading to a more even distribution of grid points
and therefore to a better resolution of the vortex core. Due

to this procedure the minimnum spacing normal to the wing
in the grid plane at the trailing edge is enlarged to 0.004
wing chord lengths. A comparison of the grid stucture in a
vertical plane at the wing trailing edge is given in Fig. 3.

15
A -
, i T I /
CW - | H-H Topology -—1 C-O Topology
1.0 in
! il
T
05 |
0'0—14...1....1,...|.‘..l
-1.0 -0.5 0.0 0.5 1.0 -
b
Mw
Fig.3 Grid structure in the vertical plane at the trailing
edge, & = 1.0.

In general two criteria are applied for the assessment of
the convergence of numerical solutions: the drop of the
density residual and the behavior of the lift coefficient. In
this study a steady-state solution was considered as being
converged if the residual dropped at least three orders of
magnitude and the lift coefficient was fixed up to 4 deci-
mal places. The demand on the lift coefficient is signifi-
cantly higher compared to general engineering applica-
tions. It is wellknown that in the case of vortex breakdown
above slender wings the numerical solution does not con-
verge to a steady state. For these unsteady solutions the
demand of a harmonic oscillation of the lift coefficient in
time was used as convergence criterion in addition to the
drop of the density residual. The reason for that will be
given in the discussion of the results.

In order to estimate the steadiness of the flowfield mean
values and standard deviations of the flow variables were
calculated for a period of multigrid cycles, MC; ... MC,.
This evaluation is based on the following definitions of
mean value and standard deviation, illustrated by means of
the density p in the gridpoint i, j, k:

mean value
. MC,
Piik = ME,oMC 71 2 Piike )
2 1 t=MC

1

standard deviation

MC,

S 1 2

Pijk = \/MCZ‘MC1t %C Pij =P - @
=M
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For unsteady solutions, where the lift coefficient did not
converge to a steady value, the number of multigrid cy-
cles under consideration was fixed to one period of the
Cp-oscillation. For steady-state solutions the same num-
ber was chosen.

cross components in a vortex-fixed coordinate system v, =
w, = 0. Figure 4 illustrates this relation for the canard-off
configuration at o = 10° in the cross section & = 0.8. For
the determination of the points with no cross components
of the velocity the vortex-fixed coordinate system was in-
troduced according to Fig. 5 and the velocity components

C’ o8 Ac, i = 0.2 Mw mn = 0.847 transformed into this system corresponding to the transfor-
W e L Coutmn="0517 | o = 0091 mation angles ¢ and ¥
' 04 08 u, cos@cosy sin@cosy siny| |u
04 I V.| = | —sing cosQ 0| |v| - 3
w, —cos@siny —sin@siny cosy| |w
0.2 |
' Once the vortex bursts and reverse flow occurs the direc-
0.0 - - tions of the local vortex-fixed coordinate system were ex-
: ' : ‘ ' : trapolated in streamwise direction.
0.8 ,
C, Aplp. = 0.005 Mw, mn. = 0.847 Vortex Axis
w 06 | PPorn= 0949 | Ty = 0.091
0.990
0.950
04 | 0.995
02
0.0 w 1 i 1 I 1
, 08 Fig. 5 Vortex-fixed coordinate system.
CW  [Musmonneo = 084700, o4 o = 0.091
0.6 The validation of the CEVCATS code with respect to the
simulation of seperated flows has been documented in se-
0.4 veral publications 18,22,23 A typical convergence history
is given in Fig. 6 for the canard-off configuration at o =
0.2 10° and M, = 0.2, showing a steady-state solution.
0.0 op | 19 1.0
hﬁF”m”; C,
4 08
10% F
Fig. 4 Total pressure coefficient (above), density (mid- 10° [ 1 os
dle) and cross components of the velocity (be- 10 b '
low) for the canard-off configuration at § = 0.8, 3 C.
o =10° and M, = 0.2. 10° | 04
. . 10° |
In the flowfield analysis the minimum of the total pressure S 3 402
coefficient in a vertical plane & = const. was chosen as cri- 107 ¢ h—an“
terion for the location of the vortex axis. For the descrip- 0% Do gg
tion of the spatial structure of the vortex axis iso-surfaces 0 500 1000 1500 2000 2500 3000 3500
of the total pressure coefficient were used. The criterion MC
for the vortex axis was derived from a detailed analysis of Fig.6 Convergence history for the canard-off configura-

vortical flow with and without vortex breakdown. The nu-
merical simulations showed a perfect agreement of the lo-
cal minima of the scalar variables total pressure, static
pressure and density in streamwise direction and the loca-
tion of points in the vortex flow having only a velocity
component in the direction of the vortex axis u, but no

tion, o0 = 10° and M= 0.2.

A comparison of the calculated flowfield with experimen-
tal results in terms of the static pressure (Fig. 7) shows a
good qualitative and quantitative correlation between ex-
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periment and numerical simulation. Shape and location of
the leading edge vortex compare quite well. For the ca-
nard-on configuration the same quality of the numerical
result compared with the experimental measurements has
been obtained as illustrated in Fig. 8 for the static pressure
coefficient. The existing quantitative discrepancies are
due to viscous effects and a loss of numerical resolution at
the canard itself.

0.4

\
0.0 |- se— @

00 02 04 06 08 10 12
n’
W

Fig.7 Mean pressure coefficient for the canard-off con-
figuration at § = 0.8, o= 10° and M,, = 0.2. Ex-
periment 26 (above) and numerical simulation

(below).

In addition the calculated o = 10°-solution for both con-
figurations has been analysed with respect to the standard
deviation of the flow quantities. The level of the standard
deviation of this converged steady-state solutions can be
considered as a measure for the fluctuations resulting ex-
clusively from the numerical procedure. The knowledge
of this ‘numerical noise* is necessary for the evaluation of
an unsteady solution where the higher standard deviation
of the flow quantities is based on physical phenomena. It
is obvious that for a steady-state solution the level of the
standard deviation depends on the convergence level of
the solution in terms of the density residual: The deeper
the density residual has dropped, the lower is the level of
the standard deviation of the flow quantities. In Fig. 9 the
standard deviation of the pressure coefficient for the ca-
nard-off configuration is shown in a vertical plane at £ =
0.8 . It has been calculated for an intervall of 30 multigrid
cycles at the end of the solution process (MC = 921 ...
950) where the density residual is of the order Il dp/dt Il =
1 x 107 (Fig. 6). The standard deviation of this highly
converged solution is random distributed and, with the
maximum value c¢,’ .. = 1.6 x 106, at least 5 orders of
magnitude below the mean values (Fig. 7). An analogous
result has been obtained for the canard-on configuration.

1.2

1-0 : : T

Fig. 8 Maean pressure coefficient for the canard-on confi-
guration at £ =0.15, a= 10° and M = 0.2. Nu-
merical simulation (above) and experiment 26 (be-

low).
0.8
C_,, Ac) = 0.5E-6
w 1.0E-6
06 cp,,max~ = 1.6 E'G kK> é/ 0.5 E-6|
04 o o
>

Fig. 9 Standard deviation of the calculated pressure co-
efficient for the canard-off configuration at & =
0.8, o= 10° and M, = 0.2.

1193



3. Results

3.1 Vortex Breakdown

The vortex breakdown over the canard-off configuration
has been investigated at o, = 20° and M_, = 0.2 on the H-H
grid. For this angle of attack the Euler code does not con-
verge to a steady state according to Fig. 10. After a drop
of 3 orders of magnitude the residual remains almost con-
stant and the lift coefficient shows oscillations. At the end
of 1000 multigrid cycles it oscillates harmonicly with an
amplitude of about 1.5% of the mean value Cy = 0.955
and a period of 30 multigrid cycles.

“ op ” 10° 1.0
ot | 10" C,
1ot | 4 0.8
-3
10 1 06
10
10% 4 04
10°
402
107
10-5 ! PN R | Pl R | N 0.0
0 500 1000 1500 2000 2500 3000 3500
MC
0.98
c o I MC=3216 3224 4.,
0.96 | 3238
0.95 |
0.94 [
1 i L | " " 1
3180 3200 3220 3240
MC

Fig. 10 Convergence history for the canard-off configu-
ration and detail, o.=20° and M_, = 0.2.

The surface pressure distribution as calculated on the H-H
grid is shown in Fig. 11. The mean values on the left-hand
side indicate the well-known vortex pattern. The corres-
ponding standard deviation is shown on the right-hand
side. Compared to the steady o = 10°~case in Fig. 9 the
values have increased of about 5 orders of magnitude.
This indicates an unsteady flow situation within the vor-
tex close to the trailing edge. The values of the standard
deviation reach a maximum there and fade away in up-
stream direction.

The further analysis of the unsteady phenomena is carried
out in two steps: In the first place the flow is analysed in
space for a fixed time step (MC = 3216). The result is
shown in Fig. 12. A region of reverse flow is found close
to the wing trailing edge, indicated by the iso-surface u, =

0. The vortex axis, visualized by an iso-surface of the total
pressure coefficient, turns out to be a straight line in
streamwise direction starting from the wing apex. In the
vicinity of the reverse flow region the vortex axis moves
downwards and inboard, thus forming a spiral with a sense
of rotation against that of the vortex, see also Fig. 16. This
means that for the time step under consideration the struc-
ture of the vortex is of spiral type.

0.0

02

0.4

06 |

0.8

1.0

Fig. 11 Surface pressure coefficient calculated on the H-
H grid at o = 20° and M, = 0.2. Mean value (left)
and standard deviation (right).

0.0

1\

Vortex Axis

Streamline

1.2 | L ] L 1 L 1 L 1

Fig. 12 Flow visualization at o, = 20°. Experiment 26 (left)
and numerical simulation for MC = 3216 (right).
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In a second step the flowfield is analysed for different
time steps (MC = 3216, 3224, 3232 and 3238) at a fixed
location. As a result the distribution of the total pressure
coefficient is given in the plane & = 0.99 close to the trai-
ling edge (Fig. 13). The vortex axis is indicated by the
minimum of the total pressure coefficient. It turns out
that, with respect to time, the spiral-shape part of the vor-
tex axis rotates in the sense of the vortex motion.

0.8 :
Cw MC = 3216 | My m, = 0972
0.6 Cy tor. min. = ~1-502 | Gy o = 0.124
Ac . = 02
04 |
: 1.0
02 + 0.8
o L&
H L |
0.8 :
¢ MC = 3224 | W, = 0886
W oo L Cooumn=1183 | Cum = 0342
1.0
04 | 08
! 1.0
02 | O i i
0.0 |: .<\ =
. L i . I L L . [
0.8
g MC = 3282 [ Wy, = 0793
W e | Coomn= 1285 | Cumo = 0247

04
02 |
0.0 |
i L
0.8 :
C MC = 3238 | My m, = 0.867
w 0.6 Cp. 1ot min. = ~1.157 ‘womn, = 0.178

04 +

02

0.0

Fig. 13 Total pressure coefficient for the canard-off con-
figuration at & = 0.99, o = 20° and M, = 0.2.

In Fig. 14 a vertical plane through the vortex axis (in the
region 0 £ & < 0.8) is considered showing the standard de-
viation of the total pressure coefficient. A funnel-shape
structure with isolated maximum values can be observed.
This structure results from the rotating motion of the vor-
tex axis. Hence, the periodic rotation of the vortex axis in
the breakdown region causes strong fluctuations of the
flow quantities which also influence the flow on the wing
surface and lead to the significant oscillations of the aero-
dynamic coefficients mentioned above.

0.4

0.3

0.2

0.1

0.0

Fig. 14 Standard deviation of the calculated total pressure
coefficient for the canard-off configuration in a
vertical plane along the vortex axis, ot = 20° and
M, =0.2.

The numerical results of the present analysis are in excel-
lent agreement with all existing observations of spiral-type
vortex breakdown in experiments. Figure 12 shows e.g.
the flow visualization in the water tunnel with spiral-type
vortex breakdown close to the wing trailing edge.

The influence of artificial viscosity and of grid topology
on the spiral-type vortex breakdown has been investigated.
All the results for the canard-off configuration discussed
above have been obtained on the H-H grid with a damping
coefficient k) = 16. Further calculations with k¥ = 12,
32 and 128 have been carried out (Fig 15). The conver-
gence history for k™ = 12 and 32 shows a behavior as for
k™ = 16 according to Fig. 10. Moreover both calculations
describe qualitatively the same solution, a spiral-type vor-
tex breakdown as discussed previously. The quantitative
differences result from the influence of the artificial vis-
cosity: The higher the artificial viscosity, the more the vor-
tex flow is damped, leading to smaller gradients of the
flow quantities, smaller deviations and consequently a
smaller amplitude of the Cj-oscillation. However flow-
field analyses showed almost identical size and position of
the reverse flow region for k@ = 12, 16 and 32. On the
other hand, if the reduction of the artificial viscosity
reaches a certain level, the harmonic C; -oscillation is su-
perimposed by additional disturbances as indicated for k@
= 128 in Fig. 15. In this case the standard deviation level
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of the flow quantities increases significantly and the spi-
ral-type breakdown structure can no longer be identified.
These results justify the applied convergence criterion of
harmonic oscillation of the lift coefficient (see section
2.3) for converged solutions. The effect of the artificial
viscosity on the occurrence and identification of spiral-
type vortex breakdown can be summarized as follows:
Usual values of the damping coefficient k™ =12, 16, 32
which provide convergence for steady-state solutions (o, =
10°) cover also the spiral-type vortex breakdown (o =
20°). For larger values of & convergence to a steady
state as well as to an unsteady state is lost. The beginning
of this process can be seen for k' = 128 in Fig. 15.

“ op | 10° 12
N C
3 L
10°
0.8
10'
128 0.6
10°
g 0.4
10
107 0.2
10? 0.0

Fig. 15 Convergence history for the canard-off configu-
ration with different artificial viscosity, o0 = 20°
and M_=0.2.

Finally the spiral-type vortex breakdown has been calcu-
lated by means of another grid topology. For this purpose
a C-O grid was used with about the same total number of
grid points as in the previous investigations. Nevertheless
the vortex flowfield in the vicinity of the wing is covered
by a larger number of grid points leading to a better reso-
lution of the flowfield as indicated in Fig. 3. The damping
coefficient was k' = 32, In spite of the different grid
structure the calculation converged to almost the same os-
cillating solution as obtained previously on the H-H grid:
The location of the vortex axis as well as size and position
of the reverse flow region are the same, as shown in Fig.
16 for a certain time step. The vortex axis is marked by an
iso-surface of the total pressure coefficient. In the vortex
breakdown region the vortex axis winds around the re-
verse flow region against the sense of the vortex flow mo-
tion as already shown in Fig. 12. The surface pressure dis-
tribution calculated on the C-O grid for o = 20° is shown
in Fig. 17 for comparison with the corresponding result of
the H-H grid in Fig. 11. The surface pressure mean values
are about the same. However, high values of the standard
deviation are not only observed in the breakdown region
but also more upstream where the H-H grid solution ex-

hibited steady flow. An analysis of several time steps
showed that the increase of the standard deviation up-
stream of the vortex breakdown results from the rotation
of a slightly deformed vortex axis in this region. This phe-
nomenon is also known from experimental investiga-
tions 2%, In detail the spatial amplitude in the region up-
stream of vortex breakdown is significantly smaller
compared to that in the breakdown region, but the gradi-
ents of the flow quantities are much stronger there which
causes the high fluctuations. Hence, the better resolution
of the vortex flow on the C-O grid provides more detailed
information about the vortex breakdown phenomenon.

-1.4

Iso-Surface ¢

D, tot. =

Iso-Surface u,= 0

Fig. 16 Vortex axis and reverse flow calculated on the C-
O grid for a fixed time step, o0 = 20° and M, =
0.2.

0.0

02

04

08

1.0

Fig. 17 Surface pressure coefficient calculated on the C-O
grid at o. = 20° and M_, = 0.2. Mean value (left)
and standard deviation (right).
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3.2 Vortex Stretching

Experimental investigations on close-coupled canard con-
figurations 25,26 have shown vortex stretching pheno-
mena in the region between canard and wing. In order to
understand this process in more detail, Euler calculations
have been carried out for the IVFE canard-on configura-
tion at o = 20° and M,, = 0.2. The results are compared
with wind tunnel LDV measurements. Figure 18 presents
the measured mean velocity in horizontal sections
through the canard vortex axis in the region between the
canard and the wing.

-0.3'—-~E
g 5

-0.2 |

0.0 |-
01 |
0.2 |-
03 -
04 |
0.5

0.6 -

00 01 02 03 04

n

Fig. 18 LDV measurements 2 of the velocity in sections
through the canard vortex at o = 20°.

In the centre of the vortex the flow is decelerated near the
canard trailing edge and re-accelerated close to the wing
leading edge. In the present wind tunnel investigation the
axial velocity along the vortex axis is positive every-
where, but water tunnel flow visualizations have also
shown reverse flow in this region. From the LDV experi-
ments a measure for the experimental fluctuations can be
derived. For this purpose a local turbulence level T has
been determined:

23
1 fu* e wt
TU-B /-—7—~ ) @

which is based on the fluctuation of two velocity compo-
nents u* and w* and on the local mean velocity U. Figure
19 shows the results in horizontal sections through the ca-
nard vortex axis. The fluctuations increase close to the
trailing edge of the canard and decrease near the leading
edge of the wing. Hence, between canard and wing re-
duced velocities and increased fluctuations are present
within the canard vortex. This phenomenon is also clearly
indicated in the flow visualization from water tunnel ex-
periments according to Fig. 20.

03 |
> oz
01 |-
0.0 |-
0.1 |-
02 -
0.3 |-
0.4 |-

05 |-

06

00 01 02 03 04

n

Fig. 19 Local turbulence level in sections through the ca-
nard vortex, results of LDV measurements 25 5t
o =20°

The numerical simulation for the canard-on configuration
converged smoothly, similar to the ot = 10°-case of the ca-
nard-off and the canard-on configuration as discussed in
section 2.3. Furthermore, this computation has been re-
peated for different damping coefficients k® = 32, 64 as
well as 128 and the results do not indicate any significant
differences.
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Vortex Axis

Streamline

Vortex Axis

-0.4 -0.3 -0.2-0.1 0.0 0.1 0.2 0.3 0.4
n

Fig. 20 Flow visualization at o = 20°. Experiment 2°
(left) and numerical simulation (right).

The structure of the flowfield is analysed in Fig. 21 by a
comparison of calculated and measured velocities in a
cross section at § = 0.05 through the centre of the stret-
ching region. Both results show a region of reduced ve-
locities near the vortex axis which is surrounded by an an-
nular region of higher velocities. The flow phenomena are
the same in the experiment and the numerical simulation
and the values of the extrema correlate quite well. Con-
cerning the location of the canard vortex axis conside-
rable differences between the experimental and numerical
result are present due to the fact that viscosity effects such
as the secondary separation are not taken into account and
due to differences in geometry.

Using the techniques described in section 2.3 the location
of the axis of the canard vortex and of the wing vortex has
been evaluated and plotted in Fig. 20. In addition a certain
streamline of the canard vortex is shown. The stretching
process takes place over the rear part of the canard and
downstream of the canard trailing edge. In this region the
vortex axis shows a remarkable kink towards the symme-
try plane and upwards. For M_, = 0.20 a region of reverse
flow could not be detected, but this matter is very sensi-
tive to the free stream Mach number, since for M, = 0.21

a small region of reverse flow is present. The general flow
pattern of the numerical simulation correspond to the wa-
ter tunnel flow visualization which is shown on the left-
hand side of Fig. 20. Compared to the wind tunnel and the
numerical results the flow visualization in the water tunnel
shows that the location of the canard vortex is shifted to-
wards the symmetry plane due to the significantly lower
Reynolds number of the water tunnel experiment.
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Fig. 21 Mean velocity for the canard-on configuration at
€ =0.05, oe = 20° and M,, = 0.2. Numerical simu-
lation (above) and experiment 2° (below).

In Fig. 22 the calculated standard deviation of the axial ve-
locity in a plane through the canard vortex axis in the
stretching region is shown. The observed values are about
4 orders of magnitude higher than those of the o = 10°-s0-
lution. Hence, the level of the standard deviation is one or-
der of magnitude below the level observed in connection
with spiral-type vortex breakdown. In detail a spiral struc-
ture of the vortex axis could not be identified. The high
values of the standard deviation result from a bulging and
stretching of the decelerated flow.
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Fig. 22 Standard deviation of the calculated axial veloci-
ty component in a plane through the core of the
canard vortex, o0 = 20° and M_, = 0.2.

According to all the described features of the vortex
stretching, this phenomenon can be considered as a
rearrangement of the vortex structure and hence it might
be seen as a preliminary condition necessary for the de-
velopment of vortex breakdown.

4, Final Remarks

An analysis was presented on the delta wing vortex break-
down predicted by the numerical solution of the Euler
equations, using a numerical scheme implemented for
steady-state solutions. The study was carried out using the
DLR computer code CEVCATS and the low speed test fa-
cilities of TU Braunschweig. The incompressible flow
(M., = 0.2) around a 65° swept, cropped delta wing with
and without a close-coupled canard was studied for two
angles of attack, o = 10° and 20°. The experimental in-
vestigations of the vortex flow included LDV and probe
measurements as well as water tunnel flow visualizations.

The numerical simulation was carried out on a structured
grid of about 1 million grid points. The accuracy of the
computer solutions was addressed by sensitivity studies
concerning variations of numerical parameters and grid to-
pology.

For the canard-off configuration, the investigations
showed an unsteady behavior of the numerical solution
once vortex breakdown occurs, leading to periodic oscilla-
tions of the aerodynamic forces. For a fixed time the spa-
tial distribution of the flow quantities indicates a spiral
structure of the vortex axis in the breakdown region,
which is well-known from experiments. When time pro-
ceeds the spiral structure rotates in the sense of the vortex
motion. This periodic rotation leads to the observed oscil-
lations of the flow quantities. In the breakdown region re-
duced axial velocities as well as reverse flow was found.

For the canard-on configuration the numerical solution did
not exhibit wing vortex breakdown but a stretching of the
canard vortex in the region between the canard trailing
edge and the wing leading edge. While the axial velocity
component showed an abrupt deceleration in this region,
leading to reverse flow in some cases, no spiral structure
of the vortex axis could be identified.

Concluding, despite the lack of time accuracy the numeri-
cal solution predicted many of the important flow features
associated with vortex breakdown.
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