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Abstract

Vortex flow phenomena at high angles of
incidence are of great interest to the designers of
advanced combat aircraft. The steady phenomena (such
as steady lift and pitching moments) are understood
fairly well, whereas the unsteady phenomena are still
uncertain. This paper addresses two important unsteady
phenomena on delta wings. With regard to the
frequency parameter of the quasi-periodic excitation
caused by vortex bursting, a new correlation is
established covering a range of sweep back from 60° to
75°.

With regard to the much lower frequency
parameter of limit-cycle rigid-body wing-rock, a new
experiment shows conclusively that although the motion
is non-linear, the frequency parameter can be predicted
by quasi-steady theory. As a consequence, for a given
sweep angle, the frequency parameter is inversely
proportional to the square root of the inertia in roll.
This is an important observation when attempting to
extrapolate from model tests to wind tunnels to predict
the wing-rock characteristics of aircraft.

Introduction

Vortex flow phenomena at high angles of
incidence are of great interest to the designers of
advanced combat aircraft. The steady phenomena (such
as steady lift and pitching moments) are understood
fairly well, whereas the unsteady phenomena are still
uncertain. This paper addresses two important unsteady
phenomena on delta wings. With regard to the
frequency parameter of the quasi-periodic excitation
caused by vortex bursting, a new correlation is

established covering a range of sweep back from 60° to
75°.

With regard to the much lower frequency
parameter of limit-cycle rigid-body wing rock, a new
experiment shows conclusively that although the motion
is non-linear, the frequency parameter can be predicted

by quasi-steady theory. As a consequence, for a given
sweep angle, the frequency parameter of the wing-rock
on a given configuration depends upon the inertia in roll
parameter, VpSbc“/I (sometimes known as the apparent
mass parameter). This is an important observation when
attempting to extrapolate from model tests to wind
tunnels to predict the wing rock characteristics of
aircraft.

Review of vortex shedding frequencies

The tremendous cost of replacing the fins of
some combat aircraft after only a few hours flying has
created great interest in the prediction of the buffet
excitation frequency on the fins of combat aircraft at
moderate/high  angles of incidence, o, (say
20° < a < 50°). The present author noted that for every
wing/fin configuration tested within many RAE/DRA
experiments, the frequency parameter, n = f&/U, of the
peak in the buffet excitation parameter, \/ nG(n) (fully
defined according to the AGARD notation in Ref 1)
varied with the angle of incidence according to the
relation '

(fc/U) sin o = constant , 2-n
where the constant varied from about 0.2 to 0.8 with the
different configurations (eg widely different wing
shapes, single and twin fins). The universal form of
equation (2-1) suggests that large scale separations have
global characteristics independent of their particular
origin. This inference is confirmed by a review of the
experiments on aerofoils, flat plates and delta wingsz.

Experimental data

Aecrofoils and flat plates

Fage and Johansen observed that the large
scale vortex structures shed from aerofoils and flat
plates of infinite aspect ratio are nearly the same>. For
both aerofoils (with flows separated completely from the

leading edge to the trailing edge) and for flat plates with
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sharp edges they suggested that the length scale, L,
determining the wake shedding frequency was the
approximate wake width

L=csina. 2-2)

Using this length scale they found a relationship for the
frequency parameter, Fig 1.

For aerofoils and flat plates for 30°< o < 90°

(fe/U) sin o = 0.15 . (2-3)

Ref 4 shows that even for a flat plate of aspect ratio 1.6,
equation (2-3) applies. For the square flat plate4 with
a highly three-dimensional flow there is a wider
variation (see Fig 1) over the incidence range from
o =38° to a = 90°.

Delta wings

In a study of the principal helical mode vortex
instability on delta wings, Gursul showed® how the
frequency of the quasi-periodic pressure fluctuations
measured on the wing decreased with the streamwise
distance from the apex, x. (cf Ref 5, Fig 10.) The
curves (referenced to the root chord ¢) varied both with
the angle of incidence, o, and the sweep angle, A, of
the four delta wings considered (A = 60°, 65°, 70° and
75°). The predominant pressure fluctuation frequency
on the 60° delta wing at x/c = 0.89 was close to that
observed by a hot wire in the wake (Ref 5, Fig 7).
Thus the wake frequency from the measurements of
Ref 5 is given by

x=c. (2-4)

Fig 2 shows that for A = 60°, 65° and 75° there is a
characteristic ‘plateau’ region where

(fc/U) sin « = constant . (2-5)

and where the constant varies from about 0.4 for
A = 60° to about 0.9 for A = 75°; this range of constant
is comparable with that of equation (2-1). For the
lowest angles of incidence equation (2-5) is not satisfied
for A = 60°, 65° and 75°, presumably because here the
vortex breakdown position is just downstream of the
trailing edge, so that the similarity rules appropriate to
the vortex burst phenomenon are inapplicable. Again,
for these three sweep angles equation (2-5) is not
satisfied for the highest angles of incidence, presumably
because now the vortex burst is close to the apex of

every wing. Equation (2-5) is less satisfactory for
A =70°, a minor anomaly caused by some feature in
the vortex development.

The systematic variation in reduced frequency for
A = 60°, 65° and 75° suggests that a unique frequency
parameter might be found if a reference length L
appropriate to the phenomenon could be identified.
These disparate measurements can be reduced to a
unique wake frequency parameter which determines the
excitation on fins, giving a useful design rule for delta
wings related with the semi-span, s. Equation (2.2) is
replaced with the reference length

L=5ssina =ccotAsina. (2-6)

Fig 3 shows that equation (2-6) is appropriate for
A = 60° 65° and 75°, the constant being

(5/U) sin ¢ = (fc cot AJU) sin o = 0.25 +0.02 .
27

With regard to the minor anomaly for A =70° the
plateau is not well defined. However, it is significant
that now all the values given are intermediate between
those for A = 65° and 75°.

Semi-empirical theory for wings

Currently there is no theory to predict the -
vortex burst excitation frequency observed on delta
wings or on wings with widely varying planforms and
camber distributions. However, the universal form of
equation (2-1) suggests an heuristic framework (Fig 4)
which explains the character of all the experiments and
implies an interesting expression for an appropriate
reference length, d’. It is important to appreciate that
the cross-flow velocity, U sin a, is common to all three
flow regimes to be described within Fig 4. For
simplicity and brevity, the flow about delta wings is
described, but similar remarks would apply to other
wings, which might have combinations of vortices and
swept bubbles.

Low angles of incidence

For low angles of incidence (Fig 4a, typically
0 { a { 20°) there are small, unburst vortices situated
close to the wing. Although there is local excitation
(buffet) on the wing, the separations in the cross-flow
plane are closed, so that the width, d’, of the cross-flow
shear layer is given by the relation
d=0. (2-8)
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Thus for low angles of incidence, although there may be
local excitation on the wing or on a horizontal tailplane
in the wake of the wing, there will be little excitation at
the top of a fin. Hence there will be little fin buffeting
in this flow regime.

Moderate/high angles of incidence

For these angles of incidence (Fig 4b,
typically 20° ( o ( say 60°) there are large, burst
vortices situated some distance away from the wing,
Now the separation in the cross-flow plane must be
open so that vorticity can be shed. Thus there will be
a high level of excitation at the top of a fin and hence
severe fin buffeting, in addition to heavy wing
buffeting. Equation (2-7) suggests an interesting, semi-
empirical expression for d’. A three-dimensional
relationship analogous with the two-dimensional
equation (2-3) would be

S$* = (fd'|U sin a) = universal constant . (2-9)

because the cross-flow velocity is always U sin o.. By
inspection, equations (2-9) and (2-7) can be compatible
only if

d' = constant s sin® o . 7\ (2-10)

It is interesting that such a simple expression could
explain such a diverse collection of measurements. Of
course, at present we cannot be sure that there is a
universal relation making equation (2-9) valid, but it is
a reasonable working hypothesis. It is plausible to hope
also that the constant is close to that given by
equation (2-3) for two-dimensional shear layers,
although we have no direct measurements of d' to
confirm this. Making this assumption in equation (2-9),

(fd'JU sin a) = 0.15 , 2-11)

we find from equations (2-11) and (2-7) that for the
intermediate range of incidence

d = 0.60 s sin® « . (2-12)
High angles of incidence

For high angles of incidence (Fig 4c, typically
60° (o (90°) the wake from a wing is the same in
character as that from a bluff body. Thus close to the
wing there will be low level, random excitation covering
a wide range of frequencies. This excitation gives
light/moderate levels of wing buffeting and some

buffeting on horizontal tailplanes. However, there could
be some excitation at a higher level (but now covering
a broad range of frequencies) at the edges of the shear
layer: on particular configurations this might also excite
light/moderate levels of fin buffeting.

Review of wing-rock

Physical phenomena

The control of many aircraft at high angles of
incidence (with separated flows) is limited by the
phenomenon of wing-rock. Wing-rock is a Limit Cycle
Oscillation (LCO) in the rigid body roll mode discussed
by many authors, eg Nguyen and Ross®. Prediction
methods for the onset and frequency of wing rock,
considered as a non-linear problem, have been derived

and applied successfully to several different aircraft’.

The present author’s interest in the
phenomenon stems from the frequency of the oscillation,
which has received little comment. Suppose a model (a
delta wing is considered here) is mounted in a wind
tunnel (Fig 5) with a single, rigid-body freedom in roll
(generally provided by a roller bearing but ideally by a
frictionless air bearing). Then, as the angle of incidence
increases slowly at constant speed, two alternative
sequences of events may occur. The model motion in
roll may be random buffeting which increases steadily
in rms amplitude, reaches a maximum and then
decreases. This behaviour is typical of delta wings with
fow to moderate sweep (Fig 5a). This motion is similar
to the variation of the buffet excitation on an aerofoil
with separated flow®. An alternative sequence is that
the model motion may initially be random buffeting, but
at a higher range of incidence it may develop into a
large amplitude LCO in roll. For an even higher angle
of incidence the roll motion reverts to low amplitude
buffeting: this behaviour is typical of highly swept delta
wings (Fig 5b). The interesting feature of these
radically different sequences is that the frequency, and
hence the frequency parameter, of these motions is
generally much the same throughout the whole range of
incidence. This suggests the hypothesis that although
the equations governing the motion are non-linear’,
there must be a constant, quasi-linear stiffness, giving
the nearly constant frequency parameter. In contrast,
complex variations in the aerodynamic damping will
determine the character of the motions and, in particular,
the roll LCO amplitude.
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Implications of quasi-steady theory

Suppose that a quasi-steady aerodynamic
stiffness does exist. Then the roll stiffness, k, will be
given by

k = (C,)aSb . 3-1)

For quasi-steady motions the aerodynamic and friction
terms (giving damping) may be neglected. Hence the
equation of quasi-steady motion in roll becomes

1% '+ kp =0 . (3-2)

It is easy to show that the frequency parameter of the
roll-motion is given by

_fe 1 pr02 3-3
n=424% =2 I C ] (3-3)
U 2n €y 21

Thus if a quasi-steady aerodynamic stiffness exists for
a given model geometry the frequency parameter of the
motion will be independent of the velocity but inversely
proportional to the square root of the inertia in roll. In
addition, passive devices, (eg fins or leading-edge
fences) which reduce wing-rock leave the frequency
parameter of the motion almost unaltered. Hence these
devices cannot be altering the aerodynamic stiffness in
roll (represented in equation (3.3) by Clq;)- Thus the
quasi-steady equation (3.3) is crucial in studying wing-
rock.

The choice of the most appropriate value of
Chb from a typical low frequency, non-linear LCO
(Fig 6) raises interesting questions. The region within
the cycle where the direction of the motion is clockwise
is unstable and energy flows into the system. This
region could be approximated by a straight line through
the image points Al, A2 and the origin, with a high
slope

Cp =4 . (3-4)

Use of equation (3-4) would, of course, ignore
the region within the cycle where the direction of the
motion is anticlockwise and stable. Here energy is
dissipated. Both regions might be included, and perhaps
the stiffness forces might be better approximated, by a
straight line through the extreme image points (defining
the largest roll amplitude) B1, B2 and the origin, with
low slope

C,=B. (3-5)

Equations (3-4) and (3-5) are only linear
approximations to a difficult non-linear phenomenon.
However, as an engineering approximation for a quasi-
steady theory equation (3-5) has the apparent advantage
of including both regions within the LCO. Despite this
we shall see later that equation (3-4) gives better
agreement than equation (3-5) with a diverse collection
of experiments (Fig 9). For the limit cycle oscillation
of an 80° swept delta wing at oo = 30° (close to the
condition for maximum amplitude in roll), Fig 4.22 of
Ref 9 shows that the higher slope is A = 0.20/radian and
the lower slope is B = 0.10/radian. Fig 8 includes
straight lines for these values.

Results

The experiments were made as student
research projects in the 5ft x 4ft Low Speed Wind
Tunnel in the Department of Acronautics at Imperial
College: a consistent and repeatable wing-rock was
established with a leading-edge swept 80°. This motion
was studied in tests when the inertia in roll was varied!®

(Fig 7).

The results are described fully elsewhere! -1,
Fig 8 shows the variation of the frequency parameter, n,
of the Limit Cycle Oscillations with the angle of
incidence, where the amplitude, ¢, typically varies from
about 30° to 45°. Apart from some scatter, for every
tip pod the frequency parameter is independent of the.
velocity, consistent with equation (3-3). With regard to
the variation with the angle of incidence, for every tip
pod 1 increases steadily from about o = 25° to 40°. For
the brass and aluminium tip pods (Figs 8a and 8b
respectively) the oscillation is completely suppressed at
o = 45° (n =.0!), due to the combined effects of bearing
friction and high inertia! '12. In marked contrast, Fig 8c
shows that for the balsa pod n actually reached a
maximum at o = 45°, even though the amplitude there
is only about ¢ = 14°. Subsequently n falls steadily
from o = 45° to 55°.

Comparison of the measurements of frequency
parameter, n, at o = 30° with the inertia parameter,
v prcz/I from the present tests'? and widely disparate
sources provides a severe test of the validity of
equation (3-3). {The value selected for A is 0.20.]
Fig 9 shows that the measurements on the three small
models (with ¢ about 0.4m and I about 1 x 10'3kg m?)
fit equation (3-3) quite well. This is not surprising,
because A was evaluated from tests on one of these
models. The measurement from the single very large
model (with ¢ about 1.8m and I about 92 x 10'3kg m?)
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also compares reasonably well with equation (3-3).
Hitherto this high frequency parameter (n nearly 0.2)
has been regarded as anomalous.

Conclusions

This paper suggests four main conclusions
which will be justified more fully elsewhere!2. With
regard to the vortex development on fixed delta wings
the conclusions are:

A new correlation of the quasi-periodic
shedding frequency associated with vortex
bursting on delta wings has been suggested
(equation 2-7),

A tentative, semi-empirical expression for the
cross-flow wake width at intermediate angles
of incidence has been developed
(equation 2.12). This expression would be
consistent with the quasi-periodic excitation
frequencies referred to above.

With regard to Limit Cycle Oscillations (LCO) in roil
the conclusions are:

3 Although the LCO is a non-linear
phenomenon the experimental measurements
are consistent with an approximate, quasi-
steady linear theory.

4 The measurements of frequency parameter
have been correlated by the aerodynamic
inertia parameter v pScbi/I, and are consistent
with a wide range of measurements on similar
configurations (Fig 9).

List of symbols

A, B particular values of Chb (Fig 6)

b wingspan

c,c root or aerodynamic mean

chord of wing

Cip quasi-steady rolling moment

coefficient/radian (eqn 3-1)

d’ width of shear layer

f excitation frequency

I inertia in roll

k aerodynamic roll stiffness (eqn 3-1)

L characteristic length

vVnG(n) buffet excitation parameter

(defined in Ref 1)

S wing area

1171

semi-span of delta wing
angle of incidence (°)
sweep angle (°)

roll amplitude (radians or °)

e > »
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