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Abstract

A computational fluid dynamics method for solving
the Euler equations using unstructured tetrahedral grids is
applied to simulate vortical flows on three configurations:
delta wing, double-delta wing-body and wing-body-tail
model. The principal objective is to assess the effectiveness
of the method in predicting aerodynamic forces, moments
and surface pressures up to maximum lift conditions at sub-
sonic speeds. The primary assessment criteria are turnaround
time and accuracy. The Euler method consists of a grid gen-
eration tool based on advancing front technique and a flow
solver that uses an implicit cell-centered upwind algorithm.
Solution sensitivity to grid density and flux limiter functions
is investigated. Computed solutions are compared with the
available experimental data and structured-grid Euler
solutions. The results contribute to a better understanding of
the capabilities and limitations of the method.

Introduction

Vortical flows are of special significance to aircraft
designed for efficient supersonic cruise, such as advanced
tactical fighters and high-speed civil transports. During take-
off, landing, or maneuvering flight conditions, the flow in-
variably separates from the leading edges of their swept,
slender wings resulting in the formation of vortices. In some
instances, flow separation from the forebody produces addi-
tional vortices. These vortices strongly influence the aerody-
namic characteristics whose accurate estimation is of critical
importance to aircraft design. Forces and moments are need-
ed to evaluate performance and handling qualities; surface
pressures and flow-field data provide inputs for structural de-
sign as well as for propulsion-system and weapon-system
integration.

To date, costly and time-consuming wind-tunnel
tests have been used almost exclusively to produce the de-
sired aerodynamic data to support design needs. A judicious
mix of wind tunnels and computational fluid dynamics
(CFD) affords a more cost-effective alternative. Successful
pursuit of this alternative is predicated upon the availability
of computational methods that provide rapid turnaround and
reliable accuracy at low cost. Although past research has pro-
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duced a variety of computational tools, they are not yet fully
effective in meeting the design needs.

Methods based on the linearized potential-flow for-
mulations were developed during the 1970s. These methods
rely either on the use of Polhamus suction analogy M with
vortex-lattice techmques(2 - or the use of off-surface singu-
larities in panel codes to explicitly model free-vortex
sheets'” whose location and strength are iteratively
determined. Vortices cannot naturally evolve as a part of the
solution. Although these methods are fast and affordable,
they are unable to provide an accurate representation of the
vortex itself and the associated flow field. Also, their predic-
tions are less than reliable for transonic conditions as well as
for flows with multiple interacting vortices or vortex burst.

During the 1980s, dramatic progress was made in
methods to solve the Euler and Reynolds-averaged Navier-
Stokes (RANS) equations using structured hexahedral grids.
Euler methods are found to be quite capable of automatically
capturing principal features of vomcal ﬂows including vor-
tex burst, for sharp-edged planforms 7 This capability is
directly attributable to the presence of artificial viscosity,
whether explicitly added as in central-difference schemes or
inherently present as in upwind schemes. Although the mag-
nitude of artificial vicosity is small, it is sufficient to mimic
the role of true viscosity in causing flow separation at the
sharp edges. Secondary vortices arising from boundary-layer
separation as well as primary vortices resulting from flow
separation on smooth surfaces, e.g., round leading edges,
may be simulated by coupling Euler methods with boundary-
layer codes. However, the use of RANS methods is much
more common.

Although 1mpress1ve RANS solutions have been
obtained,”® some accuracy issues remain unresolved. For
example, most RANS solutions use the thin-layer approxi-
mation with grids clustered near the solid surfaces; grids in
the vortical-flow regions remain relatively coarse. Also, only
second or third order accurate schemes have been employed
A recent study by Dacles-Mariani et al."® recommends using
a minimum of 15-20 points across the vortex cores with a
grid cell aspect ratio of 1. The study also suggests using
higher-order accurate discretization, e.g., fifth order, to re-
duce numerical dissipation effects.

In spite of the substantially enhanced capabilities
that structured-grid Euler and RANS methods offer, their ef-
fectiveness in the design process is severely hampered by
long turnaround times associated with their application. The
more widely-used methods employ either patched multiblock
or overset hexahedral grids. Constructing such grids for com-
plex geometries continues to be a time-consuming and
labor-intensive task. The unstructured-grid CFD methods of-
fer an attractive alternative and promise to significantly
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reduce turnaround time—from several weeks to a matter of
days or hours—through more "automated" grid generation.
Ongoing efforts are directed at both tetrahedral' "' and Car-
tesian/prismatic">'? grid methods.

The principal objective of the present study is to as-
sess the effectiveness of a tetrahedral-grid Euler method for
vortical flow simulation. The primary criteria are turnaround
time and accuracy. The approach involves correlating com-
putational solutions with the available experimental data as
well as structured-grid Euler solutions for three test cases: (1)
74° delta wing (Figure 1); (2) 75%62° double-delta wing-
body (Figure 2); and (3) centerline tail modular transonic
vortex interaction (MTVI) model (Figure 3). Solution sensi-
tivity to flux limiter functions is also evaluated for the first
two cases, and sensitivity to grid density is assessed for all
three. Solutions are generated for a range of angle of attack
(o) up to maximum lift. For the MTVI model, results for
three sideslip angles (B) for a fixed o are also presented.

The remainder of the paper is divided into three
sections. A brief overview of the method is presented first.
This is followed by a discussion of results. A few concluding
remarks complete the paper.

Unstructured-Grid Method
The unstructured-grid method!? consists of three
software packages that are sequentially executed: (1) Grid-
Tool/VGRID for geometry modeling and grid generation, (2)
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USM3D for flow solution, and (3) VPLOT3D for
postprocessing. Only the basic features of these tools are
highlighted in this section. Appropriate references are cited
for readers interested in more details.

Grid Generation

The grid generation process starts with the
GridTool?® program reading in the configuration geometry
file containing either a set of discrete points or data in
IGES"® format. A user interactively constructs curves and
patches on the configuration surface, and sets up the far-field
boundaries usually as a simple box to define a computational
domain. Point and line sources are then prescribed to control
the distribution of points on the bounding surfaces and in the
interior. The output of GridTool is an input file for the
VGRID code!'” used to generate the surface and volume
grids.

The VGRID program, based on the advancing front
method, uses a structured background mesh™® to control the
point distribution for both surface and volume grids. The
background mesh is constructed by subdividing the entire
flow domain into cells. Spacing information needed to
control point distribution is stored at the nodes of the cells.
Once the background mesh is created, the edges of the
user-defined patches are subdivided into a desired number of
points. The discretized edges define the initial front to
triangulate the entire patch. After each patch is triangulated,
the surface grid quality is checked automatically and any
regions of poor quality are displayed. The user has the ability
to modify the patches in order to achieve a better grid if
necessary.

The triangulated patches form the initial front for
the volume grid. The front is advanced into the field by
introducing new points and forming tetrahedra. The code
continues to run until either the domain is filled or no more
tetrahedra can be formed thus leaving pockets or voids.
These pockets are usually filled by removing a layer of
tetrahedra around the pocket creating a larger void and a new
front. The grid generator is restarted and new points are
added until the grid is completed. A grid quality check is then
initiated and tetrahedra with negative volumes and/or high
skewness are identified. A few tetrahedra are removed from

FIGURE 3 - Centerline Tail MTVI Model

788



the region of poor-quality grids and the region is refilled.
Sometimes the background mesh has to be modified in order
to generate an acceptable grid.

Flow Solution

The USM3D"® flow solver uses a cell-centered
finite-volume formulation to solve the time-dependent
compressible-flow Euler equations for an ideal gas.
Convective fluxes are computed using the well-known Roe’s
flux-difference or Van Leer’s flux-vector splitting.
Higher-order accuracy is achieved by reconstructing a
multidimensional piecewise linear solution of the
cell-averaged data which produces nonoscillatory solutions
without using any flux limiter functions. Version 4.3%” used
here offers two options for flux limiter, minmod or superbee.
Solution sensitivity to these options is investigated in this
study.

The solution is advanced in time by either a 3-stage
time-stepping scheme (combined with local time stepping
and implicit residual smoothing as convergence acceleration
mechanisms) or an implicit linearized backward Euler
scheme. The code uses 45 words of core memory per cell and
14.5 psec/cell/cycle for the explicit scheme, and 180 words
per cell and 29 psec/cell/cycle for the implicit scheme. The
computer times are for a single-processor Cray C-90 run. The
implicit scheme converges to a steady state in much less
computer time,?" by as much as a factor of 6, compared to
the explicit scheme because a much larger time step can be
used.

Two strategies are employed to enhance robustness.
First, the time-marching process starts with a first-order
accurate scheme and automatically switches to second-order
accuracy after one order of magnitude reduction in average
residual. Second, the Courant-Friedrichs-Lewy (CFL)
number incrementally ramps up from an initial low value to a
final high value, both specified by the user, over a prescribed
number of cycles.

Postprocessing

VPLOT3D"%!7 s an interactive, graphical
menu-driven program for extraction and display of the
desired on- and off-body flow quantities as line or filled
contours, vectors or particle traces. A user can also use it to
visually examine regions of poor-quality grids and different
boundary conditions. The ACE/gr ) software package was
used to produce x-y type plots.

Results and Discussion

Results for three test cases are presented in this
section. Unless otherwise noted, all USM3D analyses were
performed with an initial CFL number of 25 that ramped up
to a final value of 75 over 50 cycles. Convergence criteria
included two-to-three orders of magnitude reduction in re-
sidual plus no variation in the first three significant digits of
the integrated force and moment values. Uniform free-stream
conditions were used to initialize the flow field. Also, all so-
lutions correspond to the second-order accurate scheme.

74° Delta Wing

The geometric features of this test case™” are
shown in Figure 1. Only half of the configuration was
analyzed. All edges were treated as sharp and the sting was
not modeled. Fifty patches were used to model the wing,
plane of symmetry and outer boundaries of the computational
domain. Points were clustered near the leading and trailing
edges as well as along a line approximating the footprint of
the wing vortex. Portions of the upper-surface and plane-of-
symmetry grids are shown in Figure 4.
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To evaluate solution sensitivity to grid density, so-
lutions were obtained at 0.3 Mach number (M) and o = 20°,
on three grids: Grid 1 with 101413 cells, Grid 2 with 167086
cells, and Grid 3 with 226269 cells. No limiter function was
used. The lift (Cp), drag (Cp) and pitching moment (Cy) co-
efficients are shown in Table 1. Computed C, distributions
are compared at four cross-plane stations in Figure 5. Note
that X is the downstream distance from the apex, Cg is the
root chord, and S(X) is local span. The solutions show rela-
tively little sensitivity to grid density.

Table 1. Grid Sensitivity for Delta Wing

Grid # Cells CL Cb M
Grid 1 101413 0.8639 | 0.3104 | -0.052
Grid 2 167086 | 0.8676 | 0.3116 | —0.052
Grid 3 226269 | 0.8667 | 03112 | -0.051

In Table 2, USM3D force and moment predictions
using the minmod and superbee limiter functions are com-
pared with the no-limiter results on Grid 2. The superbee and
no-limiter results agree well, but they both differ from the
minmod solution. The corresponding surface C;, distributions
shown in Figure 6 also exhibit a similar behavior. Results for

Table 2. Flux Limiter Sensitivity for Delta Wing

Limiter CL Cb CM
Minmod 0.8075 0.2905 —-0.047
None 0.8676 | 03116 | —0.052
Superbee | 0.8689 | 03116 | -0.05
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this case as well as others (not included here) on a cropped-
delta wing and a double-delta wing-body show that superbee
solutions are the least sensitive to grid density. Based on the
sensitivity studies, Grid 2 and superbee limiter were used for
all additional analyses of this test case.

Computed force and moment coefficients for twelve
angles of attack are correlated with experimental data® in
Figure 7. The general trends are captured up to o =30°. All
cases for o < 31° were well converged in 400 cycles with
forces and moments reaching a steady state after about 250
cycles. However, no converged solutions were obtained for o
2 32° Instead, the residual attained an oscillatory pattern and
the forces and moments oscillated about a mean value as il-
lustrated in Figure 8 by the convergence histories of average
residual and lift coefficient for o = 35°. Here R is the current
value and R1 is the initial value of the average residual. For
the sake of comparison, the figure also includes the corre-
sponding convergence histories for a converged solution at o
= 15°. The oscillatory pattern is indicative of vortex instabil-
ity or burst with the flow field being steady everywhere else
except in localized regions. This behavior is consistent with
that exhibited by structured-grid Euler solutions.® Since the
present solution process is not time accurate, the uncon-
verged solutions cannot be considered quantitatively accu-

rate representations of the entire flow field. Note that the
mean values are plotted in Figure 7 for a0 > 32°.

In Figure 9, the USM3D surface C; distributions for
the o = 20° case are compared with structured-grid TEAM
solutions and experimental data. The TEAM solutions were
obtained using a grid with nearly 250000 cells. The two com-
puted solutions are in fairly good agreement with each other
except at the two most forward stations. Both solutions show
discrepancies with experimental data which are largely due
to viscous effects being not modeled in the computations.”’
75°/62° Double-Delta Wing Body

The basic geometric features of this test case® are
shown in Figure 2. Only half of the configuration was
analyzed. All edges on the wing were treated as sharp. Twen-
ty patches were used to model the configuration and the outer
bounding surfaces. Points were clustered around the leading
and trailing edges of the wing. Portions of the grids on the
surface and the plane of symmetry are shown in Figure 10.

To evaluate solution sensitivity to grid density, so-
futions were obtained at M = 0.3, ot = 20°, on three grids with
269319, 395073, and 473506 cells. The superbee limiter
function was used. The solutions showed relatively little sen-
sitivity to grid density. The coarsest grid with 269319 cells
and superbee limiter were employed for all additional runs.
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Computed lift and drag coefficients for eight angles
of attack are correlated with experimental data®? in Figure
11. The general trends are captured up to o = 25°. More than
two orders of magnitude reduction in average residual was
achieved in 400 cycles for o up to 15°% 600 and 800 cycles
were required for o of 20° and 25° respectively. No con-
verged solutions were obtained for o > 30°. Much like the
delta wing case, the average residual as well as forces and
moments attained an oscillatory pattern indicating vortex in-
stabilities or burst.

RO /
IR O

X
X0

SRS R
Oy AUy AV Ay Ay
5 a.ehhanehn»;'»‘,«uy0,479‘"‘ N AN A'vv
e S v T AVAVAS AN AT, /\ /\
A P TAYAVAN SEON T
e A A ATAY A
N v S AW AW 2\ §
e S VA
A A e
" WA

AV,
SRR
R e R R R R RO
O R SRRSO TN/
R R RN S S
R A S T
R RIS
R R R R
N X SRR \Vﬂﬂé <
AR R AR RS
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The USM3D force and moment predictions agree
well with those of the structured-grid TEAM computations®™
except that the TEAM solutions exhibited a lack of conver-
gence for o 2 25° whereas the USM3D code produced
converged solutions for all angles of attack up to and includ-
ing 25°. The discrepancy is most likely due to relatively large
cells on the aft part of the wing in TEAM grid which had only
105633 nodes. Large cell sizes result in poor flow resolution
as well as higher numerical dissipation. The related issues
need to be further investigated.

For this case, surface C; are correlated for o0 = 20°
at three cross-plane stations shown in Figure 12. In Figure 13,
the USM3D solutions are compared with TEAM solutions®
on a grid with nearly 250000 cells and with experimental
data. The two computed solutions are in fair agreement with
each other except at the aftmost station where the higher peak
in the USM3D solution suggests the presence of a stronger
vortex. Both solutions show discrepancies with experimental
data which are largely due to viscous effects being not mod-
eled in the computations.

Centerline Tail MTVI Model

A perspective view of the surface geometry of the
centerline tail MTVI model is shown in Figure 3. The chined
forebody has an included angle of 30°. The wing has a
cropped delta planform with a leading-edge sweep of 60° and
an aspect ratio of 1.8. All edges were treated as sharp and the
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sting was modeled. The entire surface was divided into 92
patches. Points were clustered near the perimeter of the wing
and vertical tail, the chine, and aline approximating the foot-
print of the wing vortex. Portions of the upper-surface and
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plane-of-symmetry grid are shown in Figure 14. It took ap-  Surface C, Distributions for 75°/62° Double-Delta
proximately 8 labor hours to build the grid which contrasts Wing-Body, M = 0.3, o0 = 20°

with about 64 hours required to build a structured grid for
Euler analysis on a similar conﬁguration.(7)

In order to select a "suitable" grid, a grid sensitivity
study was conducted using four grids with 405815, 529425,
613826 and 714392 cells. Solutions were obtained at M =
0.4, oo = 20°, and B = 0°. Based upon a comparison of com-
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puted forces and moments as well as cross-plane surface
prc;assures,(25 ) the grid with 613826 cells was selected for all
symmetric-flow analyses. For asymmetric cases, the grid was
reflected about the longitudinal plane of symmetry.

Computed force and moment coefficients for five
angles of attack are correlated with experimental data® in
Figure 15. The general trends are captured up to o = 25°
Converged solutions with more than three orders of magni-
tude reduction in average residual were obtained in 300
cycles. No converged solutions was obtained for o = 30°. Just
like the other two test cases, the lack of convergence was

caused by vortex instabilities or burst. The mean values of
forces and moments are plotted in Figure 15 for a.=30°.

Computed pitching (Cp,), rolling (C;) and yawing
(C,) moment coefficients for p = 2°, 4° and 7° with o = 25°
are correlated with experimental data in Figure 16. The solu-
tions did not converge for any of these cases due to vortex
instabilities; mean values are plotted in Figure 16. Note that
converged solutions could be obtained® for the same three
B values but at a lower o of 15°.

For surface C, correlations, experimental data is
available at six cross-plane stations shown in Figure 17.
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In Figure 19, the computed and measured surface C,
distributions are compared at four cross-plane stations for the
o =25° B =4° case. The USM3D solution exhibits relatively
larger discrepancies with the experimental data on the upper
surface of the model on the starboard side as compared to the
port side. The effect of vortex instability can be seen in the
experimetnal C, distribution on the starboard side at the Jast
two stations, X = 23.55 and 28.05, and in the USM3D solu-
tions at the X = 28.05 station. Additional results for this case
are presented in References 25 and 26.
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FIGURE 17 - Locations of MTVI Cross-plane Stations
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Concluding Remarks-

The results of computational simulations of vortical
flows presented in this paper contribute to developing a bet-
ter understanding of the capabilities and limitations of an
unstructured tetrahedral-grid Euler method consisting of
GridTool/VGRID codes for grid generation and the USM3D
code for flow solution.

(1) Using the unstructured-grid method can result in a con-
siderable reduction in the turnaround time as compared

. to the structured-grid methods with most of the benefit
coming from faster grid generation. In this study, a re-
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duction in turnaround time by a factor of 8 was achieved
for the wing-body-tail MTVI model. The reduction may
not be as sizable for simple geometries such as wing and
wing-body, but it can be even more substantial for com-
plex shapes like a full aircraft.

(2) The USM3D flow solver itself was found to be quite ro-
bust and capable of simulating vortical flows to levels of
accuracy comparable to those of the structured-grid
methods using grids with comparable number of cells.
However, the required computer memory is substantially
higher by as much as a factor of 4.5. Means of reducing

-4.0 —— .
~—— USM3D X =19.05
_
-3.0
Cp
1.0 . . .
0.0 2.0 40 6.0 8.0 10.0
Y
4.0 . ,
X =258
¢ Test
Cp
10 . ; .
0.0 2.0 4.0 6.0 8.0 10.0
%
40 . .
—— USM3D X =28.05
3.0
20 |
Cp

-1.0

0.0

1'%‘o 20 4.0 6.0 80 10.0

Y Y
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the memory requirement must be aggressively pursued.

(3) The predicted trends of force and moment coefficient
variation with angle of attack agreed fairly well with
those from experiments. However, the lift coefficient
reached a maximum at an angle of attack that was ap-
proximately 5° less than the measured value for all test
cases. Further investigation is needed to identify the
causes of this discrepancy. One possibility is that grid
distribution was too sparse in the vortical-flow regions at
angles of attack near maximum lift when the vortices
moved farther away from the surface. The sparse grid
with its large cell size might have introduced relatively
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large amounts of numerical dissipation contributing to
premature vortex burst. Adding a solution-adaptive grid
capability to the method is highly desirable. Also, the

- role of viscous effects needs to be studied using the
RANS version under development.

The promise of the unstructured-grid CFD for
vortical-flow simulation is clearly demonstrated by the re-
sults of the present study. With further enhancements in areas
identified above, the unstructured-grid methods will provide
a more effective means of generating aerodynamic data to
support aircraft design needs as compared to the structured-
grid methods presently in use.
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