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Abstract

Aerodynamic design, redesign and optimization are key
activities when developing efficient fighters and commer-
cial aircraft. The outcome have direct implications on per-
formance, stability and control, fuel consumption and
engine exhaust emissions. One very straight forward aero-
dynamic design procedure is to specify the surface pressure
known to improve or gain on flow efficiency and then in-
versely solve for the unknown geometry. In more advanced
applications optimization of drag with constraints involv-
ing lift, wing volume or local wing thickness is of interest.
This paper presents some results of 3D inverse wing design
using an Euler method with a design module based on a
fairly simple residual correction relation iteratively up-dat-
ing the wing geometry until convergence. Attempts to use
the same idea but rearranged for optimization of an objec-
tive function including drag are also discussed and prelim-
inary results are shown in 2D. In transonic, using the
inverse design method, good agreement was obtained in
general with the initially unknown wing. Efforts to impose
a given target span loading using inverse design to a 3D
wing in supersonic flow is also reported in short.

Introduction

Aerodynamic optimization and shape design are key tech-
nologies when developing new fighters or commercial air-
craft. Aerodynamic efficiency has an immediate impact on
performance, stability and control as well as on fuel con-
sumption and consequently also in the end on environmen-
tal aspects. Drag minimization efforts usually involve
avoidance of separated regions, reduction of shock wave
intensities as well as their secondary interaction on wall
boundary layers etc. For fighters controllable high angle at-
tack manoeuvres have come into focus as well as good turn
rate performance and mission adapting configurations.

During the last decade Computational Fluid Dynamics
(CFD) have made great progress(l). With present day com-
puters it has become possible even in an industrial environ-
ment to regularly use advanced methods based on non-
linear flow models like Euler or Navier-Stokes equations.
The introduction of more powerful parallel computers in
combination with faster and larger memories will further
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accelerate this development. Certainly the frontier will be
pushed forward in the future, towards the use of more inter-
disciplinary optimization(z) where aerodynamics will be
interactively coupled to other engineering disciplines. In
this aerodynamics will play its natural key role as it consti-
tutes the outer physical environment for all vehicles oper-
ating in the dense part of the atmosphere.

Design methods for aerodynamic shaping can crudely be
divided into two categories(3’4), inverse design and optimi-
zation. Traditionally inverse design methods have been at-
tractive to the aerodynamiscist as he or she by physical
intuition backed by experience and empirical relations
knows how the required pressure distribution should look
like. This to avoid viscous separation, diminish shock
strength or how to maintain laminar flow on a wing by im-
posing favourable wing pressures. Inverse methods usually
are computationally effective although closure and unique-
ness problems may appear when using non-linear flow
equations. In using optimization methods, it is not so
straight forward to apply skilled experience or physical in-
tuition. The result will be the outcome of how design vari-
ables and objective functions are chosen. Uniqueness and
dependency on initial data are not always clear. Gradient
based methods can be time consuming to apply depending
partly on the way of parametrization. One great advantage
with optimization procedures is that physical constraints
can be imposed to fence in the design within a specified pa-
rameter window. This can be difficult to achieve with an
inverse design method. For multidisciplinary activities
coupled optimization is likely to be the way to go.

This paper presents an efficient inverse design method cou-
pled to an Euler solver. The main idea goes back to the re-
sidual correction method of Malone-Narramore-Sankar®>
and Garabedian-McFadden®. The Saab development(7’8)
was partly carried out during the joint European Union pro-
gramme called LARA ..An application to a 3D wing design
in transonic flow will here be shown as well as some intro-
ductory studies in supersonic flow. The simple residual
correction relation between geometry and pressure also
leads to an idea about aerodynamic shape optimization.
Some of these ideas will be outlined and a 2D airfoil opti-
mization will be shown where drag is minimized at con-
stant lift in transonic flow.
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Design Method and Flow Solver

The use of Computational Fluid Dynamics (CFD) in the
design process requires robust and efficient methods of dif-
ferent complexities partly depending on where in the evo-
lutionary process the development stage is. Sooner or later
the baseline concept usually must be aerodynamically im-
proved or redesigned with respect to set overall specifica-
tions. In the following the inverse design method IDA
(inverse design algorithm) will be described. The inverse
module is appended to the Euler module!® of the 3D Navi-
er-Stokes code MultNas 19 developed at Saab. In fact the
IDA module can be used with Navier-Stokes solvers and
this has also been successfully tested in 2D.

Inverse design method

The original Garabedian-McFadden® residual correction
equation was operating in a wrapped-up plane using a com-
plex square root transformation then successively correct-
ing the wing surface in pseudo time adding surface
corrections in the mapped space. In this process the pres-
sure deviation residual is the driving right hand side. This
was later changed to the modified Garabedian-McFad-
den® (MGM) scheme by working with corrections in the
physical space. This approach (Fig 2) was also followed
here. Moreover the residual equation may not necessarily
be interpreted in pseudo time.

In a Cartesian (x,y,z) frame (see Fig 1) the assumed type of
linear relation between geometry and pressure variations
can be argued more or less intuitively from physical back-
grounds or from perturbation theory. Following this the
pressure geometry correction relation was written as fol-
lows for lower and upper sides of the wing,

Foz+Flzx+Fzzxx+Glzy+Gzzyy=-R(“We’)

n
Fpz+ Fy2,+ Fy 25+ Gy 2, + G 7 = R(O%e7)

where z =AZ (Fig2) is the geometry correction driven by
the pressure coefficient deviation R away from the target

R=Cp target = CPeurrent

The from Eq. (1) updated wing geometry, striving to obtain
the wished target pressure Cpyy,g,, , then reads
Z=Zeyryem + 2

The temporary current situation before up-dating is defined
by Z,rrens A0 CPyyrren: - So far the scaling coefficients in
Eq (1) are assumed to be constants. However they can be
modulated by expressions containing the current wing ge-

ometry to avoid possible singularities locally in the wing
leading edge region.

—
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Fig 3. Bezier curve fitting to geometry correction.
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Fig 4. Grid modification procedure.
Before making up the numerical iteration procedure for re-
peatedly solving Eq(1), it will be further rearranged and
split into two separate parts, streamwise and spanwise, in
order to simplify the numerical solution as shown below

foz+fizg+frz=-¢; R turer) )
802+ 812y + 822y, = -co R PP

(2)
R (lower)

for+fizethag=c
R(lower)

8021812yt 822y =02
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Fig 6. Typical effect of spanwise sweeping on convergence
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Fig 7. Iterative design (optimization) procedure.

where the weight fractions, streamwise and spanwise, obey
cj+cy=1

The total wing geometry correction up-date then is added
up by streamwise and spanwise parts from Eq (2)

Z(xY) = Zyrrons + 2 (streamwise) 7 (spanwise) 3)

The sets of coefficients f; and g; of the split system Eq (2)
are suitably chosen to achieve stability and convergence in
the iterative wing geometry up-dating procedure, Fig 7. On
normalising the Eq (2) by the wing mean chord length , | i
is usually of order 10, while ig;l is kept an order of magni-
tude larger for more under relaxation. The effectiveness of
using spanwise sweeping compared to streamwise only is
typically shown in Fig 6.

The split system Eq (2) is solved numerically by applying
straight forward finite difference approximations with cen-
tral differences for 2nd order derivatives and one sided
“upwind” derivatives simulating 1st order derivatives. This
leads to tridiagonal systems of equations of the following
types sweeping streamwise (i) and spanwise (k)

Ajzip+Bizi+ Ciziyy=ci Ry
4)
Arz B+ Crz = Ry

The tridiagonal coefficients (4; B;, C;) and (A, By, C;) are
easily derived applying the above mentioned finite differ-
ence approximations to Eq (2) . The grid nodes are the
same as those of the wing surface grid built by adjacent cell
volumes. With the MGM miethod, Fig 2, all coefficients
only need to be evaluated once. There is only one most for-
ward leading edge point i = ile in each streamwise section
and a conductivity condition is imposed there by requiring

Aje=1,By,=-2,Cyo=1,Ryjp =0

The sweeping of Eq (4) in each wing section is starting at
trailing edge lower and ending at trailing edge upper, while
the spanwise sweeping is starting in the root symmetry
plane ending at the wing tip. As boundary conditions out-
side the computational domain of Eq (4), zero correction is
imposed downstream of the trailing edge and outside the
wing tip, while symmetry condition is required across the
wing root symmetry plane.

To avoid the wing to start moving vertically without con-
trol in the grid (possibly destroying this) one wing geome-
try point is always kept fixed by adjusting after corrections
are added. Moreover, to circumvent fish tail crossover at
the trailing edge linear wedges are subtracted.
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In order to get smooth solutions Bezier curve fitting (Fig 3)
is applied to corrections. Upper and lower sides are sepa-
rately treated,

in2D: 2(s) = D zbr(s) (9
i=0

, where
0<s<t
The basis functions b;"(s) are described by

b (s) =('i’)si(1-s)"-i ' 6)

where (”) are the binomial coefficients.
i

The number of nodes is n +1 and the description of Eq(5)
satisfies the leading and trailing edge values of the se-
quence z; . To find the parameter mapping relation s(x) a
Newton-Raphson iteration technique is used in each node

old.
d X5
snew _ so ___g__l

- ., old
xX(s)
The process is started from an initial guess on s and the x(s)
and x’(s) are then evaluated from equivalent expressions to
Eq(5).

Apart from the Bezier curve fitting a trigonometric interpo-
lation filter can be optionally used.

Now, turning to the successive grid adjustment procedure
this is as schematically shown in Fig 4. In the present ap-
plications the computational space grid topology is of the
C-H type as illustrated in Fig 5. For successively up-dated
wing geometries the grid is simply sheared. In each span-
wise grid plane along constant i-lines but along j-lines the
grid nodes are vertically shifted in a linear decaying way
out to the outer block boundary. Outside this no corrections
are made. To avoid grid line crossover close to the wing in
cases with highly stretched grids constant vertical correc-
tions are imposed for j < j,, where j; typically is j,,;,/2 -

The full inverse design procedure is shown in Fig 7. It starts
with an initial wing together with its flow solution and grid.
Using the imposed target pressure distribution the process
goes on in the inner iteration loop while successively
executing the inverse design module and the grid up-dating
procedure until the target pressure distribution is
sufficiently well satisfied. The design method is efficient
and the CPU time is marginally above that of a pure
analysis calculation.

Euler flow solver

The MultNas flow code®!? is a multiblock multigrid
method of classical Jameson‘!-1D type. It has a cell centred
finite volume discretization approach advancing asymptot-
ically in time using local time-steps in a Runge-Kutta fash-
ion to drive the explicit solution to steady state. In the
present application it is run in Euler mode only.

Let p be the density, V=(u, v, w) the velocity in the coordi-
nate directions and E the total energy per unit volume and
unit mass. The solution vector then is

U = (p,pu,pv,pw,pE)T @)

For the generally written Euler equations

W,vn=0 ®
ot
with the tensor 1 incorporating the convective and impul-
sive pressure terms, the finite volume formulation for a
small cell with volume VOL can now be expressed as
TvoL+c)-dw) =0 ©
C(U) denotes summations of convective fluxes and pres-
sure, respectively, over cell surfaces. D(U) is the artificial
dissipative term. The artificial dissipation can be of scalar
isotropic or anisotropic types, where the blend of second
and fourth order terms is controlled by a pressure sensor
switch. The integration in time is performed using a Runge-
Kutta time-stepping scheme. Let r(U) denote the driving
right hand side flux residual of the discretized equations.
r(U) =-C(U) +D(U) (10)
With time step At the algorithm for a k-stage Runge-Kutta
scheme can be symbolically written as

UO - Un—l
U'= U+ aAtr (U

U'= U*

hi= 1,0,k (D

for the nth iterative step. The constants ¢ are conveniently
chosen. For a five stage scheme good performance is e.g.
obtained using

(0, 0, O, 04, OL5) = (0.25,0.167, 0.375, 0.5, 1.0)

Local time steps as well as multigrid techniques are avail-
able for convergence acceleration to steady state.

Optimization method

The simple structure of the linear relation between pressure
and contour variations in Eq (1) and its numerical
approximation Eq (4) give rise to the question whether
such a relation could be used in an optimization procedure
involving drag. If this could be the case at least in an
approximate redesign operation such a module would be
easy to append to an analysis code just like the inverse
module. The solution of a non-linear problem takes many
time steps to reach steady state so the sparse updating of the
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geometry will take negligible time. The problem with non-
linear flow equations is to find the linear correction relation
between pressure and geometry that has physical or
mathematical relevance or preferably both properties, but
still is simple enough for the attempted application. In
linear flow models, like panel methods, there usually exists
such a relation via an aerodynamic influence coefficient
matrix{!3), However, in non-linear flow this is not the case.
What is available in an iterative procedure is the consecu-
tive pressure output response from the solver on a com-
manded geometry input correction. This information is
suggested to be used to establish a temporary approximate
relation similar to Eqs (1) and (4) by successively fitting
the unknown parameter coefficients.

An attempt to build an optimization procedure so far in 2D
based on such a pressure geometry correction relation will
be outlined and some preliminary results will be shown.

Preliminaries

As' an introduction to quadratic shape optimization with
constraints the Sears-Haack optimal drag body in linear su-
personic flow was numerically recovered by discretizing
the classical wave drag integral(lz) . In short the integrand
of the drag integral, containing the logarithmic kernel mul-
tiplied twice by the 2nd derivative of the cross sectional ar-
ea, was discretized using central differences. The objective
function was made up of the drag and the Lagrange multi-
plier constraints for volume and centre of gravity. Differ-
encing the quadratic form of the objective function with
respect to discrete node areas and multipliers led to the so-
lution of a linear system of equations. With 60 nodes cov-
ering the unit length and with unit body volume the area
distribution came out as in Fig 8. It compares well with the
analytical body. Using a 386 PC computer with 16 bit rep-
resentation, the drag was 3.7 % lower than the analytical
figure!?, In the following a quadratic shape optimization
module using Lagrange multipliers will be suggested.

Simple linear discrete relations like Eq(4) lead to quadratic
expressions exclusively in z; when writing down the drag
surface pressure integral of an airfoil. Now drag optimiza-
tion suggests itself by requiring 1st order derivatives of the
drag with respect to the temporary design variables z; to be
zero to have a stationary optimized solution. This will re-
sult in linear system of equations for the unknown correc-
tions z; . In more general engineering applications
constraints containing imposed lift, wing volume or thick-
ness etc can easily be added utilizing Lagrange multipliers
A; . Still the optimization procedure will result in the solu-
tion of linear system of equations for the design variables
z; and the multipliers A,.

. —— Num optimization

Area « - - Sears-Haack

s N

/ N

10 / \
/ \
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/ \

0.0 1.0 xfi

0

Fig 8. Axisymmetric body from quadratic optimization of
wave drag at constant volume in linear supersonic flow.

Lagrangian formulation

Introduce the set of wing boundary design variables
B = {B,} and consider the Lagrangian L subject to lift
constraint L=L,

LB = w1§dD+wzéﬂP—Pt)zds+){§dL-Lt] 12
5 5 5

Here D is drag and L denotes lift while P is the pressure.
Subscript ( ); is indicating target and (w;w,) are weight
fractions in the objective part of Land A is the multiplier. S
symbolizes the airfoil line integral circuit around the airfoil
of unit chord. With proper normalisation D, L and P can be
substituted by coefficents Cp, Cy and Cp respectively. On
perturbing around the current temporary state the differen-
tial drag and lift increments come out to be

dD (13)

(Pc +p) {(ch + dz)cos(x-—dXsina}

dL

-—(Pc+p){(dZC+dz)sina+chosa} a4
Here ot is the angle of attack and subscript ( ). indicates cur-
rent values. Perturbations are denoted by p and z. When the
frame of reference (X,Z) is oriented so that o = 0, it follows
that Eq (14) is linear in all perturbation quantities. Hence,
Eq (12) is quadratic and bilinear in p, z and A . In this situ-
ation the necessary optimality conditions symbolically are

aL _ 3 Y &i -
== w1§-a—B(dD) +w2§(P Pt)a—B;dS+7» Z(@L) =0 (1)
5 S s

(16)



Now, assume there exists a known linear approximation re-
lation between perturbations p and z such that
p= Az amn

A is some linear operator. Furthermore, assume the linear
geometry parametrization of the perturbation z exists
z = F(X;B) (18)

Then the system Egs (15)-(16) wili be given the solution
(B, M). The set of surface design variables B then is defining

the new parametrized geometry correction z in an iterative
process like that sketched in Fig 7.

In the following an attempt to use the simple structure of
the MGM ansatz Eq (1) as closure condition for the system
Eqgs (15)-(16) will be outlined. Then assume the operator 4
of relation Eq (17) to have the general structure
2

A= 70“5%*%% 19

ox
, where % (x) =f; hi(x) and i = 0, 1, 2. The coefficients f,
have convenient values and 4; are modulating functions.
For the discretization of Eq(17) on the grid x; make the
simple choice of Eq (18) to give B; such that
B; = z;(x;) (20
, where index i is numbering the discrete nodes x; on the air-
foil. With these assumptions Eqs(15) -(16) can be solved
for the unknown geometry corrections z; in all nodes.

Quadratic shape optimization method

By discretizing Eqs (13)-(19) on x; using the design varia-
bles z; from Eq(20) a quadratic shape optimization module
named QUSHOP was set up. This led to the following dis-
cretized set of linear equations

ZWidDHv +P -P apidx 24| =0
13z, 2(1’i c t)é? it T

- k k
21
EdLi—Lt =0
14

,where i=1, n and n is the number of grid points, while z; is
the considered design variable with k =1, n. The same dis-
crete model as for inverse design gives p; in terms of z;

P; = aiz;_1+bz+cz
The surface panel discretization goes like
AZ;=2; 4172 54%, = X, 1%

In short, using the above discretization in system Eq(21) ,
the linear system for solving the design perturbations z; and
the multipliers 7\3 can be arranged on a general matrix form

(22)

S

, where A is a penta-diagonal nxn matrix stemming from
the pure objective part of Eq (12), while matrix C has di-
mension mxn. C is originating from the constraints and m
is the number of constraints. In this case is m=1. The de-
sign solution vector is z = (z;) with k=1, n . The multipliers
are found in vector A = ( A,j) with j=1, m. The right hand side
is r = (r;), where i=1, n+m. For the Lagrangian L to have
an absolute minimum with respect to the physical design
variables (z;) a sufficient criterion is that A in Eq (21)
should be positive definite. This has implications on the
choice of the operator 4 and its discretization.

Hence, in summary, by appending the outlined optimiza-
tion module to the Euler analysis code and by sparsely up-
dating the airfoil geometry using Eq (22) an iterative pro-
cedure for redesign has been created as illustrated in Fig 7.

The factors (fy, f;, f») in operator A can successively be
evaluated by a least square fit connecting the previous sur-
face correction with its subsequent flow solver pressure
correction answer to the commanded geometry correction.
Hence the operator 4 can be re-evaluated by minimizing
the objective function G as follows

G= §{(P-—PC)—(?_OZ+ e+ }’Zz")} 2dS
N

g_fg,- =0 ,where f=fih(x)andi=0, ], 2.
The modulating functions hx) are structurally being sug-
gested from differential perturbation considerations of the
flow equations resulting in the use of fairly local informa-
tion. The approximation of 4 should be as simple as possi-
ble. This to keep the method attractive with the objective to
enable the appending of the optimization module to exist-
ing analysis solvers at minor additional computational cost.

Before up-dating the wing geometry, Z = (Z,. + z), the cor-
rection z is under relaxed. This is also the case when up-
dating the coefficients (fy, f, f>).

Computational Results

Inverse 3D wing design

Within the cooperative European LARA research and de-
velopment programme, an unknown 17° swept wing was
distributed in terms of planform and target Cp pressure dis-
tributions at constant spanwise wing sections. The transon-
ic Mach number was specified to M=0.75 and the angle of
attack for the geometric base line configuration was set to
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a=1°. The initial baseline airfoils building the wing were
all the symmetric NACA 0012 and there was no wing twist.

For the above test case Saab prepared a C-H finite volume
grid containing 257x33x37 nodes in the i, j and k-directions
respectively, see definitions in Fig 5. An analysis solution
was first established. After that the inverse design mode
was switched on. The inverse design mode was applied
every 10th multigrid cycle. Generally a good approxima-
tion to the target pressure was obtained within 10 design
steps , see e.g. the residual Rms of ACp shown in Fig 16.
However, to come to the fine details more design iterations
were needed especially for the wing root and tip regions.
Results in Figs 9-14 are displayed after 100 design cycles
and 1000 multigrid cycles.

Fig 9 is showing the isobar pattern on the upper side of the
transonic wing, while Fig 10 is illustrating the very good
agreement achieved between target and designed pressures
at semi-span stations 30%, 50% and 80% . In the same sta-
tions the airfoil geometry comparison with the true geom-
etry is shown in Fig 11. Even here the agreement is
astonishingly good. However, good agreement with the tar-
get pressure signature in one section does not automatically
guarantee good agreement with the true airfoil geometry.
This is revealed in the root section shown in Fig 12. In spite
of the agreement with regard to pressure fairly large disa-
greements in airfoil coordinates were obtained on the lower
side. However, still the agreement regarding curvature,
which is a sensitive parameter, is surprisingly good which
can be seen at the bottom of Fig 12.

Now moving outboard to 90% semi-span, the agreement
with target data is still very good with respect to both pres-
sure and geometry including curvature. However by look-
ing at the spanwise wing twist distribution shown in Fig 14,
the 90% station is seen to be in the region where compara-
tively large twist deviations occur away from the true ge-
ometry. This twist discrepancy is probably due to the
spanwise grid resolution being too coarse to resolve the tip
flow correctly. Wing twist deviations can locally be seen in
the root region too, although not as pronounced as in the tip
region. Attempts to cluster spanwise grid lines locally in
the root and tip regions can be seen in Fig 15. However it
is felt that the present grid resolution still has to be in-
creased to properly recover the true twist distribution in the
tip and wing root regions.

Some introductory studies were carried out to see how the
inverse design method would behave in supersonic flow. A
slightly different generic test case was defined at Mach 2 in
which the mission was set to redesign a given symmetric
wing (Fig 17) to obtain a specified target span load distri-
bution CL * C at constant lift, see Fig 18 .

The design rules for the supersonic case were formulated
so as to keep the shape of the chordwise pressure difference

ACp between lower and upper sides the same as with the
base line wing but locally scale it up or down during the de-
sign process to create the specified target load distribution.
To build the temporary target Cp the scaled chordwise ACp
distributions were then centred around the Cp mean value
of upper and lower wing sides obtained with the base line
configuration. In this way new upper and lower target Cp
distributions were successively created keeping the sym-
metric mean part fixed while successively scaling the
asymmetric Cp part. With linear thin-wing theory one
could then expect the resulting airfoils to have the same
thickness distributions as the initial base line wing but with
a twist distribution appropriate for the imposed span load
distribution. This was approximately confirmed in the nu-
merical design calculations using the non-linear equations.

The imposed supersonic target load distribution was of el-
liptic type, see Fig 18. A two block C-H grid having
193x25x49 grid nodes was created. The generic base line
wing-body configuration (Fig 19) was built by symmetric
NACA sections with relative thickness ranging from 3-6%.
The initial base line test case at Mach 2 and o = 4° was
computed using the Euler analysis mode. After having run
the inverse design mode the obtained span loading is in
general fairly close to the elliptic target distribution as
shown in Fig 18. However, a slight obstruction is seen at
the wing outboard leading edge kink position as well as
comparatively large deviations inboard close to the vertical
symmetry plane. The corresponding twist distribution seen
in Fig 19 would create practical problems when trying to
loft the wing geometry. This is due to the limited degree of
freedom allowed for by using twist only and no wing cam-
ber. Nevertheless, the present exercise indicates that the in-
verse method also works in supersonic flow and to a
moderate cost. The results in Figs 18-19 were obtained af-
ter 600 Euler multigrid cycles and 40 design iterations.

In conclusion the inverse design method has been demon-
strated to work in a number of 3D cases, here ranging from
transonic to supersonic flow, but in other applications also
down to Mach 0.2. It can equally be used in viscous flow
because the surface pressure is the only input. Redesign in
2D has been performed using Navier-Stokes equations.
The method is fairly robust and inexpensive and can be ap-
pended to any non-linear analysis code. The overhead cost
on top of one analysis calculation is very moderate.

‘What remains to improve on, having a more far reaching
automization in mind, is the selection and updating proce-
dure of the coefficients and functions contained in the re-
sidual correction equation. Work on this is ongoing in
connection with the quadratic shape optimization method.

2D Shape optimization

A feasibility study has started in 2D to see whether an op-
timization method could be developed using a simple pres-
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sure-confour relation similar to the residual correction
equation in the inverse design method. To use an inverse
method efficiently requires some skilled experience. Using
an optimization method, minimizing an objective function,
global aerodynamic quantities like drag, pitching moment
or lift combined with geometric constraints can be control-
led. Some preliminary results will here be shown using the
Lagrangian £ defined in Eq (12) as an objective function
with added lift constraint only. So far it was thought to be
sufficient for demonstration to use only one constraint al-
though for instance additional requirements like given vol-
ume or thickness can easily be implemented. This will be
done in coming work efforts.

The first demonstration is shown in Fig20 where an inverse
design case was formulated like an optimization problem
for given target Cp, with w; = 0 and A=0 in Eq(12). The
target was created by running a NACA00]2 airfoil in Euler
analysis mode at Mach 0.85 and o = 2°. The initial start so-
lution with the same airfoil and Mach number was comput-
ed at o0 = 0°. The upper part of Fig 20 shows the logged cost
function (£) and lift (CL) versus the number of optimiza-
tion cycles. After a slight overshoot with the integrated CL-
value a reasonably good solution is reached after about 70-
80 correction steps. This is also confirmed by looking at the
achieved Cp pressure signatures at the bottom of Fig 20.

. The second case to be illustrated, Figs 21-22, is a redesign
optimization of the RAE2822 airfoil with respect to wave
drag subject to constant CL . The operation is carried out at
Mach 0.73 starting at a=2° with the target lift constrained
to CL=0.82. The weight fractions of the Lagrangian £ were
settow; =] and wy = / o? respectively. At the bottom of
Fig 22 the cost function as well as aerodynamic forces CD
and CL are consecutively logged versus iteration number .
After about 150 optimization cycles the cost function and
aerodynamic forces have levelled out. The pressure distri-
bution in the upper part of Fig 22 is indicating an increased
rear loading which is confirmed by the new airfoil geome-
try shown in the middle of Fig 22. The absolute airfoil
thickness is reduced by about 10%. The drag CD has come
down from 0.0092 to 0.0063 a reduction of about 32%. De-
creasing drag by reducing thickness is trivial but to do so at
constant CL may not be so trivial. The final CL-value is
ending up at 0.8183 which is about 0.5% too low compared
to target. In Fig 21 the global Rms time history is shown
versus multigrid cycles.

The present introductory study has produced some interest-
ing results. The method is potentially flexible and fairly
general objective functions can be constructed. Aerody-
namic and geometric constraints can easily be incorporated
by inclusion of Lagrangian multipliers. A developed meth-
od will be inexpensive and the autonomous optimization
module can easily be connected to existing analysis flow
solvers. Future development efforts will lie in the pressure
contour relation ansatz.

Conclusions

A method for 3D inverse wing design has been presented
and demonstrated in transonic and in supersonic flow.
Some preliminary studies in aerodynamic optimization
have been carried out in 2D trying to generalise some of the
inverse ideas into a redesign method using quadratic shape
optimization. The inverse method have in general shown
very good results in comparison with target objects. It has
demonstrated to be an inexpensive versatile numerical tool
for wing design. The introductory optimization efforts
have given some interesting resuits. Future work should be
devoted to the linear perturbation relation between pressure
and wing geometry. This will also benefit the inverse de-
sign method. What makes both methods attractive is that
they are inexpensive to apply. The optimization formula-
tion makes side constraints easy to add. Both methods rely
on fairly autonomous modules that can be connected to ex-
isting analysis solvers.
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