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Abstract

In this paper the aerodynamic model of the lateral jet
sheet and corresponding mathematical relations are
presented in a shape useful for aerodynamic interference
investigations. The mathematical relations describing the
jet sheet are matched in a general computation method
Jor non planar lifting systems, capable to solve the
aerodynamic interference problem for a general wing-
body configuration and lateral blowing arrangements.
Computed results for wing- and body-wing configurations
with inclined lateral jets, for different incidences,
maximum lift capacities of wing sections or lateral
blowing inclinations are presented. The theoretical results
are compared with experimental data in the case of
rectangular wing with lateral jets. A discussion of the
overall aerodynamic effect of different contributions
taken into account for the jet sheet modeling is presented.
Also, a new manner of using lateral jets, by blowing out
of the fuselage in front of the wing, as a fluid close
coupled canard, is shortly discussed in connection with an
experimental program in development at INCAS.

Introduction

E. Carafolill] first reported, in 1962, on the influence of
lateral blowing from the tips of rectangular wings on their
lifting characteristics. Since then, a number of studies
have been performed in Romania (at the Institute for Fluid
Mechanics in Bucharest), or other countries!’®!.
Regarding the Romanian research, although the essential
theoretical or experimental developments were

communicated in different publications[z'sl, others,
containing, important developments, remained only in the
shape of basic research reports and in the present paper

author's Ph.D. thesis[G], unfortunately having a rather
reduced circulation. This was one of the reasons for
allocating a good part of this paper to summarise some of
the practically unpublished results contained in ©.

On the other hand, recent developments renewed the
interest for the entire problem, especially in connection
with the idea of using the lateral jet sheets as canard-like
Sfluid surfaces, close-interacting with the wing as vortex
lift generators, in addition to the direct effect on the body.
Experimental results are not yet available, but a wind-
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tunnel experimental program is scheduled to start in the
summer of this year.

The aerodynamic model of the lateral jet sheet is
developed in the framework of a lifting surface theory,
specially build to allow a separate treatment of the
chordwise problem and the reduction of the spanwise
problem to a modified lifting line method that is accurate
for all aspect ratios and suitable for non-planar lifting
systems.

Theoretical background

The jet sheet model

Consider a thin jet sheet exiting y-wise, as in Fig. 1,
trough a wing tip slot of chord ¢, and thickness §;. Let V;
and U,, be the jet and main flow velocities and p; and p.,
the corresponding air densities. The jet momentum rate
and the associated jet coefficient are given by the
following formula:

2)
T=pbc,V}

C=—— M
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For the sake of simplicity, unless otherwise specified, the
slot camberline will be neglected and the jet momentum
considered to be uniformly distributed along the slot.

Preparatory analyse and assumptions. In order to obtain a
correct representation of a lateral jet sheet we have to
analyse the different types of its interactions with the main
flow.

The firsts to be discussed are the viscous interactions for
which a hypothetical non lifting case was considered. The
main phenomenon is the entraining of the two flows one
in the direction of the other, as sketched in Fig. 2. The
initial thin jet sheet is replaced, as departing from the exit
slot, by a core of particles having velocity components
both in the jet and main flow directions. This core
increases on the expense of the main flow particles
entrained by the jet. A two direction momentum analysis,
performed in ©®, produced the following formula for the
average sweep angle A of the jet core:

2

tan A = [—(29—’2 - I]}\If—"0 + order( I\J/;’ M. (@

0 i i
...where Q(y) and Q, are the flow rates in the jet core at a
current station y and at the slot, respectively. ‘
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As one can see no matter how small is 9—‘1 the sweep
3

angle tangent, tanA, increases indefinitely with y because
of the entrainment effect included in Q(y).
On the other hand, for Vj>>U, there is a certain
neighbourhood of the slot where the sweep angle can be
considered small enough to be neglected, together with the
entrainment effects.
The second type of interactions to be considered are those
due to the potential flow around the jet core, mainly the
lifting interactions. These interactions are the most
important for the purposes of this paper and will be
treated in detail.
Confining the analyse to the region in the neighbourhood
of the slot and to the case V. >>U, the following
assumptions can be made [Carafoli "]:
-The jet sheet behaves like a solid deforming lifting
surface (the concept of the equivalent fluid wing);
-It can be decomposed into elementary thin jet filaments
that preserve their slot momentum magnitude (3J) while
changing their direction under the pressure differences
acting between the lower and upper side of the jet sheet
(the concept of the jet filaments).
A third assumption, based on the momentum theorem, is
essential to establish a termination criterion for the lifting
part of the jet sheet, which in turn defines the span or the
planform of the equivalent fluid wing:
-The overall lift supported by the equivalent wing
representing the jet sheet, P;, equals in magnitude the jet
momentum at the slot:.

J=P; 3)
This assumption was one of the contributions introduced
by the present author in . It was used in all subsequent
works [Carafoli and Neamtu ®** Neamtu ).
It can be easily extended to the case of the jet sheets
having a slotwise variation of the direction of jet exit
velocity, if we use instead of J the sum of the momentum
magnitudes of all jet filaments, £8]J. The physical
meaning is that the jet sheet terminates along a line where
the jet filaments have a direction perpendicular to the total
slot momentum J, considered as a vectorial resultant (in
general 8]> ] J l ).
The above assumptions allow a variety of aerodynamic
models for the equivalent wing. Two extreme models are
shown in Figure 3.
Model I represents a plane equivalent wing for which the
leading edge filaments are immediately deformed and
rotated with 90°, producing, possibly, a chord variation.
This type of model can be associated with pressure
difference distributions featuring a pronounced peak at the
leading edge, as in the case of very small aspect ratio
wings.
Model 1I is the most general and assumes a more gradual
chordwise pressure distribution, resulting in a non-planar
shape of the equivalent wing (twisted and bent).

In the following the general model II will be considered,
but a discussion will be made at the end of the paper about
the differences obtained by using various models for the
equivalent wing.

Deformation relations. All the relations defining the
equivalent wing correspond to the properties of the jet
sheet in the vicinity of the slot that are assumed to extend
up to the wing tip. The usual small perturbation
approximations apply nearly to the entire wing because of
the abrupt rolling up of the jet filaments in the region of
jet sheet termination.

The jet filaments (as defined above) bend under the action
of pressure differences Ap. Applying the momentum
theorem the deviation angle [ and the ordinate z(y) of the
deformed jet filament can be written as follows:

sin = % cos f = —— [AC.dy )
& ¢,C,o °
y
[ AC, dy" ,
1 v P 1 vy
= 0 dy'= ACpdy")dy' (9
g cocj{) cosf Y cocj{,({ pay” )y

..where AC = 2Ap/ p, U2

From the above formula one can extract the equations
defining a mean deformation line by averaging along the
chord:

1 3
sinf3, = [Cdy'=tan g (6)
¢,C; 0
1 ¢ 1 ¥ ¥ \
z,=—|zdx=——[(JCidy" )y O
Cy 0 c,Cio o

..where C,(y)= L fACp (x,y)dx is the sectional
Cy 0 .

lift coefficient.

Also, one can derive an approximate expression of the
geometrical incidence o,(X,y) defined in a plane normal to
the jet sheet

(x,¥)

a,(x,y)= W“U = &, cos[ B, ()~ 9,1 -

¢,C;0 0 17,4
where wy(x,y) is the component of U, normal to the jet
surface, while o, and @, are the incidence of the slot and
the jet lateral inclination, respectively.

dy| 1 )dyl (8)

Aerodynamic analysis. The relations above express the
deformations of the jet sheet as a function of the pressure
differences resulting from the aerodynamic interactions
with the main flow. These interactions depend, in turn, on
the incidence and geometry of the entire lifting system,
including the jet portions, and can be expressed in the
framework of the lifting surface theory. In the previous
works @® the downwash equation of the lifting surface (in
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fact the boundary condition in terms of downwash induced
by the vortex system that model the lifting surface) was
written in the following shape:

v < j- ¢ AC (XOa y)

Xp —X

an(xa y):ln(y)+ X0 (9)
...where i(y) is the sectional induced incidence in the
sense defined by Prandtl and v is a correction coefficient
to allow for low aspect ratio effects. For y=1 the above
equation is exactly the equation of the lifting surface for
the limiting case of infinite aspect ratio and the last term
coincides with Birnbaum’s expression for the downwash
induced by the infinite spanwise bound vortices. As shown
in © Eq. (9) can be used for nonplanar unswept lifting
surfaces of low aspect ratio, with y given by the following
theoretically derived expression:

4 2

rCl 1+ Xz— (10)
This takes into account the_influence of the aspect ratio A,
« being a constant, whose value, corresponding to 4x*=2,
was found in a way that will be explained below.

This time the last term in (9) represents the downwash
induced not only by the spanwise bound vortices (as in
Birnbaum’s case) but also by ail segments of streamwise
vortices overlooked or added in the i,(y) computation,
Following a known way, " multiplying Eq. (9) by

J(c—x')/x' and integrating along the chord for x’

from O to c, one ﬁnally obtains:
C -
(y)= ( A) ———[(a"(y)~1,(y)] (11)

..where Ci(y), as above, is the section lift coefficient,

1+

(//:

1c¢ .
accounting for ~[AC (X', y)dx', while o'(y) is the
Co

section geometric incidence considered from the zero lift
axis of the section and represents the expression

2 c
-
Eq. (11) is similar to Prandtl’s lifting line equation,
differing only by the factor 1/y. By using this equation
one can determine the variation with the aspect ratio A of
the total lift coefficient C;. of rectangular wings. By simply
comparing with the experimental results, one finds the
value 4x’=2, that appears in the expression (10) of .
Eq. (11) also defines a slope “a” of the local lift coefficient
C, corresponding to an effective incidence o.=at i,

27[ 2

4 \ll+2/A2

Both a and o differ from the apparently similar notions
introduced by Kiicheman in © because i, is defined in a
different manner.

The nonplanar lifting surface to which Eq. (9) applies is
of a quasi-cylindrical shape, together with the vortex wake

Xoz(x' , y)dx'.

(12)

behind it. Its spanwise configuration can be defined by the
trace in the Trefftz plane far behind the lifting surface
itself.

Turning now to the jet sheet and taking into account the
deformation relations, by applying (9) one obtains the jet
sheet equation:

1 yyﬁAC(xy) oy
a, cos[ B, (Y)—9,] - C I y'' )y’ =
0 jO 0
¢ AC ,
:in(y)+_l/_/_.j____£(_{(°_y2dxo (13)
dro X,—X

The main advantage of using Eq. (9) and consequently
(13) consists in the separation of the chordwise and
spanwise interactions. This allows to treat first the
chordwise problem and establish the equivalent sectional
geometric incidence that, in furn, can be used to treat the
spanwise problem, in the framework of the lifting line Eq.
1n.

The procedure, based on the classical chordwise
development of AC,(x,y) in a Glauert shape (however with
coefficients depending on y), was used in ®**® and
resulted in the following expression of sectional incidence
corresponding to the local zero lift axis:

a;‘(y} = a,cos[B,(y) - 9,]+ aj(Y)
...where:
c,C,

a(y)= ")dy'
J

In ® the procedure was also extended to find the 2-D
shape of the jet sheet, for the case C;=constant.

4

8/ (V25 e gy

(147

The equivalent wing (model II) of the jet sheet. We can
now define the equivalent wing by extending, with some
special precautions, the relations established for the region
in the vicinity of the exhaust slot to the extremity of the
jet. This can be done , following ©, as follows:

-constant chord (c=c;)

-The shape of the lifting line will be given by the relations
(6) and (7). However in (6) the approximate part will be
considered, in order to be consistent with the
approximation in (7). This means that B, will be taken as:

i zatan( lC ?C,dy'j

ov; 0
-The sectional incidence given by the following alternate
relation, rather then (14):
a j(Y)

Ve (r

As one can see for small &;(y) the above relation tends

(15)

a:j(Y) =, COS[ﬂm (Y) - (/’o] + (16)

to the expression (14).

-According to the termination condition (3), the span of
the equivalent wing will be implicit in the following
equation, as the upper limit of the integral:
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b;
C(Z)Cj = yc|C,dy' a7
0

...where Y is a parameter close to 1, that can be used for a
final empirical adjustment.

Lifting systems with inclined lateral jets

Consider a lifting system having in the Trefftz plane a
trace as in Fig. 4 and let § be a scalar spanwise coordinate
chosen in a convenient manner, as will be explained
bellow.

Introducing the circulation I' instead of the section lift
coefficient C, , 2I'=cU,C;), and using s instead of y, the
induced incidence in equation (11) can be expressed as
follows:

. 1 s I(s") g(s,s,T
ln(S): I ( )g()za )dsl
470, 5,  (s—+¢")
..where g(s,s’,I) is an “interference” function that takes

into account the non-planar effects, including the presence
of the fuselage and the I'-dependent jet portions of the
trace.

In the above relation and in all relations below,
containing a kerner of the same type as [(s-s’)’]", the
integral represents the second-order principal value in
Mangler’s sense.

As a consequence the lifting line equation (11) can be
rewritten in the following form:

- mU, o o« B
I'(s)= (A [a'(s,T)

(18)

1 9 T()-glss,D)
47U, 5 (s—s')

In the following, for the sake of simplicity, only

symmetrical systems will be considered.

The limits of the above integrals result from the
termination condition Eq. (17).

(19)

ds']

The general procedure. Because of the complex inter-
dependence between the shape of the configuration in the
Trefftz plane and the spanwise circulation distribution, an
iterative procedure is required to solve the integro-
differential equation (19), as follows:

Step 1.-Chose the length of the jet sheets, b; and hence sg,
Step 2.-For the first iteration, establish the configuration
by using independent on I simplified formula defining the
lifting line geometry (z, and PB,) and sectional incidence
(o) for the jet portions (see below),

Step 3-Calculate a;j(s), using (16), and g(s,s’) (see

below) for the resulting configuration;
Step 4.-Compute the circulation distribution (see method
below);

Step 5.-Recalculate z,, B, and o, by using this time the
normal relations;

Step 6-Repeat from step 3 until the difference between two
successive iterations becomes negligible.

Step 7-Calculate C; and the overall aerodynamic
coefficients of the solid part of lifting system.

Normal aﬁd simplified expressions for zy, By, and o, . The

following relations are written, for the simplicity sake, in
the Oxyz system of the jet sheet, using I instead of C; and
taking into account (17):

y
[Tdy' '
1
S, =atan 1 3,. = atan(— bl] Q0
l j’rdyu Z j
0

y v
Fd tt d t 2
£(£ y )y:o.8925,5.(_y'j 22)
Cy

aj(y)?:m/—z— j

bj -
x€, JTdy' «
o]

The numerical method for Eq.(19). The Multhopp method
[see for example " ] allows the determination of the
adimensional circulation, hereto defined by:

r cC
25U, 4sg
...for (2N-1) stations along the span of nonplanar wing:

y = (23)

vre
S, =8, COS} —§, =1,2,....(2N-1 24
v (ZN) Y (@N-D @9

In the general case, Eq.(19) transforms into a system of
(2N-1) linear equations for the values of vy, corresponding
to the stations (24). However, for the symmetrical case
considered here, only N equations are necessary.

4SB N = #’
7/‘, va+ +27#va:av (25)
ac, u=1
...where: v=12..N
_GV'“ = bvavy + bV,zNA;IGV,2N—}l > V#U (25’)
a,=a(s,) (26)
G, =b,g. = ———¢, ar)
. VT
2sin(—)
2N
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GV,u = bv,ugvy =
. v
T U
4N [cos( ) cos(”—)]
def
= hIn g(sv,s ) (28)

s —)S
The expressions for g(s,,s”) will be presented below

The body-wing-inclined lateral jets configuration Refer to
Fig. 4 and consider the complex plane {Qn, with Qn as
imaginary axis and t=C+in the associated complex

variable. Denote by D the trace of the wing, interrupted by

the fuselage in F and F and let M be a point on D while
M, represents its orthogonal projection on the known trace
FOB, (with B, and B corresponding in the same manner
as M, and M). On the solid portion M=M, .

Also let o be the length of the portion FM, , measured on
the trace FOB, . The coordinate s, corresponding to M and
M, can be defined as s=s(c), where s(5) can be chosen in
a manner that produce a favourable distribution of the
points o, corresponding to the stations in (23), by
increasing their density in the regions of rapid variation of
¥(s), a'(s), or g(s,s’). We denote by o, ,S., Op, sg the
values of o and s corresponding to O and B, respectively.
The configuration of the lifting system can easily be
described by using the complex variable t=C+in. For a
point M on the jet portion, corresponding to M, on Oy,
one can write:

t(M) = t(M,) -z, (y)e ",

(297
de_ e
do cosf.(y)

where @=Arg(dt/do) and

t(M,)=t(0)+y-ie”* =
=t(so)+[o(M,)-0,)]-ie”*

For the solid portion t(M)=t[s(c)] must correspond to the
given configuration and position of the solid wing. For a
horizontal wing passing through (2 one can write
t=tg+(to-tr)-0(s)/C, (29°)
We notice that @, represents the jet lateral inclination at
the slot, corresponding (see Fig. 4) to (n/2-¢) in O (but on
the jet side only).
Following  Multhopp’s method for  wing-body
combinations”?” ‘? | the plane {Qn is conformally
mapped on a plane ¢ with the fuselage superposed on the
Q'n axis, as in Fig. 4.
There are two effects of the fuselage that have to be
accounted for:

-the modification of the downwash induced by the vortex

wake, or, in other words, of the induced incidence;

-the alteration of the incident flow, i. e. of the attack

incidence of the main flow.

Lets treat first the induced downwash, starting with the

flow in the Treffz plane, far behind the real system.

As known, the conformal mapping does not change the

potential of the plane flow and so I' remains also

unchanged. In the transformed plane, the complex

velocity due to I in a point M on the transformed trace

D', corresponding to M on the trace D in the Treffiz

plane, is given by:

o 1 dar' i It dt™ 30)
2ot - £ 2zt —t')

The complex velocity in M, on the trace D in the Trefftz

plane is

— dt’
= A 31

The component of the real velocity w,, , normal in M to
the trace D is given by

w_, = Re(-1e”w,) v (32)
(Note:The above relation contains also .a general
procedure to obtain in a simple manner the component of
the velocity normal to the lifting line trace starting from
the corresponding complex velocity.)
Taking into account (30) to (32) the incidence induced
normal to the real lifting line in the point corresponding
to M on D, can be written in the following shape:

+ dt* t t
1 cd b (H{) d

wdt

WIICO
Re e - _;——*——2——
47U, dt o (-t

I = =

"2u

3]

_ (t"=t™")? dt dt' do' ds'
AU b (s—5')’

Comparing the last part of the above relation with (18),
one can easily see that:

o(s.6 I")~—Re{ (s—s')* dt’ dt”" dt' do'

(C —t') dt dt' do' ds'
Now, taking into account (28)and (29) one obtains, after
some simple handling:

m*m)iiigw}
_1.[ ds

GVV = bvvgvv = E—"_‘C%‘!’—
2N° “ds’.
(35)
dt” dt’
N )y
Gvy = _.[.1_.1_(_1)____](}## Re dt* Eitz “ RO
4 (t,-t,)

450



The calculus of Gv,, in (25) is now only a matter of

taking into account the symmetry of the lifting system.
Considering now the effect of the fuselage on the
incoming flow and following a known way, it can be
written in terms of an additional angle of attack normal to
the lifting line:

oy, = 0L Refie® (% -1)] (36)

...where QL is the incidence of the body axis.

Further, the total incidence in the right side of (25) can be
calculated by adding (36) to the incidences due to the
angle of attack or to the shape of the lifting system such as
(16) for the jet portions.

The conformal mapping and s(c) for the elliptic or
circular cross section fuselage: The following relations are
written in a shape that cover both cases:

. (H+L)t*+1)

t = (37
(Ht + Ly/t* - H? +12)
* 2 2
di” (H+L)(t* -H?) 8

dt  (Lt+HVt? - H? + )i* -H? + ?)
One chose now the co-ordinate transformation s(c) so as

to coincides with the conformal transformation of Qr axis
by putting t=i(c+L) and t'=is

(H+L)[(o +L)* - 17]

= (39
H(o +L)+ L\/(O' +L)Y +H* -17
... with the inverse
Hs+ Ly/s> + (H+ L)
o= -L 40)
(H+L)
...and the derivative:
do _ Ls+H,/s2 +(H+L) @
ds \s* +(H+LY
The overall aerodynamic characteristics. Before

presenting the expressions of the overall aerodynamic
coefficients it is useful to mention an important remark of
E. Carafoli"®, regarding the total aerodynamic lift of a
wing-body combination:

the lift computed for the trace of the wing in the
transformed Trefftz plane equals the total lift of the wing-
body combination.

This can be simply understood by noticing that the
integrals of the complex potential F=®+i'¥ on the circle at
infinity calculated in the Trefftz and in the conformally
mapped plane are the same, because the potentials are the
same and the deformations due to confomal mapping
vanish at infinity. Or, as known, the real part of these
integrals multiplied by the imaginary unit i, represents the
overall lift of the entire system, so demonstrating the
above statement.

As a consequence the total lift of the body can be
calculated without knowing its distribution on the
fuselage. This can be done by simply subtracting from the
above total lift, the lift corresponding to the wing portions,
that can be found by integrating along the wing trace in
the Trefftz plane. Hence, in terms of complex variables:

P, = p, U, Re[i([Tdt" - [T'dt)] =
D’ D

= p,U, Reli] (9}— -prdt)] @
p dt

As shown in © the repartition of this lift across the
fuselage can be found using the same procedure as in "%,
but resulting the following formula:
Pn)=poUal mH2/m)[(P/(21E)-PeoUool F][5u(M)-Gi(M)]
43)
...where £y(n)) and (1) are the upper and lower fuselage
ordinates. For the elliptical or circular cross section
fuselage Gu(m)-Gi()=(1-n/L)"”
The total lift of the solid wing-body combination can be
obtained by adding (42) to the lift of the wing alone. The
resulting overall wing-body lift coefficient, taking into
account (23) is:
4’
Cop = =2
S

*

Re{i[}{y(%-l)dt'{fm'n @

WB

" .where Sws is the surface of the wing, including the

portion passing through the body, taken as reference for
the entire combination.

As for the induced drag, it can be calculated by spanwise
integration of yi, on the solid wing:

8s, o « 4s
Cp = =2 [y(a" - 22L)dp
S 0 cC a

WB

(45)

...where n, corresponds to O.
For the jet portion, taking also into account (17), one
obtains:

S2 bj

_ °B. ]
C iT 4y .’(; ydy

46
cg (46)

Results and discussion

The self explanatory Figures 7a,b,c,d show the spanwise
circulation distributions for a rectangular wing and for a
wing body combination with jets blown outwardly from
the tips of the wing. In these figures s, rather then o,
represents the length measured from the fuselage junction
along the wing, then along the initial direction of the jet.
The results correspond to different incidences of the wing
oL, lateral jet inclinations ¢, and total length of the jet
sheet, bjco=sp-so. As one can see, by increasing the
incidence or the jet length, the lift increases on the entire
span but especially in the region close to the jet. By
inclining the jets, these features are more pronounced, due
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to non-planar effects which are similar with those
produced by the winglets.

Figures 8a and b show the increase of the overall lift
coefficient due to lateral blowing, for the same incidences
as in Fig. 7 and, additionally, for two maximal capacities
of the sectional lift coefficient.

The last two situations are defined by considering that the
stalling appears when the maximal sectional lift capacity
is reached on the wing section in the most central
position, far from the jets, as shown in Fig. 5. This
corresponds to the assumption that the suction produced
by the jets prevents the first appearance of the separation
in the sections close to them.

In the case of the rectangular wing of aspect ratio 1.5 with
spanwise lateral jets (¢o=0) the theoretical data are
compared with experimental results from [2].

Also shown in Fig. 8 are the lines of constant jet length
by/c, , corresponding to the values considered in Fig. 7.
The calculated induced drag reduction due to lateral
blowing is represented in Fig. 9. One can see the
_ important effect of jet inclination.

Figure 10 shows the length of the lateral jet by/c, for both
lifting systems. One notice that the jet inclination and the
solid system configuration have a little influence on the jet
ler?gth. This is valid for any other configurations as shown
m.

Some interesting remarks can be made about the accuracy
of the jet modelling presented in this paper. It is normal to
consider that the complex flow around the lateral jet sheet
cannot be accurately modelled. To check the influence of
the different assumptions, different models were tested
and some typical results are presented in Figure 11.

As one can see, the increase of lift due to lateral blowing
shows a rather small degree of sensitivity to the type of the
model even at high blowing rates (up to 10%). The
impression is that this effect can be neglected. This is an
important result, that can be helpful especially when
looking for approximate formula as in ®. It means that
simple models can produce good approximations of the lift
increase due to blowing for a given jet coefficient

However the model type becomes important for the
estimation of jet extension, (by/Co), as also one can see in
Fig.11, where the errors between the two extreme models
amount to more than 50% for C;=1. In this case the most
important effect is introduced by the jet twisting
producing the additional jet incidence. The jet bending
has a little influence.

The Figure 12 presents the maximum lift gain for
different wing and wing-body systems with lateral jets
blown spanwisely. the gain coefficient was calculated in %
for the condition in fig 5, using the following definition:

c, %= (Sum 1100

Lmax
where Cpjma and Cr ., are the maximum lift capacities of
the lifting system with and without jets.

An interesting remark is that the blowing appears to be
more efficient for wing-body combinations then for wings
alone. This result needs an experimental confirmation but
from the theoretical point of view it has a simple
explanation: the lift on the body is decreased by a
quantity, that is proportional with some average
downwash in the body region. The decrease starts from
the lift level at the wing junction, or, by blowing the
downwash decreases while the lift level at the wing
fuselage junction increases both effects contributing to a
more pronounced lift increase as compared with the case
without jets.

Concerning the experiments, a modular model of the
shape in Figure 6 is scheduled to be tested this summer in
the trisonic wind tunnel of INCAS, as already mentioned.
The tests are intended not only for the investigation of
wing-body combinations, as considered above, but also for
the study of the influence of lateral blowing from the
fuselage in front of the wing. Canard like effects are
expected to be detected.
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Fig. 10- The lenght of the equivalent jet wing
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