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Abstract

An efficient cyclic acceleration scheme was developed base upon implicit approximate factorization ( AF ) algorithm
for the solution of unsteady transonic flow problems. The presence of shock waves in the flow fields and its interactions
with boundary layer , in general , will degrade the performance of an AF scheme. Therefore, this algorithm has to be
accelerated in order to reduced the iteration number at each time-step. An acceleration coefficient , o , with cyclic
values was added into the right-hand side ( residual part ) of the £ sweep during the Newton iteration process in the
original scheme. It was shown that the use of cyclic o values improved convergence rate of the original scheme.
Computations were made on NACAOOI2 airfoil with sinusoidal movement for several combination values of free-stream

Mach number , movement amplitude and reduced frequencies .

available.

Introduction

The main difficulty in transonic flow
computation is that the flow structure is complex and
inherently nonlinear which is typified by the appearance
of shock-waves in the flows. The complexity of this flow
structure becomes more pronounced because of the fact
that ( as indicated in the wind tunnel experiments ) the
shock waves are also moving. The shocks oscillate

forward and backward following the aeroelastic
movement of the body surface'.
In general , transonic flows should be

mathematically described by nonlinear equations of
mixed elliptic/hyperbolic type , since the subsonic flow is
described by elliptic equation and supersonic flow by
hyperbolic one. Boundary between solutions of these
two equations ( the shock waves ) must be found as part
of the solution. If self the difficulty is that analytic
solutions of these mixed equations are generally not
available. Therefore, it is more confenience to solve these
nonlinear transonic flow equations numerically. There are
many numerical methods available for predicting
characteristic of steady and unsteady transonic flows. The
complexity of equations that need to be solved depends
on the characteristics of the flow and ( for aeroelastic
analysis ) the coupling mechanism between the
aerodynamic and structural model (of the moving surface)
used in the analysis. Perhaps the most complex flow is the
one induced by structure oscillating at large amplitude
with strong shock waves motion, such that the flow is
separated. To incorporate the whole complexities of this
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Numerical results were , then , compared with

kind of flow structure , there are little alternative other
than to use and solve the Navier - Stoke’s equations. The
simplest equations that can describe a typical transonic
flow is the linearized transonic small disturbance ( TSD )
equations .

Murman and Cole® developed the first computer
program for the solution of unsteady transonic small
disturbance equations based on SLOR shock capturing
finite difference algorithm. It was shown in ref. 2 , that
this solution procedure is more efficient computationally
than the explicit , time-accurate procedure proposed by
Magnus and Yoshihara for Euler equations. Although this
procedure proven to be accurate and reliable, its routine
application is limited only for certain problems because of
low convergence-rate characteristic of the scheme. This
approximation is valid for reduced frequency of the body
surface oscillation less than 0.2 which add another
restriction for aeroelastic applications (flutter can be
found at reduced frequency as high as 0.5).

At present , methods based on the small
disturbance theory have already led to the development of
computer code that are in routine use for aeroelastic
applications , such as ATRAN3S and CAP-TSD ( code
developed at NASA Langley ) . ATRAN3S , the NASA
Ames version of XTRAN3S | is a three-dimensional code
based on a time-accurate , finite difference method using
alternating direction implicit ( ADI ) algorithm. Several
terms of the TSD equation in the ADI algorithm used in
this code are treated explicitly , which leads to a time step
restriction based on numerical stability consideration. It
was shown that the number of time steps required per
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cycle increases with a decrease in the aspect ratio and
taper ratio and an increase in the sweep angle , movement
amplitude and reduced frequency of the moving
structure’. Code based on ADI algorithm , like this one ,
becomes very expensive for three-dimensional
applications not just because of the small time-step
needed in obtaining a convergence results, but also
because of the fact that all of the sweep in the algorithm
can be written in vectorized form . An approximate
factorization ( AF ) algorithm developed by Batina® , that
is applied in CAP-TSD , was proven more efficient for
three-dimensional flow caiculations. This AF algorithm
consists of a time-linearization procedure ( to determine
estimate values of the perturbation potential ) coupled
with a Newton iteration technique ( to provide time
accuracy in the solutions ). Newton iteration process
occupaid most of the cpu time needed for stable and
accurate results .

The main objective of this work is to developed
a stable new procedure based on the AF algorithm with
higher efficiency and accuracy . From previous studies , it
was found that the Newton iteration technique employed
in the original AF algorithm was a major source of slow
convergency . Therefore, a modified iteration sweep was
developed . This new iteration making use an acceleration
coefficient O in the &-sweep which given a cyclic values.
The addition of this coefficient gives stable and accurate
results with less iteration number per time step. With the
modified procedure, unsteady flow computations are
made for several combination values of. free-stream Mach
number , movement amplitude and reduced frequencies
and comparison are made with the available data.

Approximate Factorization Algorithm

In this study , the transonic flows is governed by
the modified transonic small disturbance ( TSD )
equations which may be written in conservation law form
as

of, off of,

Lo (21,5
a (1)

fo==-Bo,, +AQ,, fi =Eg,, +Fo’,, f,=9,,
where t is the non-dimensional time = K t

k 1s the reduced frequency of the movement, and
¢ is the disturbance potential velocity

Coefficients A , B and E are defined as

A=M’k? , B=2M’k , E=1-M?
in which M represents the free-stream Mach number.
There are several choices for coefficients F being used ,
depending upon the assumptions made in deriving TSD
equation. In this study , this coefficient is defined as

F= -% [3-e-v)m* M

Boundary conditions imposed upon the flow field are
those of non-reflecting boundary defined by Kwak* , as
[2a]

Far upstream’ ¢=0

Far downstream %{i+~l-)——](p,l+(p,x=0 [2.b]

c Jc

Far above and below %D¢’[+¢’z=0 [2.c]

The surface flow tangency boundary condition is written
in the form

9o, i=f,f+1,7 [2.d]

and imposed at the mean plane of the oscillating surface.

For unsteady flow calculations based on TSD
equation, surface boundary conditions need not to be
applied on the actual body surface. Instead , it is applied
on the mean surface of the body. Therefore, a body-fitted
grid system is not required. Numerical computations are
carried out in a computational domain within a
rectangular region conform to the airfoil which is
obtained by a coordinate transformation of the physical
domain. The physical grid system in ( x , z ) plane is
transformed into some (€ , { ) plane , so that the mesh
spacing in both directions can be kept uniform in the
computational plane a using a trigonometric
transformation function as defined in ref. 5.

An approximate factorization ( AF ) algorithm
developed by Batina® , is used in this investigations. This
AF algorithm consists of a time linearization step to
determine an estimate values of the perturbation potensial
coupled with a Newton iteration step to provide time
accuracy in the solution , as shown in figure 1 below.

n+2
¢
Time Linearfzation

é" +1

.

¢
U Newton lteratlon
¢

¢

Figure 1. Approximate Factorization scheme for
unsteady flow calculations

The mathematical formulations of this AF
algorithm are derived using second-order accurate finite
difference formulae in time and space , which may be
presented as

LeL; (A9)=R (0" .0".0"" 0"?) 4]
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Detail derivation of this equation can be found in ref. 5 .
Equation [ 4 ] is solved through two - sweeps in the
computational domain by sequentially applying the
differential operators as

& — sweep : LeAd =-oR ((p",(p“ ,tp"",q’"—z) [5a]

C — sweep @ Lg Ag=A¢ [5b]
In the first sweep, the calculation is carried out along
grid-lines in the streamwise direction. Using the

intermediate value Ad , the second sweep is performed
along the vertical grid-lines to obtained A values at each

grid-points. With the updated values of AQ , the new
values of the perturbation potential are obtained from

o™ =¢" + Ag [6]

For each time step , computation is started with

an estimate values of (p’k and is carried out until a

convergence solution for (p"+1 is obtained ( until the
perturbation error in AQ reaches the value of 106 )
Using the (p““ values , the time linearization step is
carried through to obtained the new estimate value
(p* for the next time-step. In this step, the airfoil is put at

its new position ( so , an updated surface boundary
conditions are applied ). The unsteady solutions are
initiated using the steady-state solution as the first
estimate values.

In most of the computation that had been
performed using the original AF scheme , a minimum of 5
and maximum of 11 Newton iterations for each time-step
are needed to obtained converged solution. For 360 time-
steps per cycle, a total of maximum 3960 iterations
required which use most of the total cpu time in the
calculation. Although , in general , this scheme does not
have a time step restriction , decreasing the number of
time-step per cycle in order to reduce the total number of
Newton iterations is not recommended since it will
decrease the accuracy of the solutions. Another way that
can be used for reducing the iteration number is by

making use of an acceleration coefficient , o .

Cyclic Acceleration

A cyclic acceleration coefficient , o , which
contains At , the time step , is added into the right hand

side ( residual R ) during the & - sweep , so that equation
[5.a] become

L A0 =-0wR ((p‘,(p" o™ ,(p"‘z) [7]

In the present study, the values of O is given a variation .
according to a geometric sequence defined by
{k=1)/ (kn-1)

J (8]

O min
Oy = Oy (
& max

where k = 1,2,3,........ ,kn with kp represent the number
of o values to be defined ( usually between 4 t0 8 ) .
The Omax and  Omin parameters represent the

maximum and minimum values of O , respectively ,
which are defined as

=1 . amin=—(—A—L—:—)-; (9]

For each Newton iteration , a different value of
acceleration coefficient is used according to equation [
8 ]. From the computation made using this modified AF
scheme, it was found that stability and convergence rate
of the solutions strongly depends on the variation of O
values being used ( the value of kp ). In this study ,
several values of kp were chosen ( according to the
problem being treated ) in order to optimize the number
of Newton iteration required for convergence results.

Computed Results

The accuracy of the present method is evaluated
by selecting several test cases recommended by AGARD’
, and comparing the computed results with the available
measured data. Only cases for NACA0012 are presented
in this report with test condition given in Table 1 . The
reduced frequency , k , is calculated based on the
semichord length.

Motions of the airfoil are described by the following
harmonic equations :

o (t) Oy + o, sinQt

]

pitching motion

plunging motion : h(t) = h, sin Qt

In these equations , ¢, is the mean angle of attack, and
Q is the non-dimentional motion frequency ( = 2kU/c ).
In all cases, three or four cycles of unsteady motion are
calculated in order to allow transients response to decay
and using steady flow potential as a starting potential
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distribution. Each cycle , in general , is devided into 360
time-steps. A linearized formula given in ref. 6 is used
for the calculation of pressure coefficients.

For each cases, computational result are
presented in the form of : upper and lower surface
pressure distribution, lift and moment coefficient , and the
real and imaginary parts of the first harmonic component
of the pressure computed from the Fourier transform of
the normalized ( by the motion amplitude ) aerodynamic
response.

All numerical computation are obtained for the
values of ® = 0.9 and maximum and minimum cyclic
acceleration coefficients given by equation [ 9 ]. For a
maximum error in the disturbance potential equal to 10,
a maximum of three Newton iterations per time step are
needed ( compare to eleven for the calculations using no
acceleration coefficient ).

The four cases studied for NACAQ012 airfoil
listed in Table 1 involve greater mean angle of attack ,
Om = 4.86 degree , and larger pitching amplitude , o, =
4.59 degree. Figure 2 presents the steady pressure
distributions for the analytical and experimental cases at
Mach number , M = 0.950 and o, = O degree. The
shock strength and position at the upper surface of the
inviscid solution is nearly coincide with the experimental
data. A lower degree of agreement in shock strength and
position found for a larger value of mean anggle of attack.
The convergence rate of this calculation given in Figure
3. A convergent result was obtained in just after 20
iterations . Meanwhile , similar results calculated using
scheme witout acceleration need at feast 80 iterations.

Case M Nge Olm O k
(deg) (deg)
1 0599 4.8x10° 3.16 4.59 0.081
2 0599  4.8x10° 4.86 2.44 0.081
3 0601  4.8x10° 2.89 2.41 0.08!
4 0.755  55x10° 0.02 2.51 0.081

Table 1. NACAO0012 airfoil test cases

In Figure 4 , the upper and lower surface
pressure distribution are plotted at free stream Mach
number , M = 0.599 , «, = 4.86 degree , o, = 2.44
degree and reduced frequency of the airfoil motion equal
to 0.081 . Comparison with measurement data at several
time-steps shows good agreement except for the shock
strength and position close to the leading edge. Inviscid
pressure distribution in present study has a stronger shock
~with an aftward position. This phenomena is always
encountered in the inviscid potential flow solutions at
high angle of attack due to the singularity of the leading-
edge which affecting the upper surface solution. Similar
results are obtained also for airfoil oscillate at a larger
pitching amplitude, as shown in Figure 5 . The maximum
upper surface pressure at the airfoil leading-edge is lower
than its experimental value. At this pitching motion

amplitude, the invisid solution can not predict shock
strength and position properly which indicate the
limitation of small disturbance theory. The use of smaller
grid size at the shock position could not reduce this
singularity effects entirely. A leading-edge modification
procedure proposed by Grossman and Melnik , as
described in ref. 8 , might be able to improve the accuracy
close to the leading edge. In both cases, however, the
fower surface pressure distributions are in very good
agreement with experimental results.

Variation of the lift and moment coefficients
with angle of attack for airfoil oscillatory cases 1 and 2
are presented in Figure 6. The shape of both plots are
similar to that given in ref. 9 with a slightly different
values.

Calculations at slightly higher freestream Mach
number but at lower motion amplitude , case 3 , shows a
better leading edge pressure distribution . The pressure
jump is lower compared to the previous result. But the
shock strength and position is still not accurately
predicted.

For cases at higher Mach number , calculations
are performed at lower motion amplitude to ensure the
validity of small-disturbance theory. Figure 7 presents
the unsteady pressure distributions on the upper surface of
the airfoil for NACAQO12 case number 4 at freestream
Mach number , M = 0.755 . Comparison are made with
the experimental data at every half-cycle of the motion
after the completion of 3 full oscillation cycles. As with
the previous results, the predicted shock location is
slightly forward of the experimental location with a
weaker jump in pressure distribution. Downstream of the
shock, the analytic prediction agree fairly well with the
experiment. Not as in the case with a large motion
amplitude , there is no leading edge singularity effects
found. Pressure distribution in the leading edge area are
smoothly defined which are also in very good agreement
with the experimantal results. The variation of the lift and
moment coefficients for a full one oscillation cycle are
presented by close curves as shown in Figure 8. These
close curves indicate that there are no transient
aerodynamic response involve,

Conclusions

This paper has presented a study of cyclic
acceleration technique for the unsteady two-dimensional
transonic flow solutions. An acceleration coefficient with
cyclic values 1is intruduced in an approximate
factorization ( AF ) scheme to solve the transonic small
disturbance equations in order to accelerate the scheme
convergence. The computer code with this acceleration
coefficient included vyields the number of Newton
iteration needed for convergent results that are reduced by
a factor of 5 from those based on the original scheme.
Comparisons of unsteady pressure distribution and forces
with the experimental results for transonic flow around
NACA0012 airfoil shows a fairly good agreement.
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Discrepancies of the results are mainly due to the
singularity effects of the leading edge ( due to large
oscillation amplitude ) and viscousity effects. Further
investigations is required to include the leading edge
modification and viscousity - shock interactions.
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