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Abstract. A two-equation k£ — R turbulence
model, with pointwise formulation, is applied to
the solution of the phase averaged Navier-Stokes
equations for the simulation of shock-induced flow
oscillations over a 18-percent thick circular-arc air-
foil. The governing equations are solved with
an implicit time discretization, with pseudo-time
subiterations. The numerical computations show
that the unsteady separated flow is properly pre-
dicted and better calculated than previous simu-
lations obtained using algebraic turbulence mod-
els. The reduced frequency of oscillations is pre-
dicted 10-percent lower than the experimental one.
The surface pressure distribution is in agreement
with previous calculation performed with a one-
equation turbulence model.

Introduction

The solution of the averaged Navier-Stokes equa-
tions for the numerical simulation of unsteady tur-
bulent flows is currently of great interest for in-
dustrial applications. However the results are not
completely satisfactory yet. While efficient and
time accurate numerical techniques have been de-
vised (), the current turbulence models are not
well-suited for unsteady flows.

Inhomogeneous turbulence, characterized by
processes of energy transport and energy trans-
fer by pressure fluctuations, such as in turbulent
unsteady flows, does not have an universal eddy
structure. The eddies can have distinct types of
dynamical forms. We may have vortical eddies,
which are local regions of high vorticity that may
be advected by the flow, and on interacting with
-each other may merge and split into smaller scale
motions. When moving across a mean shear flow
they induce Reynolds stresses. Alternatively we
may have structural eddies displaying a relatively
fixed pattern and location within a turbulent flow.
These two distinct forms of eddy structure are par-
ticularly noticeable in direct numerical simulations
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of turbulent boundary layers, showing that struc-
tural eddies are located near the wall, and vorti-
cal eddies are present in the outer part. In shear
flows, the large scale vortical eddies are determined
by the initial and boundary conditions, the mean
profile and how the flow evolves.

The presence of vortical and structural vortices
implies the existence of different length scales. The
presence of eddy motions with different ranges of
length scales is reflected in the location of the max-
imum of the energy spectrum. The vortical (large)
eddies are located in the region of small wavenum-
bers, while the smaller structural eddies corre-
spond to higher wavenumbers. In the unsteady
case, the flow evolution is such that the vortical
eddies are usually located in a narrow band, there-
fore the energy spectrum will present the maxi-
mum located at relatively small wavenumbers. In
such a situation, the more elementar one-point clo-
sure models are not fully satisfactory,; because they
rely on a energy spectrum form which corresponds
more to flows that are essentially perturbations of
shear flows.

One possibility to overcome these difficulties is
to devise ad hoc simple unsteady models based on
algebraic or one-equation steady models for spe-
cific application. A more fruitful approach, but
more expensive, is to employ a turbulence model
based on two transport equations, such as the k —¢
model or similar models.

The objective of the present work is to devise a
prediction method for unsteady compressible tur-
bulent flows, based on the averaged Navier-Stokes
equations and a two-equation turbulence model.
In the next Section, we describe the more appropri-
ate averaging process for the Navier-Stokes equa-
tions leading to a natural splitting of the contribu-
tion of the large and small scales to the turbulent
stresses. Then we apply the two-equation turbu-
lence model to the simulation of a 18-percent thick
circular-arc airfoil under flow conditions for which
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self-excited shock-induced oscillations occur (2.

Phase-Averaged Navier-Stokes Equations

In unsteady flows with a well defined forcing
mechanism, such as vortex shedding or pressure
fluctuations, organized large eddies are present.
The operation of Reynolds averaging in the equa-
tion of motion hides many important features of
such turbulent flows. A more appropriate flow de-
composition can be obtained by viewing any fluc-
tuating flow variable f(x,t) as, following (3),

f(X, t) = 7()(’ t) + 7(7(: t) + f,(xa t) (1)

with f(x,t) a global mean component defined as

the time-averaged contribution; 7(x,t) the peri-
odic mean component, and f'(x,t) the random
component. Defining the phase average, obtained
as average over a large ensemble of N points at
constant phase, as

N
< f(x,t) >= limy_ oo Z f(x,t+ nr)

n=0
the periodic wave component 7 is defined as

f=<f>-7 2)

Therefore the phase-averaging process eliminates
the random fluctuations due to the small scale mo-
tion, and extracts only the large coherent motion
from the total signal. Between the properties that
follow from the above definitions, reported in (3)
and (4), we have that < f' >=0, the random fluc-
tuatlons have zero mean at consta,nt phase, and

f f! = 0, the large scale fluctuations and the ran-
dom ﬂuctuatlons are uncorrelated. From relations
(1) and (2), it follows

f=<f>+f (3)

The above decomposition can be introduced into
the Navier-Stokes equations and derive the equa-
tions for the global mean component, obtained in-
serting decomposition (1) into the Navier-Stokes
equations, phase averaging and then time averag-
ing. Being interested into compressible flows, the
time averaging is replaced by the Favre averaging,
and decomposition (1) is replaced by

1) = F(x, )+ F(x,0) + f'(x,8) 5 (4)

with f = pf/p, and f” are the random fluctua-
tions. The governing equations for the Favre aver-
aged quantities are, in nondimensional form

dp

5{'*' _~'):0 ’ (5)

0, 0 _. . . _
5;(P) + b?(Puiuj +Pbi;) = (6)
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+Re Oz; y—1 P'r Oz;
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Being p the density, p the pressure, T' the temper-
ature, E = & + i;4;/2 + k the total energy, & the
internal energy, %; the velocity components, k the
total kinetic energy associated with the velocity
fluctuations u” and %;. The dynamic viscosity & is
related to the temperature by the Sutherland law.
Re is the reference Reynolds number. The gas is
assumed perfect (air, v = 1.4, Pr = 0.72).

As pointed out in (%), any averaging process,
which commutes with spatial and temporal deriva-
tives, leads to averaged equations of the same form
as the Reynolds equations. Equations (5), (6) and
(7) have the additional property of displaying ex-
plicitly the contribution of the small scale and
large scale motion to the Reynolds stresses and
the turbulent heat flux, associated with the Favre
averaged global mean flow.

Two-Equation Turbulence Model

The Reynolds stresses, appearing in the aver-
aged equations (5), (6) and (7), are related to the
mean deformation tensor

6'ilj
fz; |

5 1 [ d%;
S = 2 (81:,- +

by the Boussinesq hyphotesis as follows

(8)

2 Uy
- 1 By 2._
= 2 (Su 36,5 azk) 3pk5z'] )
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Similarly the turbulence heat fluxes are related
to the mean temperature gradient as follows, Prs
being the turbulent Prandtl number,

(9)
_ L omoT
Ty —1Pr0z;

The eddy viscosity is evaluated as

k2
He = Cuﬁ‘e_ ) (10)
where k is the turbulence kinetic energy and € the
dissipation rate.

The transport equations for the kinetic energy
and the dissipation rate, written in nondimen-
sional form as

(11)

o .8 __ .
_a_t— (pe) + azi (P'U:,E) -

'}%;Celfl %'P - Cazfz_ﬁ%; +
eer (7 ) )

form the standard low-Re k — ¢ model (8).

01,

IJ3:1:,- ’

(12)

P=R

is the production term. The low-Re damping ef-
fects are taken into account by the near-wall func-
tions f; and fz, as well as by the function f, in
the low-Re expression of the eddy viscosity (10)

k2
He = fucyﬁ‘;_“ (13)

Usually the near-wall functions require the ex-
plicit evaluation of the distance from the wall (7).
This evaluation may be cumbersome when multi-
ple shear layers and regions with separated flow are
present. Moreover the solution of the k — ¢ equa-
tions (11) and (12) implies numerical difficulties.
To avoid both difficulties, the basic k — ¢ equations

are rewritten transforming the basic variables. Fol-
lowing (8), we introduce as new variable the turbu-
lent Reynolds number

A transport equation for the variable R = ZRr/p
may be obtained from equations (11) and (12).
The k — R low-Re model reads

0 0

a1 PR+ 5 (pisk) = (14)

1 pk?
Rel T R
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With the above assumptions, the eddy viscosity
relation (13) can be rewritten in the form

w = FuCPR .
The model constants are
C, =009 ,
Cop =144, Cop=1.92 ,
(Ce2 = Ca1) /Chu ,

K2

o, =10, o, =

with & = 0.41 the Von Karmdn constant. To
obtain a pointwise formulation of the turbulence
model, the near-wall functions are expressed in
terms of Rr, as in (®) and (),

h=1,
fo=1- 0.22{(%1)2 ,

_ 3.4
fu=e {1+ Ry /50)2
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Unsteady Flow Over a Thick Circular-Arc Airfoil

The supercritical flow about a 18-percent-thick
circular-arc airfoil has been extensively inves-
tigated in the past years both experimentally
(21(91(19) and numerically (21(11):(12:,(1),  For a
test Mach number M, = 0.76 and a chord-based
Reynolds number of 11 x 10%, the supercritical
flow is unsteady, with self-excited shock-induced
flow oscillations occurring on the upper and lower
surface of the airfoil, alternately 180 deg. out of
phase.

On the upper surface, weak shock waves form in
proximity of the trailing edge, increase in strength,
and coalesce into a single shock wave that moves
towards the midchord. As the shock approaches
midchord, it weakens appreciably, and the cycle
repeats itself periodically with a frequency of 186
Hertz. A similar situation occurs on the lower sur-
face 180 deg. out of phase.

Previous calculations have been performed em-
ploying algebraic turbulence models (2)(10):(11),(12),
All the computations reproduced the unsteady fea-
tures of the flow, but the reduced frequency of
oscillations was low by about 20-percent than in
the experiments, and the predicted shock wave was
more normal, causing the pressure downstream of
the shock wave be too high, in some cases double
the experimental values. The computations using
turbulence models developed for steady flows, even
if are able to reproduce the major features of this
unsteady flow, do not take into account adequately
for turbulence production and destruction mecha-
nism with an appropriate lag to turbulence adjust-
ment to the strong pressure fluctuactions. In (2)
and (19, some attempts have been made for taking
into account for the lag in adjustment of the tur-
bulence to the changing conditions imposed by the
shock wave. The algebraic mixing length model is
applied outside the region bounded by the dividing
streamline that separates the main and the recir-
culating regions of the flow. Inside the recirculat-
ing region, where the eddy viscosity is varied lin-
early between the value at the dividing streamline
and zero at the airfoil surface, the mixing length is
frozen at the value achieved prior the separation.

Moreover all the algebraic turbulence model
computations predict a smaller movement of the
shock. A better prediction of the reduced fre-
quency is obtained employing the one-equation
model of Spalart-Allmaras (1), but the numerical
computation does not predict motion of the shock
forward of midchord.

In the present work we report the results of the
computations obtained with the the two-equation

turbulence model (14) and (15).

Governing Equations. The Averaged Navier-
Stokes equations (5), (6) and (7), are written in

generalized coordinates,
oF, 8G,
—_— 16
( 5t T 3n> , (16)

where J = (z¢yn, — Tye) " is the Jacobian of the
coordinate transformation. Neglecting, for sake of
simplicity, the symbols denoting averaged quanti-
ties, @ = (p, pu, pv, E)T, is the vector of the con-

10Q
J ot

oF 96 _ 1
¢ ' On  Re

served variables, and
F = y,F-z,G ,
G ~yeF +2:G
E, YnFo — 2,Gy
Gv = —ygF,, + mer

The convective fluxes F and G are defined as fol-
lows

U pv
2
_| eutrp _ puv .
F= puv Tl I ’
(pE + p)u (PE +p)v

and the viscous fluxes F, and G,

0

.

F, = Tzf :
/]

\ urge + vTen + ¢

0

r

G, = én ;
, Tom

UT¢n + VTnn + G

where T¢¢, Tgy and Tp, denote the transformed to-
tal, viscous and inviscid, stresses, and g¢ and gy,
the total heat fluxes.

The spatial derivatives are discretized with
second-order accurate central differences, and
second-order and fourth-order artificial dissipation
terms are added to maintain numerical stability.
The equations are solved implicitly in time with
an approximate-factorization method and Newton
linearization.

Writing equation (16) in the form

10Q

T LQ) ,
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the linear multistep time integration scheme is

(1+4)Q™" - (1+2¢)Q" =
JAt [oz:(Q"“) +(1- 0)£(Q")] ;

(17)

with ¢ = 0.5 and 6 = 1., second order accuracy in
time is obtained.

To avoid inversion of block-pentadiagonal ma-
trices, the Jacobians of the fluxes, resulting from
the Newton linearization, are diagonalized as sug-
gested in (13), and the left and right eigenvector
matrices are carried outside of the spatial deriva-
tive operators. The algorithm then requires two
scalar pentadiagonal inversions, plus three matrix-
vector multiplications, with a substantial saving in
computing time and memory requirements. Be-
cause of the method with which the left-hand side
is treated, second-order accuracy is not attained.
To recover second-order accuracy in time, a subit-
eration strategy based on the pseudo time 7 is per-
formed at each time step (14, by replacing relation
(17) with

6Q + AT [5@ + (%) EQ] =

= Ar Q@+ (6£(Q%) + (1-0)L(Q™)]

(18)

with §Q = Q**! — Q*, 6Q = Q% — Q*! and

k n n n—1
2k Q"-Q Q" - @
=(1 - .
Gh=(1+g) L L0
Results. The computations about the 18-

percent thick circular-arc airfoil, with chord L =
0.203 meters, M, = 0.76 and a chord-based
Reynolds number of 11 x 10%, have been performed
on a 291 X 79 C mesh, with 199 points on the air-
foil, the grid points are stretched towards the air-
foil. Boundary conditions are no-slip condition and
adiabatic temperature on the airfoil. At the in-
let boundary free-stream conditions are specified,
while characteristic boundary conditions are im-
posed at the outlet.

In Figure 1, we report the lift coefficient vari-
ation as a function of the nondimensional time
t/ (L/Us). The oscillatory behavior corresponds
to a reduced frequency of 0.43, which is 10-percent
lower than the experimental value 0.49 (9).

In Figure 2, the time variation of the nondimen-
sional shock position z,,/L is compared with the
measured shock location (?). It is interesting to
note that the present model is able to represent
the shock movement also for z/L < 0.5, while
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Figure 1: Lift coeflicient time variation
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Figure 2: Shock position time variation

other models failed to predict the motion of the
shock forward of midchord.

Upper surface pressure coeflicient distributions
taken at different times during the unsteady cy-
cles, are shown in Figure 3. They agree with the
numerical results obtained in (1), using the Spalart-
Allmaras turbulence model.

Finally in Figures 4-1/8, the unsteady Mach
contours plots, for the same nondimensional times
of Figure 3 are shown.

Conclusions

The averaged Navier-Stokes equations and the k—¢
turbulence model, written in the pointwise formu-
lation k£ — R, have been employed for the predic-
tion of the unsteady flow on a 18-percent thick
circular-arc airfoil in supercritical regime. The
computed reduced frequency of oscillations is 10-
percent lower than the experimental value. The
motion of the shock is well represented, and part
of the motion forward the midchord is predicted.
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Figure 3: Upper surface pressure coefficient

The two-equation model is able to take into ac-
count the lag in response of the turbulence to
the sudden changes imposed by the moving shock
wave. However further investigations are neces-
sary for assessing the real ability of two-equation
turbulence models to capture all the features of
the unsteady flow field, by comparing the velocity
profiles, as well as the turbulence kinetic energy
and Reynolds stress profiles, with the experimen-
tal measurements.
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fig. 4.1: Mach Contours, time=8.0, C=0.155 fig. 4.
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fig. 4.2: Mach Contours, time=9.55, Cr=-0.09 fig. 4.6: Mach Contours, time=18.55, C=0.160
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Mach Contours, time=10.90, C1,=-0.138 fig. 4.7: Mach Contours, time=18.82, C,=0.180
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fig. 4.4: Mach Contours, time=12.14, C1,=0.008 fig. 4.8: Mach Contours, time=20.0, C1=0.148
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