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SUMMARY

A computational method is described which is generally-
applicable to complex, two-dimensional, compressible
aerodynamic flowfields at high Reynolds numbers. The
method involves the use of unstructured grids to
discretise the flow domain, which are generated in an
essentially automatic manner. Techniques have been
developed to produce grids which possess the required
geometrical properties to enable accurate resolution of
both inviscid flow and turbulent shear-flow regions.
These grids are then further refined by adaptation to
flow solutions of the Reynolds-averaged Navier-Stokes
equations, using the two-equation k-€ turbulence model
with wall-function type near-wall boundary conditions.
Grid-generation procedures are described in some detail.
Results are presented for the viscous transonic flow
development around the SKF 1.1 aerofoil/manoeuvre
flap configuration, for high-lift flow conditions involving
severe shock-induced separation. Low-speed, high-lift
computations for the NLR 7301 aerofoil/flap
configuration are also presented. Generally good
agreement with experiment is achieved for both cases, in
terms of surface pressures and integrated loads,
demonstrating the efficiency and accuracy of the present
numerical method. It is noted, however, that the drag is
somewhat over-predicted, which is partially attributed to
the use of wall-function type boundary conditions.

1. INTRODUCTION

Mechanical high-lift devices, such as trailing-edge flaps
and leading-edge slats, are used on civil transport
aircraft to provide the additional lift necessary to fulfill
the low-speed performance requirements associated with
take off and landing. Similarly, in order to manoeuvre
effectively at transonic speeds, the wing of a combat
aircraft must be able to generate high lift without
incurring an excessive drag penalty or the onset of
buffet. Therefore, an accurate assessment of the
aerodynamic performance of the high-lift system is an
important part of the overall configuration optimisation
process. The 1992 AGARD Conference on High-Lift
System Aerodynamics!"! provides a useful survey of the
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various approaches being taken to the computation of high-
lift system flowfields.

Considering for simplicity the two-dimensional flow case,
deployment of high-lift devices results in a multi-element
aerofoil configuration, whose flowfield is much more
complex than that of a single aerofoil. In particular, the
wakes from upstream elements can interact with the
boundary layers on the upper surfaces of downstream
elements. Such wake/boundary layer mixing promotes the
development of thick viscous layers which may be highly-
curved around maximum lift conditions, due to the large
effective camber of the configuration. The wakes sitting
above downstream aerofoil elements develop in streamwise
pressure gradients which may be sufficiently strong to
reverse the flow. These off-the-surface reverse-flow regions
in wakes can grow in size to such an extent that they
trigger large-scale flow separation on the upstream
elements. This type of stall mechanism can result in a very
sudden large loss of lift and increase in drag. A very
perceptive discussion of the flow physics of multi-element,
high-lift aerofoils is given by Smith!?,

Multi-element aerofoil, high-lift flows are complex from
both a geometrical and flow physics point of view. For this
reason, it appears likely that only numerical methods based
on solution of the Reynolds-averaged Navier-Stokes
equations will be able to deal with them in an adequate
manner. It is also unlikely that simple algebraic turbulence
models, needed to close the set of governing mean-flow
equations, will prove to be adequate for the accurate
prediction of the flow development through the stall. A
more profitable approach will be to use turbulence models
based on modelled transport equations, such as the well-
known k-€ model of Launder and Spalding™.

Additional complications are associated with the generation
of a suitable computational grid for such a complex flow
domain, which must also contain sufficient, well-placed
grid-points so as to resolve all relevant flow features.
Ideally, an essentially-automatic grid generation procedure
is desirable, but the development of such methods into
routine engineering tools remains as elusive as ever. The
block-structured grid approach has proved to be highly-
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successful, at least for the generation of grids applicable to
inviscid flow computations. However, this approach does
generally require extensive user intervention and expertise.
Alternatively, unstructured grids can be generated around
complex configurations in a relatively-straightforward
manner. This approach also provides a natural environment
for flow adaptation, whereby grid-points are placed in
regions with high flow gradients to enhance the resolution
and accuracy of the flow solution.

Rapid progress is being made in the development of fast
and robust unstructured grid generators, but this work has
focused mainly on inviscid-flow applications'®., It is only
recently that the problem of generating -efficient
unstructured grids for viscous flow applications has been
addressed®®. Such flowfields generally involve the
presence of thin-shear layer regions adjacent to solid
surfaces and in downstream wakes, both of which may
have strong flow gradients in a direction normal to the
main flow direction. The use of isotropic computational
cells (which are optimal for the resolution of inviscid-flow
regions) will lead to an unacceptable density of cells in the
shear-layer regions. In fact, the resolution of
high-Reynolds number turbulent flows requires the use of
highly-stretched computational cells in boundary-layer and
wake regions. Similarly, the highly-complex nature of
turbulent aerodynamic flows at high Reynolds numbers
points to a requirement to adapt the computational grid to
the flow solution, so as to ensure the most efficient
distribution of the grid-points.

The objective of the present work is the development of an
essentially-automatic grid-generation procedure, aimed at
high-Reynolds number turbulent flow applications for
external aerodynamic configurations. Also, the
incorporation of flow-adaptation techniques as an integral
part of the grid-generation process has been planned from
the outset, since this is considered to be the only viable
technique to ensure adequate resolution of all relevant flow
features. The grid-generation procedures are coupled to a
flow solver based on the Reynolds-averaged Navier-Stokes
equations and employing the k-€ transport-equation
turbulence model. A detailed description of the grid-
generation and flow-adaptation procedures is given in this
paper. Results are presented for two aerofoil/flap
configurations, indicating the performance of the method
at transonic and low-speed flow conditions.

2. GRID GENERATION PROCEDURES

The present grid-generation method is based on a
combination of grid-enrichment procedures, whereby
new grid-points and point connectivities are created
simultaneously®. A novel feature of the method is that it
does not require an initial distribution of grid-points
within the flow domain. Also, unlike the majority of
existing methods, which start with a well-refined

discretisation of the geometry, the present approach adopts
a very crude initial discretisation of the geometry and the
outer boundary of the flow domain. Surface and field grids,
of increasing resolution, are generated simultaneously as
the cell sub-division process continues. The resulting
unstructured grids are composed of triangular cells.

A cell-edge based data structure is produced by the grid-
generation procedure, such a structure being compatible
with existing flow solvers of the finite-volume type.
However, an additional cell-based data structure is
employed during the grid-generation process, so that
searches through the list of cell-edges are not required. This
results in a very efficient grid-generation procedure, which
can produce satisfactory grids within a matter of seconds
on a computer work-station.

2.1 Isotropic Grid Generation

Fig. 1(a) shows a typical starting grid for a computational
domain which contains two circles. The grid contains only
4 points on each circle and 8 points on the outer boundary.
These grid-points are connected together to produce an
initial discretisation of the flow domain into triangular cells
which, for this case, consists of only 18 cells, 35 cell-edges
and 18 vertices. Once the starting grid is constructed, the
computational cells are successively sub-divided using the
method developed by Jahangirian and Johnston'®!. Effective
generation of isotropic (equilateral) cells is achieved by
using directional sub-division combined with grid-point
movement. In particular, enrichment of the grid is based on
the sub-division of the longest edge of a targeted cell, with
checks to ensure that the aspect ratio of adjacent cells is
not increased, Fig. 2(a).

Preliminary clustering of cells around the geometry is
performed by introducing point andfor line sources within
the flow domain, as appropriate. Subsequently, a desired
distribution of the cell-edge length scale is defined which
provides a constraint for the cell sub-division process whilst
producing small cells in the vicinity of the geometry.
Grid-point movement is also used in the early stages of the
refinement process to effectively draw the grid-points
towards to the sources. This is implemented through a
Laplacian-type smoothing procedure, incorporating a
weighting-function which is inversely-proportional to the
desired length scale at each grid-point. To ensure the
integrity of the geometry boundaries, parametric cubic
splines are used when defining a new surface grid-point.
Grid quality is further improved by using an edge-swapping
routine, whereby the common edge to adjacent cells is
swapped between vertices so as to decrease the aspect
ratios of the cells. A computational grid of satisfactory
quality and resolution is normally achieved after 20 cycles
of the grid-refinement procedure. Fig. 1(b) shows the grid
around the two circles after this second stage of the grid
generation procedure. Cells have been clustered around the
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geometry elements by using a point source at the centre of
each circle.

Fig. 3 shows a typical grid resulting from the present
inviscid  grid-generation procedure, for a more
representative four-element aerofoil system in a landing
configuration. The grid contains 7565 cells, 11533 cell-
edges (including 313 surface edges) and 3965 vertices.

2.2 Viscous Flow Regions

There are three main stages to the grid-generation
procedure for viscous-flow applications:

1. Generation of a Starting Grid
2. Grid Generation for Inviscid Flow Regions
3. Grid Generation for Viscous Flow Regions

The initial starting grid is generated in a similar manner as
for inviscid-flow applications, except that a layer of
regularly-triangulated cells is wrapped around each
geometry element and extended downstream. These
regions encompass the expected boundary-layer and wake
regions. The grid-points forming the outer edge to these
regions are connected to points on the outer boundary. Fig.
4(a) shows the initial starting grid for the SKF 1.1
two-element aerofoil/manoeuvre flap configuration, to be
considered in the results section below. Following the
procedure outlined in the previous section, the
computational cells external to the viscous grid regions are
directionally sub-divided to produce isotropic - cells,
suitable for the resolution of inviscid-flow regions. Grid-
points are further clustered around point/line sources using
grid-point movement. The grid after this stage of the
procedure is shown in Fig. 4(b). Note that the
computational grid now provides an adequate resolution of
the aerofoil geometries, without having had to explicitly
discretise the surface geometry beforehand.

Having generated the grid outside the anticipated viscous
shear-layer regions, the final step is to refine the inner
regions so as to obtain an adequate resolution of the
boundary layers and wakes. Within such regions, it is flow
gradients across the viscous layers which dominate the
flow development. Therefore, cell sub-division within the
viscous layer regions proceeds in an anisotropic manner,
so as to produce the required high-aspect ratio,
regularly-triangulated cells. Grid refinement is carried out

by introducing new grid-points on the cell-edges normal to

the geometry and systematically connecting the points to
keep the regularity of the grid in the viscous layer regions,
Fig. 2(b). Increased near-surface resolution can be obtained
by using a geometrical stretching function to cluster the
grid-points close to the geometry.

Fig. 4(c) shows the computational grid resulting from this
final stage of the grid-generation procedure, which is now

ready for use by the flow solver. The grid contains 11660
cells, 17663 cell-edges (including 314 surface edges) and
6002 vertices. The grid-generation procedure was
implemented on an HP-735 (125 MHz) computer work-
station. The total required CPU time, including grid
generation and inputfoutput operations, was only 4.54
seconds which gives some indication of the efficiency of
the present approach.

2.3 Flow Adaptation

The grid-generation procedure outlined above results in a
computational grid that is adequate for an initial viscous
flow solution since the boundary layer and wake regions
are effectively resolved. However, the grid may not yet be
sufficiently well-refined to give the required resolution of
flow features such as shock waves and separated shear
layers. Obviously, the positions of these physical flow
features can move as a result of a change in flow
conditions (e.g. Mach number, Reynolds number and
incidence angle). Therefore, a new grid would need to be
generated for each flow condition, to maintain a consistent
level of flow resolution. This requirement can be fulfilled
most efficiently by further refining the initial grid, by
adapting it to an initial flow solution. In the present
approach, the grid is adapted to the flow solution by
refining it in high flow-activity regions using the cell sub-
division techniques already presented. However, in this
case, the cells are targeted for sub-division based on the
magnitude of flowfield gradients obtained from the initial
flow solution.

Static pressure gradients and total pressure-loss gradients
are used to detect inviscid (shock waves and stagnation
points) and viscous (boundary layers and wakes) flow
features respectively. To accomplish this, a flow-gradient
indicator is computed for each cell-edge, by taking the first
difference of the relevant flow property along that edge,
made non-dimensional by the cell-centre value. The cell is
then targeted for refinement if the indicator exceeds a pre-
set threshold value (typically in the range 0.02-0.05). Since
adequate resolution of the boundary layer and wake regions
is generally already provided through the initial grid-
generation procedure, grid-adaptation to viscous flow
features is restricted to separated shear layers. This is
achieved by scaling the viscous flow-feature detector with
the magnitude of the smallest edge-length of the cell. In
this way, those cells in the fully-attached flow regions, with
small edge-lengths normal to the geometry, will not be
further refined. Fig. 4(d) shows a typical computational
grid adapted to a viscous transonic flow solution for the
SKF 1.1 aerofoil/flap configuration. The corresponding
iso-Mach number contours before and after flow adaptation
are shown in Figs. 5(a) and (b) respectively. Note that the
strong upper surface shock wave present at this flow
condition induces an extensive separation of the main
aerofoil boundary layer. The solution obtained on the flow-
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adapted grid, Fig. 5(b), indicates a much-improved
resolution of both the shock wave and the separated
boundary layer.

3. VISCOUS FLOW SOLVER

The governing mean-flow equations are the Reynolds-
averaged Navier-Stokes equations applicable to
compressible, turbulent flow at high Reynolds numbers.
A turbulence model is required to close the set of mean-
flow equations, modelling the additional Reynolds-stress
terms that appear due to the time-averaging procedure
applied to the governing equations. For the results
presented below, the two-equation k-€ model of Launder
and Spalding® is used. This model introduces a
turbulent viscosity coefficient (in analogy to the
molecular viscosity coefficient) to replace the Reynolds-
stress terms. The local value of the turbulent viscosity
coefficient is evaluated using the local values of the
turbulent kinetic energy k and its rate of dissipation ¢,
obtained from the two modelled transport equations. The
so-called wall-function approach is adopted to treat the
near-wall region of the boundary layers. No attempt is
made to model explicitty the molecular-viscosity
dominated region immediately adjacent to the surface.
Instead, the solution is ‘patched’ to the semi-logarithmic
law-of-the-wall in the fully-turbulent region. This
approach is computationally very efficient, since a
highly-refined computational grid is not required in the
near-wall region.

The mean-flow and turbulence-transport equations are
solved in time-dependent integral form, marching the
unsteady flow equations in time to a steady-state
solution. For transonic flows, this enables the method to
resolve both subsonic and supersonic flow regions
without any changes to the numerical algorithm. The
governing flow equations are first discretised in space
using a cell-centred, finite-volume procedure. The
resulting set of semi-discrete equations is then marched
in time using an explicit, multi-stage scheme. Further
details of the present numerical method can be found in
Johnston and Stolcis!!”,

The convective transport terms in the mean-flow
equations are discretised using a second-order accurate,
centred finite-volume scheme. Such an approach will not
necessarily suppress oscillations that may develop in the
flow solution during the transient phase before the
steady-state is achieved. Therefore, additional numerical
dissipation terms are explicitly-added to the mean-flow
equations to damp any such oscillations. These terms are
a blending of second- and fourth-differences of flow
variables, the former to ensure clean capture of shock
waves and the latter to provide a background level of
smoothing. Since these numerical dissipation terms are
diffusive in nature, they can significantly influence the

development of the viscous layers. Scaling of these terms
within viscous-layer regions is applied, to ensure that the
physical diffusive processes are not corrupted by the
pumerical diffusion; see Cantariti'? for a detailed
description of our approach to the treatment of the
numerical dissipation terms. The convective transport terms
of the two turbulence-transport equations are discretised
using a first-order, upwind finite-volume scheme and so
require no additional numerical dissipation terms.

4. RESULTS

Two aerofoiljtrailing-edge flap configurations are
considered in this section, to demonstrate the predictive
capability of the present method at both low-speed and
transonic high-lift flow conditions.

SKF 1.1 Aerofoil/Manoeuvre Flap

Fig. 4(c) shows the SKF 1.1 transonic
aerofoil/manoeuvre flap configuration of Stanewsky and
Thibert!'?, The 25% chord flap is deflected 10°, this
being referred to as configuration 5 in the AGARD data
report’?. The aerofoil/flap configuration was tested over
a wide range of transonic flow conditions in the DFVLR
I x 1 Meter Transonic Tunnel, at a freestream Reynolds
number of about 2.2 x 10° with free transition on both
aerofoil elements. Stolcis and Johnston'™! carried out a
detailed set of computations for this experimental data-
set, using an earlier version of the present computational
method. It was concluded that there were some problems
with the wind-tunnel wall corrections to be applied to the
experimental data, as detailed in the data-report!™.
Subsequently, Haase!' provided additional information
on corrections to -the freestream Mach number and
incidence angle. He also made available additional
experimental data at more extreme flow conditions.

Transition was fixed on both aerofoil elements for the
present computations, at 3% and 25% chord respectively
on the upper and lower surfaces of the main aerofoil, and
at the leading edge of the flap. All computations began
from an initial flow solution on the starting grid shown
in Fig. 4(c). For each flow condition considered, the
computational grid was adapted to both the inviscid and
viscous flow features of this initial solution. A second
flow solution was then obtained on the flow-adapted grid.

Fig. 8 shows the results obtained for three incidence
angles at a nominal freestream Mach number of 0.76, all
cases involving some degree of shock-induced flow
separation. The flow-adapted grids also show clearly the
improved resolution of both the shock waves and
separated boundary layers. The predicted surface pressure
distributions for all cases agree well with experiment,
considering the severity of the flow conditions. Note that
the upstream movement of the shock wave with
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increasing incidence angle, as the separated-flow region
develops in extent, is well-predicted.

The variation of integrated loads with incidence angle is
shown in Fig. 9, indicating very good agreement between
predictions and experiment for the lift coefficient and
pitching-moment coefficient. The drag coefficient is
substantially over-predicted by the present method, a result
that is partially attributable to the use of wall-function
near-wall boundary conditions. However, examination of
the surface pressure distributions indicates that the
predicted shock waves are always too strong, suggesting
that the use of the k-€, turbulent-viscosity based,
turbulence model leads to an underprediction of the shock
wavefboundary layer interaction.

NLR 7301 Aerofoil/Flap

The second configuration to be considered is the NLR
7301 low-speed, high-lift acrofoil/flap of van den Berg!'™..
Fig. 10 shows the computational grid obtained by the
present grid-generation procedures, containing 12502 cells,
18890 cell-edges and 6387 vertices. An initial flow
solution was obtained on this grid at a freestream Mach
number of 0.185, Reynolds number of 2.51 x 10° and an
incidence angle of 13.1°. These conditions are just below
the maximum lift point for this configuration. The
computational grid was then adapted to the initial flow
solution. Fig. 11, in particular, shows the influence of grid-
adaptation in the large pressure-gradient region near the
leading edge of the main aerofoil. The predicted surface
pressure and skin friction distributions, Fig. 12, agree well
with experiment for this case, even for the initial flow
solution on the unadapted grid. However, flow adaptation
does lead to some improvement in predicted skin friction
levels over the first 50% of the main aerofoil upper
surface. Finally, the Mach number and total-pressure loss
contours shown in Fig. 13 indicate the smoothness of the
predicted flowfield solution.

Current work is focused on a more extensive evaluation of
the present method when applied to low-speed, high-lift,
multi-element  aerofoil configurations. Two areas in
particular are being addressed. The performance of a
differential Reynolds-stress model (DRSM), to replace the
turbulent-viscosity based k-¢ model, is under evaluation.
Such a turbulence model solves modelled transport
equations for the Reynolds stresses themselves, which are
retained in exact form in the mean-flow equations.
Preliminary results by Cantariti and Johnston''! using
unadapted computational grids, indicate a substantial
improvement in the predicted stall development for low-
speed, high-lift flows. The second area of current work is
the replacement of the wall-function near-wall boundary
conditions with a turbulence model that will enable flow
computations right down to the surface of the aerofoil
elements. An improvement in the predicted drag levels is

expected with these near-wall turbulence modelling
modifications.

5. CONCLUSIONS

An essentially-automatic procedure for computational
grid generation and flow solution for two-dimensional,
high-lift aerofoil configurations has been described. The
Reynolds-averaged Navier-Stokes equations are solved in
conjunction with a two-equation turbulence model.
Resolution of both viscous and inviscid flow features is
enhanced by adapting the computational grid to an initial
flow solution. Results presented for transonic and low-
speed, high-lift aerofoil/flap configurations demonstrate
the efficiency of the grid-generation procedures and
indicate that predictions agree well with experiment. In
particular, the predictions show the correct upstream
movement of shock-wave position. with increasing
incidence angle as transonic shock-induced boundary
layer separation develops on an aerofoil/manoeuvre flap
configuration.
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(a) Initial starting grid (b) Final grid

Figure 1 Isotropic grid generation procedure

(a) Inviscid region (b) Viscous region

Figure 2 Grid refinement strategies

Figure 3 Inviscid Grid for 4-element landing configuration
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Figure 10 Final grid around NLR 7301 aerofoil/flap configuration
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Figure 11 Close-up of the leading edge
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Figure 12 Surface pressure and skin friction distributions - NLR 7301, o = 13.1°
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Figure 13 Iso-mach and total pressure loss contours, o = 13.1°




