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Abstract

Numerical calculation of time averaged Navier-Stokes
equations are reported for the flow around an high-lift
aerofoil at Re = 2x10°, Ma = 0.15 and an angle of attack
of 13.3°. A comparison is made with experimental
results. Three numerical schemes have been used for
convection discretization and for each numerical scheme
four turbulence models, standard k-¢, Huang and
Coakley’s k-g, Menter’s SST and Gibson and Launder’s
RST, were used to close the time averaged Navier-Stokes
equations. Calculations obtained in a 352x64 mesh show
that the numerical scheme may influence the calculations
in this specific case, in a rather unusual manner via a
stronger coupling with the turbulence model. The
performance of the turbulence models when used with the
same numerical scheme show the superiority of the two-
layer RST model over two-equation models.

Introduction

The calculation of turbulent shear flows in
Aecronautics is one of the challenging tasks yet to be
mastered up to a level where one can make systematic,
consistent and accurate predictions of the flow fields
involved. The present study concentrates itself on the
case of an incipient separation that precedes stall. The
configuration to be presented is Aerospatiale’s A-Airfoil,
for which detailed measurements were taken by Piccin
and Cassoudesalle’. This aerofoil is a high lift one, and
the measurements were taken for a mach number of 0.15,
a Reynolds number of 2.0x10° (based on chord), an angle
of attack of 13.3° and a chord of 0.6 meters. To remove
the transition problem, this was fixed at 12 percent of
chord, for the suction side of the aerofoil, and at 30
percent of chord for the pressure side.

This flowfield configuration is characterized by the
separation that occurs at the trailing edge, due to the
value of the angle of attack and Reynolds number. This
separation will be the main reason for the levels of C
and Cp, that the profile will have. The zone of dead air
that exists at the trailing edge severely affects the
pressure values in that region and, by consequence, the
total lift and drag. This entire process in a phenomena of
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a deeply viscous character, and therefore out of reach for
conventional prediction methods based on inviscid
theory.

Our main goal in the present work is to compare the
performance of a second-order differential Reynolds
stress turbulence model solution with two-equation
models without neglecting the influence of the numerical
discretization scheme to the solution error. For the range
of high-Reynolds numbers involved, the discretization of
the convective flux becomes of critical importance
(specially in conjunction with second order turbulence
models where it can indeed impair convergence of the
numerical method®). So, for the discretization of the
convective flux three non-oscillatory high order methods
have been selected, namely, MINMOD, MUSCL® and
SONIC-Q®.

Numerical Scheme

Numerical computations have been carried out using
the primitive variable formulation in a finite-volume
pressure-correction framework and with a collocated
mesh arrangement (see  for details).

Consider a 1D uniform grid with cell parameter, h,
covering without superposition the domain of interest (the
extension of the techniques for multidimensional
problems and for non-uniform grids is straightforward
and is omitted for clarity). Denote the interfaces
quantities by the indices, i, and the cell center, where the
variables are stored, by half the adjacent indices. With
this convention the problem at hand is to interpolate the
value of the variables, represented generically by ¢, at the
interfaces. In this work these values are computed using
the following upstream interpolation practice:

g =a’ @] +a ¢4

where
£ _ (“1 i‘”ll)
2u,; i

and the values of (uy)j relative to the mass flux are

£
obtained by using PWIM interpolation. The values of i
are calculated by a linear reconstruction of the form:
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Li(x.4) = ¢; +5;(x~x,) @1

h
for [x-xj|<5 ,and j=1-1/2, i+1/2.
Then,
¢ii = Litl/Z(x;: ; ¢)

So the interpolation problem has been reduced to the
evaluation of the slope Sjin Eq. (2.1).

MINMOD Scheme
Denote,

;= ¢j+1/2 —¢j4/2 ,j =1, i+l
h
then, in the MINMOD scheme Sj at the cell center is
computed by,

SMM = minmod (sj+112, S} j =1~ 12,1 + 172

where, given two real numbers x and y, the minmod
function is defined as,

minmod(x, y) = {’”’”(IXH,V\) ifxp>0
0, otherwise
MUSCL Scheme

This scheme evaluates Sj at the cell center by,

s, +5;

. -1/2 /

S}/L = 1n1nmod[—L———91l—2,ZS§‘4M),
2

j=i-1/2,i+1/2

Both the MINMOD and the Van Leer schemes are second
order accurate (in the L) norm) and TVD. However, it is

well known that all TVD schemes, no matter how they
are construct, must lose accuracy at local extrema'®. To
circumvent this loss of accuracy Harten and Osher’” have
introduced a new class of uniformly second order
accurate, e.g. the UNO2 scheme, which unlike TVD
schemes are not required to damp the values at local
actual extremum, but is only required to diminish (non-
increase) the number of them. More recently the
"compressibility" of this scheme has been enhanced by
Huynh®, who introduced the class of SONIC schemes.
Next we present the SONIC-Q scheme proposed by the
authors and which belong to this class.

SONIC—Q scheme

In this scheme we take advantage of the data in the slope
and curvature computations to increase the accuracy in
the smooth regions of the flow (bulk portion of the

domain), i.e..
N2
Sj s

SR mM{Z(‘bﬁvz ""J)”é‘(sﬁm ) """Hslwi

firj=i—1/2i+1/2

where ¢1Q is the value at interface obtained using
QUICK® scheme and the slope, SY"°?is computed as
follows: let cj denote,
CSi2 TSjiyz _ B T 205405,
1 2h - 2h?
i=i-1/2,i+1/2

B

Define cj in the interfaces by,
¢ = Imnm°d(ci‘1/2 ’Ci+1/2)

Denote by, tj, the second order accurate approximation to
the slope at the cell center,

t] =S FOmph, j=i-1/2,i+1/2
+
The slope S is finally computed from f by,
SYNO? = minmod(t],t5), j=i-1/2,i+1/2

The non-oscillatory behavior and high accuracy of
SONIC-Q follow from the definition of the SONIC class.

Turbulence Models

The turbulence models employed in this study were of
two types: Two-Equation models (Standard k-& model of
Jones and Launder’® (JL), Low-Reynolds k- model of
Huang and Coakley(”), HC, and the k-s/k-o model of
Menter''?, SST): Reynolds Stress Transport Model of
Gibson and Launder"® (RST), 1978, using the set of
constants proposed by Craft and Launder"”. In addition,
a truncated form of the wall reflection part of the pressure
strain model was used, as suggested by Lien and
Lesczhiner'”. As the standard form of this model is
adequate for a high Reynolds situation, the above
mentioned Low-Reynolds k-¢ model of Huang and
Coakley was used in order to obtain a better prediction of
the Low-Reynolds number turbulent region in the wall
vicinity (the coupling between the two models being
located at an y* of about 30).

The Two-Equation models can be compactly written
as

DFS;=PSi -Dy +d
where s; can belong to one out of two possible
combinations, i.e., s; e{k, g} or s; e{k, ®}. On a term by
term basis, and referring the reader to the original papers,
equation (3.1) can be expanded into:

A | L
3§ _6XJ u+csi GXJ

for the diffusion term and

3.1
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for the remaining production and destruction terms. The
SST model further affects the destruction term, €, on the
k transport equation by a factor of C,. The Reynolds
Stresses Tensor is, according to the linear Boussinesq
hypothesis:

. 0U.
1. :Ekg,__ _Ut[i{_&__;]
300

The eddy viscosity can be expressed as
2
€

both in the JL model, where f, =1, and in the HC model,

=tanh((y+/43)2)g,

g= max(l,lO.l/ ,/Ret). The C, constant assumes the

usual value of 0.09. In the SST model, Menter
implemented a suggestion of Bradshaw, saying that the
principal turbulent shear stress, in the wake component of
the Boundary Layer, should be made proportional to the
local value of the turbulent kinetic energy. Menter
therefore proposes:

ak
max(alm;QFz)

where with

U, =

where Q is the vorticity and F, a model function. It’s
value is

which uses the normal distance to the wall, y.
Furthermore, the SST model solves a combination of a k-
¢ and a k-o model, for which he employs a transformed ¢
equation, written in function of ®. The k-0 model is
employed near the wall, whereas the k-¢ model is used
above this. In this way the traditionally reported
sensitivity of the k-0 to the o freestream values is
removed. The blending of the models is done trough a
weighting function, F;, which affects the k-o model
trough it’s own value and the k-¢ model trough (i- F)).
This last function can be written as

arg,
arg, = l\[max

Cchoy o'kk_z :l

SOOVJ
C(Dy Yy

——10"
Oy (Dax 6X
k-2

1 &k oo
CDy, = max(2p }

The value of the constants, which vary from model to
model, are given in the following table:

Gk O gl C81 Cez C“H C’-ﬂz
JL 1. 13 [1.4411.92| - -
HC | 1.3 | 1.87 |15 L8/ - -

g

SST 1. | 1L.17} - - 10.44 | 0.0828
k-€
SST [1.18 | 2. - - 1055 0.075
k-0

The boundary conditions for the JL model were given by
a law of wall, whereas for the remaining two models the
boundary conditions can summarized as follows:

k s/
HC 0. 2vk,
(3n)’
SST 0. 72 v .
(3n)

In this last table, dn is the distance of the first point to the
profile’s surface and the p subscript indicates the value of
the variable at this point. For the HC model, the value of
¢ is imposed at that first point. Moreover, the first point
of the mesh and over the profile, is consistently below an
y* of 1, as required and desired for the application of both
the Low-Reynolds model as well as the k-0 model. The
boundary condition for o is the one proposed by
Wilcox"® for his k- model.

As for the RST model, the transport equation for the
Reynolds stresses is:

Dt

“—P -Dy +d; + D
Dt

which, for the Gibson and Launder model takes the form:

P U auj
L= T, — 4T
Y ik oy O J 0Xy
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where t; =uu;,

on which the lowercase letters
represent fluctuating values. Please note that only one
part of the wall reflection terms of the model is retained,
on the grounds that, if done otherwise, an excessive level
of isotropy would be achieved on the region near to the
wall. The € equation, used in the framework of Second-
Order Differential Reynolds Stresses Closure incorporates

the Generalized Gradient Diffusion Hypothesis

0 kt 153
d =-( +C k‘)——
’ 6Xk!i“6kl © e 0%y

with the constants:
Ce] =144, C82 =192, C, =018

As previously mentioned, on the semi-viscous part of the
Boundary Layer, the HC model is solved since the RST
model does not comprise any modification to account for
this low-Reynolds number region in the flow field. The
interface is located at a value of y* of about 30 from the
wall.

Results

Grid Convergence Index

In order to establish an error bound for the results to
be presented, and following a 2o spirit for the definition
and establishment of such a bond, one can follow
Roache"® and his definition of a Grid Convergence
Index. Towards it, we possess two grids on which the
calculations were performed. The finest of the grids had
352x64 control volumes, whereas the coarsest of grid had
176x32. The coarsest grid corresponds to halving the
finest grid on both directions, which yields a GCI for the
velocity field of 1.43 % corresponding to the SONIC-Q
scheme and RST model. So, results presented with a grid
of 352x64 are satisfactory to evaluate the performance of

different numerical and turbulence models. The grids are
of a C type with a frontier placed at 10 times the chord
from the profile’s surface.

Influence of Numerical Scheme

To assess the influence of the numerical schemes on
the results, one can look at the the flowfield feature that
most directly influences the overall results, ie., the
turbulent separated flow region that sets in at the trailing
edge. For this one looks at the velocity profiles that, at a
99 percent chord, the turbulence models return for the
different numerical discretization schemes.
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Figure 1 - Velocity plots at X/C = 0.99, ot = 13.3°, Ma = 0.15, Re = 2.0x10°.
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Figure 1 - Velocity plots at X/C = 0,99, o0 = 13.3°, Ma = 0.15, Re = 2.0%10°,
continuation.

Upon a brief observation that none of the models
predicts well the small separated flow region, one may
notice that the implication of the numerical scheme is of
a two character nature: i) for both the HC and the J1
model, virtually no influence of the numerical
discretization scheme is detected, which is in accordance
with the Grid Convergence Index results; and ii) for the
RST and SST models, the predictions using SONIC-Q,
MUSCL and MinMod display a very small difference
close to the wall. However, these small differences
deserve a detailed analysis because the most accurate
schemes (SONIC-Q and MUSCL) do not predict any
separation while the less accurate one, MinMod, predicts
a small and very thin separated region (see figure 1). One
should stress again that the numerical schemes have been
used in all transport equations.

Contrary to one expectations, the coarse grid shows a
flow separation for all the schemes and a very large one
for the MinMod scheme. Comparison of figure 1a) and
le) show that the turbulence model requires numerical
dissipation, given by the less accurate numerical scheme,
to give solutions that are closer to the experiments. These
results somehow imply that, for this case, some of the
limitations of the turbulence model may be improved by
less accurate numerical schemes. As a conclusion, better
turbulence models are required.

Influence of Turbulence Model

If we now restrain ourselves to the MINMOD scheme,
we can look at the influence of the turbulence model in
the results. In order to establish such a reasoning, we
present the profiles of the variables that most affect the
predictions. The section on which they are shown are
indicated. We first begin with velocity profiles that show
good agreement with the experiments up to X/C = 0.8,
see figure 2. The Reynolds stress components (see figure
3) are much better calculated using RST than by SST, HC
or JL models.
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Figure 2 - Velocity profiles.
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Figure 3 - Reynolds stresses profiles.

The Turbulence anisotropy was well captured by the
RST model, although the normal Reynolds stresses
denote a kink due to the two layer treatment and the
model predicts almost 2k/3 .
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Flowfield Summary

Figure 4 comprises the values of C; and Cp (which
are from the aerodynamicist point of view of greatest
concern) for all the four models.
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Figure 1 - C; and Cp plots, o = 13.3°, Ma = 0.15, Re = 2.0x10%.

One can observe that, for all the models, the results are
virtually indistinguishable, what, from an application
point of view is a good outcome but, from a modeling
point of view, can be a rather disappointing result. If one
now wants to understand the reason for such a set of
results, one should look at the pressure and velocity ficlds
predictions. This information can be best summarized
with a C, and C; (module) plot, which follow.
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Figure 2 - C, and Cyplots.

The aerofoil undergoes a leading-edge type of stall, as is

easily accepted once this a high-lift aerofoil

(measurements for other angles of attack support this
conclusion). This means that downstream, near the
trailing edge, there is a turbulent separation bubble, that
starts in at about 80 percent of chord, as can be seen both
from the C; (in it’s region of constant value, “dead air”
zone) as well as in the C; plot. Nevertheless, the fact is
that it is the trailing edge separated flow region that
controls the accuracy of the predicted values of C; and
Cp. We can see that, for instance, the RST model returns
the better prediction for the suction peak, what explains
the higher level of C;, but it fails to capture the trailing
edge separation, which explains the overprediction of C
and the underprediction of Cp. The same reasoning could
be applied , mutatis mutandis, to explain the results of the
other turbulence models. Worth of mention is, however,
the extremely high overprediction of the friction
coefficient by the Standard k- model. This fact is
sustained by an overprediction of the turbulence kinetic
energy over the entire flowfield and specially near the
wall, what was already seen in a previous section. The
SST model, on the other hand, immediately after the
transition point, also returned an excessive value for the
friction coefficient, albeit only in the vicinity of the
transition region.

Conclusions

Numerical calculations of the time averaged Navier-
Stokes equations were reported for the flow around an
high-lift aerofoil at Re = 2.x10°, Ma = 0.15 and an angle
of attack of 13.3°. A comparison between a large set of
predictions obtained using a Reynolds Stress Model, SST,
HC and JL models, together with one (SONIC-Q,
MUSCL, MinMod) of the three numerical schemes
allows the following conclusions:

1. As expected, the pressure coefficient distribution and
friction coefficient were well predicted with all
turbulence models and numerical schemes up to the
separated flow region;

2. Convective discretization influences the turbulence
model predictions. In this flow test case, the
turbulence model requires additional numerical
dissipation, provided by the less accurate numerical
scheme MinMod (when compared with MUSCL and
SONICQ to retain the best results when compared
with experimental velocity data in the separated
region vicinity);

3. The k- model with wall functions is not appropriate
to predict Airfoil stall flows ;

4. The RST model, used together with the HC model in
the Low-Reynolds region, satisfactorily predicts the
turbulent flow characteristics, specially the turbulence
anisotropy,

5. A Low-Reynolds RST model may represent the
minimum modeling requirement to predict the mean
and turbulence characteristics of Airfoil stall flows.
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Further work is currently under way by the authors in
this area.
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