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Abstract

An accurate, comprehensive interactive
boundary-layer (IBL) method has been coupled with
an analytic-based Euler equation solution method for
the analysis and design of airfoils and high-lift
configurations. The goal of this development effort is
an efficient design process which includes all
necessary physics (i.e., compressibility and
viscosity). It takes full advantage of the efficiency
afforded by an inverse boundary-layer method for
predicting viscous effects. The boundary-layer
method includes an improved Cebeci-Smith eddy
viscosity formulation and computes transition onset
using either the e”-method or Michel's formula. The
inviscid-flow method is significantly more efficient
than the conventional CFD (Computational Fluid
Dynamics) approach for inviscid flow prediction and
provides full compressibility effects. It uses a
sequence of transformations, mappings and
asymptotic methods which places the Euler equations
in the form of a boundary value problem amenable to
analytic solution using classical mathematical
techniques. Furthermore, aerodynamic sensitivity
derivatives for design can be evaluated analytically
by differentiating and using the same mathematical
solution techniques. Results are presented for airfoils
and two-element high-lift configurations which
demonstrate the potential improvements that can be
realized by this approach.

Introduction

There are many CFD methods at the present time
which provide accurate numerical predictions for
compressible, viscous airfoil flowfields. The analysis
cost of these methods in terms of present day
computer resources is usually very reasonable.
However, when used for high lift prediction, a low
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free stream Mach number typical of such a condition
slows the convergence rate for most methods thereby
increasing calculation time, often prohibitively.
When used in a design or optimization procedure, a
CFD code is often run hundreds of times, especially
when many design variables are used. The resulting
cost of such a process in terms of computer time can
become quite large, even for design points at
moderate lift conditions. Extension of the CFD
procedure to three dimensions to design a wing, for
example, usually requires a large mainframe
computer having very large memory. The computer
run times can be prohibitive, especially in an
advanced design environment. To make the problem
tractable, the designer is often forced to limit the
number of design variables, thereby compromising
the size of the design space.

The first stage in the development of a design
process which addresses the difficulties associated
with high-lift flowfield prediction noted above is
described herein. This involves coupling of an
analytic-based Euler method (instead of a panel
method) with an accurate IBL. method. The resulting
method includes all of the required elements for high-
lift design calculations, namely, laminar/turbulent
viscous interactions, full compressibility effects, and
significant efficiency advantages compared to
Navier-Stokes CFD methods. Viscous effects are
calculated using the efficient IBL method described
briefly in the following section and in detail
elsewhere.() It is well documented that boundary
layer methods, when their use is appropriate, are
significantly more efficient than a Navier-Stokes
CFD method. The inviscid portion of the flowfield is
computed using a modification of an analytic-based
Euler method.@®) Efficiency gains of an order-of-
magnitude or more have been demonstrated
compared to Euler CFD methods. Because of its
underlying analytic foundation, aerodynamic design
sensitivities can also be calculated very efficiently,
avoiding the expensive CFD approach of differencing
numerical solutions in order to estimate sensitivity
derivatives.



The IBL method has previously been coupled
with a panel method and has produced very accurate
results for incompressible airfoil flows over a wide
range of angle of attack, including stall and post-stall
conditions.® This combined IBL/panel method has
also been applied to multielement airfoils.(SY(6X(T)
Calculations for single and multi-element airfoils
along with experiments indicate that compressibility
effects can have a significant influence on the
accuracy of maximum lift and post-stall flow
prediction, and must be included in the calculation
method. Compressibility corrections such as Prandtl-
Glauert or Karman-Tsien provide some accuracy
improvement but in general were found to be
inadequate when local flow approaches sonic
conditions.) Coupling of the IBL method with a full
potential or Euler CFD method allows full
compressibility and transonic effects to be included in
the predictions. However, there is an associated large
penalty in efficiency because Euler methods are
typically slow to converge at low free stream Mach
numbers.  Furthermore, field grids must be
constructed for the CFD methods which are not
required for the panel method implementation.

The analytic Euler method has been introduced
to provide compressibility effects in an efficient
manner. The method uses an approach for solving
the inviscid fluid dynamic equations which is
radically different from the conventional CFD
approach. A sequence of transformations and
mappings is applied to the Euler equations which
places them in the form of a boundary value problem
amenable to analytic solution using classical
mathematical techniques (e.g., integral transforms,
Fourier analysis, etc.). Very accurate and highly
efficient (by more than two orders of magnitude)
asymptotic approximations can be developed based
on solution of a simplified linear homogeneous
system of equations. Such an approximation has
provided the basis for an extremely efficient airfoil
design optimization method® as compared to the
CFD-based approach, which relies on finite
differencing of CFD solutions to estimate
aerodynamic sensitivities. When local surface
velocities approach sonic conditions and
compressibility effects are extremely strong, fully
accurate solutions can be obtained using asymptotic
iterative correction starting from the approximate
solution. The approach does not require a
computational grid which further enhances its
efficiency in comparison to CFD. Furthermore, it is
not plagued by the low free stream Mach number
restriction which drastically reduces the convergence
rate of most CFD Euler and Navier-Stokes methods.
The approach has recently been extended and
demonstrated for two-element airfoils typical of high-
lift systems.®)
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Underlying the analytic Euler formulation is an
analytic representation of geometry in terms of ortho-
gonal Chebyshev polynomials.® This permits airfoil
geometries and displacement surfaces to be described
by a minimal number of design variables, which is a
necessity for an efficient design optimization method.
It is applicable to multielement high-lift
configurations. Because the fluid dynamics
formulation and geometry representation are analytic-
based, design sensitivities can be evaluated very
efficiently simply by differentiating and calculating
sensitivity derivatives using the same approach used
for the fluid dynamic equations.

To couple with the IBL method, the Euler
solution method®®) must be extended to include
wake displacement surfaces. This extension is
described below along with the coupling procedure
for the IBL method. Results are presented for single
and two-element airfoils which validate the accuracy
of the coupled procedure.

Interactive Boundary Layer Method

The IBL method used here is an inverse finite-
difference method.() It employs Veldman's
interaction law based on the Hilbert integral
formulation and an improved Cebeci-Smith algebraic
eddy viscosity formulation that provides much better
accuracy for pressure gradient flows than the original
model. The improvements in the turbulence model
occur in the parameter o« and the intermittency
expression ¥ used in the outer eddy viscosity formula.
The model is represented by

(0.4y)[1—e YA P2 g—‘i
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In this expression y is the boundary-layer normal
coordinate, 8* is the displacement thickness, u, is
the edge velocity, and A is a damping-length
parameter. In the original formulation o was taken as
0.0168; in the improved formulation « is expressed
as a function of a Reynolds number defined by the
ratio of wall shear to maximum Reynolds shear
within the boundary layer. Whereas the previous
intermittency expression was valid only for zero
pressure gradient flows, the new expression based on
Field and Head's correlation!) is applicable for flows
with favorable and adverse pressure gradients, in
addition to zero pressure gradient flows.



In the present IBL method, the location of the
onset of transition is computed with either the
e?-method or Michel's formula.() Calculation of this
location is required in order to properly identify the
effects of wind tunnel and flight Reynolds number.
For example, at wind tunnel Reynolds numbers the
individual components of multielement airfoils can
experience relatively lower Reynolds numbers than
the main airfoil. At chord Reynolds numbers less
than 500,000, the components can have large
separation bubbles with the onset of transition
occurring inside the separation bubble. As a result,
the behavior of the flow can be significantly different
from the behavior of flow on the airfoil at higher
(flight) Reynolds numbers. Thus, the calculation of
transition onset must be a part of the computational
procedure for the prediction of high-lift
configurations.

The calculation procedure begins with the
inviscid flow solution obtained for a specified
geometry. The inverse boundary-layer method
obtains solutions on the upper and lower surfaces
starting from the stagnation point. If the onset of
transition location is not specified, the laminar flow
solutions are used to calculate the transition location
by using either Michel's formula or the e®-method.®
The viscous flow solutions are then obtained for both
the laminar and turbulent flow portions on the airfoil
and flap and in the wakes, with calculations taking
place separately on the upper and lower surfaces of
the bodies and wakes. For a given external velocity
distribution, these calculations are repeated until
convergence is achieved. Each boundary-layer
calculation, starting at the stagnation point and
ending at some specified far-field location in the
wake is called a sweep. At the completion of the
boundary-layer sweeps over the airfoil and flap and
in the wakes, the displacement surface, the blowing
velocity on the airfoil and flap, and the jump in the
normal velocity component in the wakes are known
and are used to obtain a new distribution of external
velocity from the inviscid method. The boundary-
layer calculations are repeated using this updated
distribution. As before, the onset of transition
location is determined from the laminar flow
solutions and the inverse boundary-layer calculations
are performed on the upper and lower surfaces of the
airfoil and flap and in the wakes by making several
sweeps to convergence. This sequence of
calculations is repeated for the whole flow field until
convergence is achieved.

Inviscid Method

The analytic formulation and details of the
solution procedure for the Euler equations are
presented in this section. This includes a dependent
variable velocity function which contains a nonlinear
compressibility correction. The formulation differs
from that presented earlier®®® so as to provide for
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the displacement effects of the boundary layers and
wakes.

Analytical Formulation

For two-dimensional, steady flow the Euler
equations can be written in natural streamline
coordinates (5,0) as
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Velocity magnitude and speed of sound are denoted
by q and a, respectively, and Q is the logarithm of
velocity normalized to free stream value q.,. The
local Mach number is M and entropy S is defined in
terms of pressure p and density p as
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The flow angle is 6 and local distances along and
normal to the streamline direction are denoted by
sandT, respectively. The streamlines and their
normals are defined by the mapping
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The quantities (s,n) are related to velocity potential
and stream function, respectively.
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The homogeneous portion of this system describes
incompressible flow. Uniform isentropic upstream
flow is assumed and a_ refers to the constant value of

speed of sound associated with this region. Since the
right-hand-side (RHS) of each of Egs. (5) is relatively
small and well-behaved, they are in a form suitable
for solution by iteration starting from some initial
approximation.

Using the relationship for density,

1

p=(1—12:1q2)?: e (6a)

an asymptotic approximation can be developed,
namely,
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By defining a new dependent variable T as
1
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the Euler equations (5) become

08 dT JU

_(1 eys)(aT aU)

66 T av
on _é? (1_ )

®
dT oV

v

ds

The quadratic velocity term in the variable T provides
a nonlinear compressibility correction.

The functions U and V are functions of velocity
only, and have the asymptotic representations

1
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The system (8) can be viewed as linear; non-
homogeneous partial differential equations assuming
that the RHS terms are known quantities. In an
asymptotic corrective iteration process, these terms
(if they are relatively small) can be approximated
using previous iteration results. Solution of the
homogeneous left-hand-side (LHS) portion provides
an initial starting approximation. Upon convergence
the process yields the solution to the Euler
equations (1).

Initial Inviscid Approximation

An inviscid solution is required to initiate the
interactive boundary layer calculation. The
initialization is described in this section. It consists
of solution procedures for both the homogeneous and
non-homogeneous portions of the system (8). The
homogeneous portion of the system (8) represents
Cauchy-Riemann conditions and can be solved by
conformal mapping and other classical mathematical
techniques. Only the isentropic terms in the non-
homogenous portion are considered here in this initial
stage of development. The procedure for including
rotational (entropy) effects is described elsewhere.(®

Homogeneous Solution (Single Element) - A
single element airfoil is represented by a slit in the
(s,n) plane which is assumed to lie along a portion of
the n=0 axis. The mapping from the physical (x,y)
plane is defined by the transformations (3) and (4).
For inviscid flows producing lift, the upper and lower
segments of the slit have unequal length as shown in
Figure 1.

The mapping function

7=K([cos(w+8)-wsind]+C
(10)

T=s+in w=u+iv

maps the slit conformally to a semi-infinite strip
region defined by lul< &, v > 0. The mapping is
illustrated in Figure 2. Previously?(3) an
approximate polar mapping was used which did not
fully remove the wake discontinuity in the mapped
plane (i.e., periodicity error). The associated error
was noticeable only downstream along the wake line
and only at higher angles of attack. Since the goal of
the present method is high-lift analysis, the precise
mapping (10) is used. The mapping constants C and
K are related to the slit length and the airfoil
circulation, which are determined by the airfoil
geometry, surface velocity, and lift. The parameter &
is related to the stagnation point location. The
solution is periodic in the w-plane.



The surface flow angle boundary conditions,
denoted by @y, are transferred to the base of the strip
by the mapping (10). These Dirichlet conditions are
shown schematically in Figure 3 as a function of u for
v=0. At the stagnation point image (denoted by u,),
there is a discontinuity in @, of magnitude .

The distribution 6, can be decomposed into
several parts, namely,

1 1
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The angle of attack is o and
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The function U(u,) represents a unit step function
located at u,. The remaining function ¢y is smooth,
vanishes at u = + 7, and has continuous slope at u = +

7. With this formulation, the flow angle at infinity
0.. can be set to zero as a boundary condition.

Each of the components of 6, can be

represented accurately by means of Fourier series.
These representations are

3
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Because of its properties, ¢, can be represented to

arbitrary accuracy using a finite number of modes
(Ay.By).

The solution of the homogeneous subset of the
system (8) is

6y = Z e~%v[c, cosku+ Dy sinku | amn
k=1
Ty, = 2 e‘k"[Ck sinku—-Dy cosku] B (18)

k=1

Application of the boundary conditions (at v=0)
determines the Fourier coefficients as

sinku, -k
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k= Ak ( Ve
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For k=0 the Fourier mode must vanish which
requires

Uy, ~T+20—-2A, €, ~€ +§—(s(, -£)=0 (20)

This relationship enforces the 8 boundary condition
at infinity and determines the stagnation point image
location u,,.

Some of the components (i.e., summations) of
the Fourier series (18) representing T on the
boundary can be replaced by their equivalent analytic
functions. This provides a large increase in
computational efficiency. The boundary (airfoil
surface) distribution of T, then simplifies to
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The first summation in this expression represents a
smooth periodic function derived from ¢,,. The last
summation is the result of applying a convergence
acceleration transformation. Both summations are
rapidly convergent. For evaluation of flow field
quantities at off-body points, similar simplifications
also exit. Specifically,

oo
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These relations provide information for initial
evaluation of the functions U and V which appear in
Eqs. (8) and are defined by Egs. (9). An initial
approximation of these RHS terms is needed to start
the corrective iteration process. The transformation
(10) provides the mapping of the (u,v) coordinates
back to the (s,n) space.

Homogenous Solution (Two Elements) - A two-
element configuration is represented by two slits in
the (s,n) plane. The main airfoil element is assumed
to lie along a portion of the n=0 axis. The flap
element is displaced an amount (As,An) as shown in
Figure 4.

The transformation

T:——Ann—[ Wt be™ —(1+b)e"
(24
+lb+1]
2
T=s+in w=u+iv
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where b satisfies

b—-1——2 ln|b|+21t—A—§— 25)
b An

maps the two slits onto the boundaries of an infinite
strip of width ®. This mapping is illustrated in
Figure 5 and is a combination of a Schwarz-
Christoffel transformation and an exponential
mapping. The main airfoil element lies on the lower
boundary between w; and w, with its stagnation

point at w = 0. The flap element lies on the upper
boundary between w, and w, with its stagnation

point at w =—In|b|+im.

The surface flow angle boundary conditions for
the airfoil and flap are transferred to the boundaries
of the strip by the mapping (24). These Dirichlet

conditions are denoted by 6} and 9;, respectively.

At the stagnation points there are discontinuities of
magnitude 7, with lesser discontinuities at the trailing
edge images.

The solution of the homogeneous subset of the

system (8) can be obtained using integral transforms.
The solution for T, is

1 = sinh(oc— u)9 (o)

T, == do -~

" 2nJ-=cosh(c—u)+cosv
(26)
. a
1 sinh(c —u)6; (o) do
2m J- cosh(G —u) ~cos v
The corresponding solution for 0, is
. f
) _1 sinv 0, (o) do +
2% J-= cosh(c —u)+cosv
)]
oo inv 62
1 sinv 0, (o) do

21 J-= cosh(c - u)—cosv

For the initial inviscid solution, approximate values
of 6, and Gf, can be prescribed for the wake portions

of the two boundaries. These values can be corrected
subsequentially during the viscous interaction phase
of the solution. The stagnation point locations in
physical space are determined such that the condition

2o}

is satisfied and T, =0 in the far field. These
solutions provide the initial information to start the

—e; )do =0 (28)



viscous interaction process and for initial evaluation
of the functions U and V which appear in Egs. (8).

Non-Homogeneous Solution - An expedient
strategy for obtaining solutions of the non-
homogeneous system (8) is to construct a Green's
function formulation. Green's function construction
can be accomplished in a straightforward manner
using classical techniques.
homogeneous system described above satisfy the
exact surface flow angle boundary conditions. .It is
therefore advantageous that the non-homogenous
solution satisfy 6 = 0 along the element surfaces.

The Green's function is constructed for the upper
half-plane in order to be applicable to both the
inviscid and the coupled viscous analyses. It also
provides for single and multielement configurations.
The mapping required to transform the flowfield to
the upper half-plane for a single airfoil is

1=
29
CE&*—iT\ ( )

The airfoil image in the (s,n) plane is unwrapped and
lies along the real axis. The isentropic Euler
equations (8) become

36 oT
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For a multielement configuration the mapping
required (Schwarz-Christoffel) is

T=:1%2 [ log §+%b§2 -(1+b)¢
(32)
+lb+1]
2

Both elements are unwrapped and lie along the real
axis. The corresponding RHS terms are similar to
those defined by Eqs. (31), but with the
transformation metrics of the mapping (32).

The Green's function for the upper half-plane can
be constructed using integral transforms. The

The solutions of the .
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particular solution for the non-homogeneous system
(30) may then be expressed as

T =__1__J'°° J’“(g—G)Rz—('ﬂ—u)Rl
Pron)wl (E-0)2+(M-p)2

dudo
(33)
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(34
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Note that 8, vanishes on the real axis (i.e., N=0).

The double quadrature required to evaluate T,
and 0, can be carried out to any required accuracy by

a variety of methods. A bi-linear approximation for
the functions R, and R, over discrete quadrilateral

cells allows local analytic quadrature, and removes
the Green's function singularities. This approach has
been used with good success.

Each non-homogeneous solution provides an
improved approximation of the velocity function T
and the RHS terms R, and R,. Iteration of the

process yields an asymptotic solution of the Euler
equations to any degree of accuracy. From the
converged solution the pressure distribution on the
airfoil surface and wake can be determined for input
to the boundary-layer method.

Viscous Interaction

The initial boundary-layer solution defines an
approximate displacement surface around the airfoil
elements and wakes which must be taken into
account in subsequent inviscid solution iterations.
The initial inviscid solution defines a first
approximation to the wake dividing streamline but
does not include wake displacement effects.
Different procedures must be used for single and
multielement airfoils to include wake displacement
effects on the inviscid flowfield. These procedures
are described in this section.

Single Element Configuration - The airfoil and
wake displacement surfaces are mapped to a semi-
infinite slit in the (s,n) plane. This slit can be mapped
to the real axis by the transformation (29). The
flowfield is mapped to the upper half-plane. Values
of flow angle along the displacement surface, denoted
by 64, are provided by the boundary-layer solution.

These Dirichlet boundary values are mapped to the



real axis of the upper half-plane. The solution of
both the homogeneous and non-homogeneous
portions of the system (30) is carried out in the upper
half-plane. A Green's function analysis provides the
solution of the homogeneous portion of the system
(30) as

4 10y
% = L(& o C
(35)
1~ (E-0)9y

Tp=—| —2—2d_
" r w0242

Quadrature along the real axis for a given value
of 1 is used to evaluate T, and 6,. The solution for

the non-homogeneous system is again provided by
the solution (33-34). The homogeneous solution (35)
provides initial values for evaluating the quantities
R,andR,. Corrective iteration produces a con-

verged inviscid solution to the Euler equations (30)
for the flowfield outside the displacement surface.
Pressure distributions from this solution provide the
input for the boundary-layer method.

As the viscousfinviscid solution iterations are
carried out, the position of the wake dividing
streamline must be adjusted to account for the
interactions, especially at higher angles of attack.
The adjustment is dictated by the jump in normal
velocity across the dividing streamline which is
provided by the boundary-layer solution. Procedures
for correcting the wake position are outlined in
References 1 and 11. The wake correction has not
been introduced at this point in the development.

Two-Element Configurations - The same
solution procedure used for the initial inviscid
approximation for two elements is used to include
displacement effects by changing the surface
boundary conditions to flow angle values along the
displacement surfaces. These values are provided by
the viscous solution. Homogenous solutions are
provided by Eqs. (26-27) and non-homogenous
solutions by Egs. (33-34). Pressure distributions
from these solutions again provide the input for the
boundary layer method.

Results

Results are presented in this section which
validate the accuracy of this new viscous/inviscid
interaction method. Comparisons are made with a
panel method/IBL procedure and also with test data.
The improved accuracy in predicting compressibility
effects are also demonstrated. Preliminary efficiency
information is provided.
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Single Element Configurations

The incompressible pressure distribution for a
NACA 0012 airfoil at an angle of attack of 6 degrees
calculated using the new Euler/IBL method is shown
in Figure 6. The prediction provided by the panel
method/IBL procedure® is also shown for
comparison. The results are nearly identical except
near the trailing edge. This is possibly due to the
different treatment of the trailing edge region. The
panel method imposes a Kutta condition of equal
velocity on the upper and lower displacement
surfaces at the trailing edge location. The Euler
method uses the displacement surface flow angle as
boundary values to compute the outer inviscid
flowfield without imposing any relationship on these
values across the viscous layer. The skin friction
distributions are compared in Figure 7. There is good °
agreement with a slight difference near the trailing
edge. The onset of transition occurs at approximately
5 percent chord on the upper surface and 80 percent
chord on the lower surface.

Lift and drag results for the NACA 0012 airfoil
compared with test data(t® are shown in Figures 8
and 9. The flow was incompressible and the
Reynolds number was 9 million. Correlation with
test data is good. The calculations were limited to
angles of attack less than 12 degrees because the new
method does not yet have a wake correction
capability. The wake dividing streamline position
was held fixed at the location determined by the
initial inviscid solution. Separation starts to occur at
approximately 8 degrees which can have a large
effect on wake position. Correction of the wake
position becomes important in this range because of
the increased curvature just downstream of the
trailing edge. This possibly accounts for the slight
departure from the test data at the higher angles of
attack.

The computational cost (i.e, computer time) of
these calculations is approximately the same for both
methods. A Navier-Stokes CFD calculation is
typically more than an order of magnitude more
expensive.

The primary reason for replacing the panel
method with the Euler formulation in a viscous
interaction method is to provide the capability of
including full compressibility affects. The benefits
are shown in Figure 10 for a NACA 0012 airfoil ata
free stream Mach number of 0.63 and an angle of
attack of 2 degrees. At this condition the peak Mach
number on the airfoil surface is 0.98. There is
considerable difference between the analytic Euler
solution and the panel method result which uses a
Prandtl-Glauert compressibility correction. The
incompressible solution is shown for reference. Also
shown is an Euler solution using the FL.O67-2D CFD
code(!3, The analytic Euler and CFD solutions are



nearly identical and predict lift coefficients differing
by approximately one percent.

wo-Element Confi tion

The Euler/IBL method has been applied to a
NACA airfoil/flap configuration!¥) and results are
shown in Figures 11 and 12. The main element was a

NACA 4412 section and the flap element was a

NACA 4415 section. The flap element was at ten
degrees incidence with respect to the main element.
Figure 11 compares the experimental pressure
distribution (incompressible conditions) at a
Reynolds number of 1.3 million and an angle of
attack of 2.2 degrees with those predicted by the
panel method/IBL procedure and the Euler/ IBL
analytical method. Predicted skin friction results are
shown in Figure 12. Agreement is generally good.
The Euler/IBL predictions on the flap element are
very sensitive to the main element wake location
which accounts for the small discrepancy on the
upper surface of the flap element. Correction of the
wake position due to viscous interactions in this
vicinity is needed. There is some difference in the
predicted transition locations on the main element
evident in Figure 12. There is also some difference in
the separation location on the flap element.

Summary

An accurate, efficient IBL method has been
coupled with an analytic-based Euler solution method
and the accuracy of the new procedure has been
demonstrated for single and multielement airfoils.
Lift and drag predictions compare well with test data.
More accurate prediction of compressibility effects
compared to the typical panel method implementation
is the major improvement. The new procedure also
avoids the difficulties of enforcing a Kutta condition
associated with the panel method implementation.
Efficiency of the new method is comparable to the
IBL/panel method procedure and more than an order
of magnitude greater than a CFD Navier-Stokes
method. A correction method for wake position
changes due to viscous interactions remains to be
implemented.
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