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Abstract

An approach is considered for calculation
of steady attached and separated 2D flows. The
approach is based on viscous-inviscid interaction
model. A quasi-simultaneous method of viscous-
inviscid coupling is used with a specific boundary
condition for an inviscid flow when separation
occurs. This approach is proved to be rapidly
convergent both for attached and separated flows.
Two computer codes based on this approach are
developed. The first code - VISTRAN - permits
one to calculate a transonic flow about single
airfoil, the second one - MULTIVIS - to
calculate a subsonic flow about multi-element
high-lift systems. Calculation of outer (inviscid)
flow is carried out by panel method for low
speeds or by a solution of a modified transonic
potential equation for high subsonic speeds. Inner
(viscous) flow is described by laminar and
turbulent boundary layer equations in an integral
form. In the regions of pre-separated and
separated flow these equations are solved in an
inverse mode in order to avoid the Goldstein
singularity in the separation and reattachment
points. Calculated results show good agreement
with experimental results both for single and
multi-element cases including determination of
maximum lift and its dependence on Mach and
Reynolds numbers as well as on flap deflection
for high-lift systems.

Introduction

At present CFD become one of the major
instruments of aerodynamic analysis and design.
The main challenge to investigators in this field is
a prediction of separated flow characteristics.
Separated flows commonly encountered at take-
off and landing regimes of aircraft flight and
sometimes at cruise ones, and their numerical
investigations are of great practical interest.

There exist two major approaches to
numerical investigations of viscous flows at high
Reynolds numbers, including possible separation
regions. The most general approach considers
numerical solution of time-averaged Navier-
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Stokes equations using an adequate turbulence
model. This approach makes it possible to take
into account all complex flow phenomena.
However, it requires rather great computer
capacities. Moreover, possible imperfection of
available turbulence models used in the
calculations do not always yield results that are in
good agreement with the experiment.

The second approach is based on the
solution of the viscous-inviscid flow interaction
problem (zonal approach). In accordance with it
the flow region at high Reynolds numbers can be
divided into two parts: an inviscid part where the
Euler equations or some approximation of them
are to be solved and a viscous one (boundary
layers and wakes) in which the time-averaged
Navier-Stokes equations can be considerably
simplified owing to a small layer thickness (the
Prandtl boundary layer equations). These external
(inviscid) and internal (viscous) solutions should
be matched and the problem of organization of
convergent iterative procedure of their matching
(viscous-inviscid interaction problem) is the
central problem in this approach. First
investigations in(!-3) followed by numerous works
of other researchers showed a possibility of
calculation of viscous flows including separated
ones in the frames of this approach. Much fewer
requirements for computer capacities as
compared with the methods of direct solution of
the Navier-Stokes equations have motivated a
speedy development of  viscous-inviscid
interaction methods. Many researchers indicate
that the accuracy of the methods based on the
solution of the Navier-Stokes equations do not,
so far, exceed that of the zonal methods.

The present paper considers the application
of viscous-inviscid interaction methods to
calculate both attached and separated flows over
airfoils and high-lift systems.

Governing equations

Let consider a viscous compressible fluid
flow at high Reynolds numbers. The viscous
effects are known to be considerable only within
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a wall and wake layers of small thickness 6. The
flow in these layers is mainly turbulent. The flow
governed by the time-averaged Navier-Stokes
equations will be referred as a “Real Viscous
Flow” (RVF). Following(!-? let us introduce a
so-called “Equivalent ' (EIF)
governed by the inviscid Euler equations. The
boundary conditions on the surface of the body
and on the wake centerline for EIF are chosen
from the condition of coincidence of RVF and
EIF parameters outside the viscous layer of
thickness &. Integration of the difference between
EIF and RVF equations along normal to the
surface across the viscous layer yields®:

Inviscid Flow”
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where the following notations are introduced: s
and # - coordinates along the surface and normal
to it, # and v - tangential and normal to the
surface velocity components, p - density, p -
pressure, M - Mach number, ¢r - skin friction
coefficient,

¥ and v’ fluctuational velocity

components, k, - surface curvature, subscript i
means EIF values, subscript w - values at the
surface, e - values at the outer edge of the

boundary layer, and
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It is shown in® that the terms E, and E, are
small both for the attached and separated
boundary layers and could be neglected. Thus,"
the following set of equations is obtained:

1 d —
Viw = ————(DiwljnS ) ' (1a)
Piw ds
d@ 2 6 duiw 1
H+2-M; —_— e, =0 1b
( * uiw ds 2 Cf ( )
~ Py =k ppul, (0+5) , (Ic)

If we neglect variations in the tangential -
velocity component- # and density p in the EIF
and consider them to be constant and equal to
their values at the outer edge of the boundary
layer, values 6" and @ become standard boundary
layer displacement and momentum thlcknesses
respectively:

Now equations (1) can be interpreted as
follows. Equation (1a) is the boundary condition
for the normal velocity component in the EIF,
and it means ‘that sources must be distributed
along the airfoil surface in order to move the
streamline to the distance &° normal to the
surface. Such = approach was proposed by
Lighthill¥ and was called “the method of
equivalent sources”. Equation (1b) is the standard
integral  momentum equation (von Karman
equation) to be solved for determination of
boundary layer parameters. Equation (1c) can be
applied after the calculations are completed to
determine the pressure at the surface in the RVF
by known pressure in the EIF.

Equation (1b) should be added by closure
relations, - turbulence model in particular.
Following(5) let us write down two additional
equations: definition of entrainment coefficient
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cg, which characterizes the gas amount ejected by
a viscous flow from the external inviscid flow

1 d
= -— H,06), 2
CE polly ds (pete H,6) (2)
where
H, - ) ’
g

The second additional equation for
entrainment coefficient is called “lag-entrainment
equation”:

gdCE =7 C; ay »
ds de; [deg || (up [ u)L / 6)

1/2 1/2

c - Ac

 Ceigo : {0 due] _ 3)
EQ

H + H, u, ds

2
_ O ey, 0.075M3[———~—1 + 02M, J
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Here subscript £Q corresponds to the equilibrium
conditions corresponding to constant values of
formparameter H and " maximum shear stress
coefficient ¢, a; - turbulence structure
parameter, L/J - nondimensionalized dissipation
length, up/u, - ratio of longitudinal velocity at
the point of maximum shear stress to the velocity
at the outer edge of the boundary layer. Detailed
description of these parameters and their relations
with other boundary layer values can be found
int®. This equation is in fact an integral
equivalent of differential turbulence model of
Bradshow(®) resulting from the turbulent kinetic
energy equation.

So, the set of boundary layer equations
includes integral momentum equation (1b),
entrainment equation (2) and “lag-entrainment”
equation (3). This set of equations must be closed
by relations expressing values of formparameter
H,, friction coefficient ¢ equilibrium and
nonequilibrium shear stress coefficients ¢, and
cgg in terms of formparameter H and
momentum thickness-based Reynolds number
Re,. These relations are described below.

Special boundary conditions for EIF
should be posed at the cut issuing from the airfoil
trailing edge and representing the wake. The wake
is artificially divided onto upper (subscript #) and
“lower (subscript /) parts each of them being a
continuation of boundary layers from the upper
and lower surfaces of the airfoil respectively. The

modeling of the displacement wake effect in
solving the EIF problem dictates that the normal
velocity component jump on the cut (subscript c¢)
should be as follows:

1 d * 1 d *
Aav), = ;:u—zg‘(.ﬂiuuiu5u) + p—ﬂE(PauﬂtSz) 4)

The viscous wake curvature leads to a
tangential velocity component jump on the cut
(wake centerline):

. 1 * F
(Au)c = Ekc(uiu + uil)(au +91 +5u +‘)1) (_5)

Thus, equations (1a), (4), and (5) represent
boundary conditions for EIF problem with
governing equations being the inviscid Euler
equations or some approximation of them.

Viscous-inviscid interaction

Since the closing relations for the boundary
layer are derived for an incompressible fluid, let,
following® introduce a formparameter of an
equivalent incompressible flow H which is

related to H as follows:

H=(H+)z-1 z=1+02M2.
Equations (2) and (la) can be rewritten as
follows (subscript e is omitted):

cp =—(H+1)H1G+H16%+~;—cfH1; (6)

5 dHf 1 .
S=—(H +1)(H - 04M )G+z9z+-2—cfH, )

,_dH,
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2 G=2=2, ==
u ds YU oaH

Z=—;
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The curve H{(H) has its minimum in the
vicinity of separation, H{<0 for an attached
flow, H|>0 for a separated flow and H =0 at a
separation point. Thus, is possible to integrate (6)
and determine the value of H in the “direct”
mode with the specified distribution of « obtained
from EIF only for attached flows. At the
separation point the coefficient at the derivative
of H becomes zero and integration fails. This
result - reflects the well-known  Goldstein
singularity at the separation and reattachment
points that prevents integration of boundary layer
equations with the specified velocity gradient.
This singularity reveals itself only in the equation
(2) of the set of boundary layer equations, the
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rest two equations (1b) and (3) can be solved
(and were solved both for attached and separated
regions) with a specified value of velocity gradient
from EIF. By excluding the velocity gradient
from (6) and (7) it is possible to obtain the
following form of equation for the derivative of
H.

dH [ZH) - (H - 04M*%)cp — 02H, M?c /]
ds [H 7z - (H - 04M?)H{)

6 ;(8)

This equation has no singularity at the separation
point and should be solved with a specified value
of source intensity coefficient = (“inverse” mode).

The boundary condition for EIF is
obtained by exclusion of dH /ds from (6) and
(7):

TuZva=Pﬂ+Qu; 9
ds
Hl

T = 1 .

HH{“HIZ,
P=—(H +1)(1-04M2T)6;

1 CpZ

= e O + —
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This boundary condition links the value of the
normal velocity component with the tangential
velocity component ant its gradient. It is
nonsingular everywhere and is used both for
attached and separated flows. The difference in
application of this boundary condition for
attached and separated flows consists in that for
preseparated and separated flows (H>1.4) both
normal and tangential velocity components are
taken at the current inviscid iteration (as
unknowns), and for attached flow (H<1.4) the
tangential velocity component is taken from
previous iteration and in fact the value of normal
velocity component is specified as the boundary
condition.

Such an approach to the viscous-inviscid
interaction is a variant of so-called “quasi-
simultaneous” method. In the present approach
some estimate of the boundary layer influence on
the external flow (equation (9)) is added to the
equations for external inviscid flow as a boundary
condition. This approach was introduced in(» and
applied to calculation of subsonic flow about an
airfoil. The term “quasi-simultaneous approach to
viscous-inviscid interaction” was introduced in®
where on the contrary some approximation of the
effect of the external inviscid flow written in the

form of Cauchy integral was added to the
boundary layer equations.

The present paper deals with a mixed
method of viscous-inviscid coupling. The direct
method (calculation of the boundary layer
equations with prescribed tangential velocity
distribution) is used for a laminar boundary layer
and an attached turbulent one (H<1.4). The
quasi-simultaneous method given above
(calculation of the equation (8) instead of (6)
with prescribed distribution of source intensity X)
is used for the rest part of the boundary layer.
The laminar part of the boundary layer is
calculated by the method® in parallel with the
calculation of the laminar-turbulent transition
point by the method of Granville(19),

Thus, the -calculation procedure is the
following: inviscid flow equations are solved with
the boundary condition (9), the same boundary
condition is satisfied on the wake, ie. only
displacement effect in the wake is taken into
account. Values of functions 7, P and QO in (9)
are taken from the current solution of the
boundary layer equations. Distributions of the
tangential velocity u and source intensity £ for
the boundary layer equations are determined from
the EIF solution. Laminar part of the boundary
layer and thin part of the turbulent boundary
layer are calculated in the “direct” mode with
prescribed tangential velocity distribution. Then
boundary layer equations (1b), (6) (considered as
a differential equation for A and (3) are solved
for the attached turbulent boundary layer while
for the preseparated and separated turbulent
boundary layer equation (8) is solved instead of

(6).
Closure of boundary laver equations.

The set of boundary layer equations is
closed by the following relations

Hy = Hi(H,Reyp);
Cf = Cf (F,Rﬁg);

CEpo = CEpgo (H,Rey)

— (10)
c, =c.(H,Rey)

The first of these relations can be
established based on the known velocity profile in
the boundary layer. After a series of numerical
experiments with various velocity profiles
including that presenting separated omnes with
reverse flow, a universal relation was selected and
used in calculations, namely
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063H +1 75, H <261
=) H-1
7074+ 207 BB o6t
H-042 H

The first branch of this relation is taken from(D,
coefficients of the second branch are taken from
the condition of smooth matching at the point
H=2.61 up to the second derivative and from the
resuits of numerical experiments. Relation for
skin friction coefficient is taken from{!?) and has
the form

03e -1.33H

Ccr = +
f (log Rg)L74+031H
+0.00011[tanh(4 - L143H) - 1]

Relations (10) as well as values of parameters ay,
L/8, up/u, for separated boundary layer are also
taken from(!1), More detailed description of the
method is given in (13),

Calculation of inviscid flow over airfoils and
high-lift systems.

The approach described above was applied
to the calculation of transonic flow about single
airfoils (computer code VISTRAN) and subsonic
flow about multi-element airfoils (high-lift
systems, computer code MULTIVIS).

The external inviscid transonic flow about
an airfoil is described using a modified potential
model. A conservative rotated finite-difference
scheme(!¥ is used for a numerical solution of the
potential equation. An approximate account for
an entropy variation on a shock and a vorticity
behind shocks using the Clebsch
transformation(!> is introduced. Calculations are
performed using an O-type grid generated by
conformal mapping. A set of unknowns includes
values of potential at the grid nodes plus the
source intensities at the airfoil surface.

The external inviscid subsonic flow about
multi-element airfoils is calculated using a panel
method of symmetric singularities when each
panel is characterized by a constant source and
linearly varying vortex distributions. The
singularity intensities are symmetric about the
airfoil chords and are found from the boundary
condition (9) satisfied at the center of each panel
on the airfoil surfaces and in the wakes. The
tangential velocity gradient is calculated using an
equation of irrotationality

Ju 0”V0
— = k. Vn —
as w0 o

where k,, is the surface curvature, subscript 0
denotes the velocity value less the contribution of
the panel itself.

Correct account of wake influence, their
shapes in particular for multi-element airfoils is
much more important from the accuracy point of
view than for single airfoils. The wake shapes are
calculated by a construction of streamlines
leaving the trailing edges. The wakes’ lengths are
equal to 4 chords of the largest element and there
are 100 panels on each of them. Only wake
displacement effect is taken into account.

Results for single airfoils and comparison with
experimental data.

NACA64A010 airfoil

The experimental data for this airfoil are
taken from(19. The laminar-turbulent transition
was fixed at 6.1% on the upper and lower
surfaces. Fig.1 compares the experimental and
calculated pressure distributions for AM=0.8,
Re=2x105, a=6.2°. The flow in this condition is
characterized by a strong shock at x=40% with a

subsequent massive shock-induced separation
which is detected in calculations.
0 5, " °0° oqs
C. Cp
047 o o o Exp. 0.62 ——
Calc. 0.618 0.0680
0.8 1
x/c
1.2 et ; i
0 02 04 06 08 1

Fig.1. NACA64A010 airfoil, M=0.8, Re=2x10°,
a=6.2°.
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GA(W)-1 airfoil.

Fig.2 shows a comparison of calculated and
experimental total aerodynamic characteristics for
a  GAMW)-1 airfoil (c=17%, M=0.15,
Re=6.3x10%) with a transition fixed at 7.5% on
both surfacest!”. The figure shows a good
agreement of lift ¢ (a) and pitching moment
cm(a) (relative to the airfoil leading edge) curves
As a whole, the
calculated drag polar agrees well with the
experimental one but it is slightly shifted to the
left (Acpp=0.0017), what can be explained by
inadequate consideration of the turbulence strip
drag.

up to the maximum lift,

Fig.2. GA(W)-1 airfoil, M=0.15, Re=6.3x106.
NACA0012 airfoil.

This symmetric 12%-airfoil commonly used
to verify calculation programs. Fig.3. presents a
comparison of experimental!® and calculated
pressure distributions for a severe test case
M=0.55, Re=9x10%, a=9.86° (corrected to the
wind tunnel interference value a=8.34°) with a
transition fixed on both surfaces at 5%. In this
case the flow features a developed forward
supersonic zone terminated by a high-intensity
shock. The calculation reveals a shock-induced
separation at 14% with a subsequent attachment
at 28% and a weak rear separation at 94%.

-3 4 G Cp
§ 5P o o o Exp. 0983 00253
d ° Cale. 1029 0.0302

Fig.3. NACA0012 airfoil, M=0.55, Re=9x105,

1=8.34° (0lxy=9.86°).

Fig.4 compares the experimental!® and
calculated maximum lift values vs. Reynolds and
Mach numbers, as well as the value of the lift
curve slope vs. Mach number and drag coefficient
at o=0 vs. Mach number. It is seen that the
calculation data represent adequately the test
results in a wide range of Mach and Reynolds
numbers.

Results for high-lift airfoils and comparison with
experimental data.

Fig.5 illustrates the results of calculation of
the flow about an airfoil and a flap. Calculations
are performed for a GA(W)-1 airfoil with a 29%-
chord Fowler flap at M=021, Re=2.2x109,
a=10°, angle of the flap deflection 5=40°. A
streamline pattern, separated regions, boundary
layer velocity proﬁles at several stations and
comparison of calculated and experimental
pressure distributions are presented in the Figure.
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Fig.4. Comparison of experimental and calculated
maximum lift, lift curve slope and drag for the
NACAQ0012 airfoil.

The experiment pressure distribution is
taken from@%. The present case corresponds to a
maximum lift of this configuration. This case is
characterized by the presence of a small separated
region at the rear part of the flap and a massive
separation in the wake of the main airfoil. Such
wake separation regions, that are absent in the
flows about single airfoils, are typical for flows
about high-lift systems and their influence
constitutes the main reason of importance of
accurate wake calculation for multi-element
airfoils. Separation zones could be identified by

the reverse flow regions that could be seen on the
plots of velocity profiles at stations 4, B and C.
The agreement of calculated. and experimental
pressure distributions is quite satisfactory.

= e

Fig.5. Calculation of streamlines, separated
regions, velocity profiles and comparison of
experimental and calculated pressure distributions
for the GA(W)-1 airfoil with 29% flap, M=0.21,
Re=2.2x10°, a=10°, §=40°.

Fig.6 compares the calculated lift vs. angle
of attack curves with the experimental data oft?!)
for a 30%-flap at M=0.13, Re=2.2x10° and flap
angles 8=10, 20, 30 and 40°. In order to simplify
the calculation procedure, the main element cove
was slightly smoothed. The calculation shows
good agreement with the experiment at =10, 20
and 30° up to the maximum lift. At §=10°, it is
impossible to determine a correct critical angle of
attack because the test points are scarce.

CL° ° °e°e° Exp.
351 o 2 Calc.

o,
3.0 Sf:40°

’ e
25)/
2.0
LS O\
1.0 p

0 8 6 0 8 16 0 8 16 0 8 16

Fig.6. Lift curves for the GA(W)-1 airfoil with
30%-flap at M=0.13, Re=2.2x10°.
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One more example of total aerodynamic
characteristics calculation of an airfoil with slat is
given in Fig.7 for M=0.201, Re=2.83x10%, slat
deflection angle, 8;=43.9°. Lift curve vs. angle of
attack, drag polar and pitching moment (with
respect to one-quarter chord of the main
element) vs. lift coefficient are presented at this
Figure. Total aerodynamic  characteristics
compare reasonably well with the experimental
ones taken from(?2) except for drag at low lift
coefficient what is attributed to the separation on
the lower surface of the slat not taken into
account in the calculations.

3T CL
2-.
1+
(<
A 7
/ . o
0 10 20

Cp Cum

L

. S ' y —r
0 0.05 0.1 0.5 0

-0.5

Fig.7. Total aerodynamic characteristics of an
airfoil with slat at M=0.201, Re=2.83x106,
5,=43.9°,

And finally, an example of calculation of
total aerodynamic characteristics for a four-
element  high-lift  system at  M=0.201,
Re=2.83x10°, 8;=47.2°, 8=30° (deflecton of the
first section of the flap), 8p=49.7° (deflecton of
the second section of the flap) is presented at
Fig.8. The calculated characteristics are the same
as presented in the previous Figure. The

calculated results show satisfactory agreement
with the experiment again except for drag values
at low lift coefficient values what could be also
explained by the lack of account of the separation
on the lower surface of the slat.

ao
0 10 20
5 CL 5T CL
O
o o
o

4 o 4 o
o o
3 o 3 °
Cp Cm
2T T 005 01 27 05 -1

Fig.8. Total aerodynamic characteristics of the
four-element high-lift system at M=0.201,
Re=2.83x10%, §;=47.2°, 6;=30°, 8p,=49.7°.

Conclusions

A method is considered for calculation of
steady attached and separated 2D flows. The
method is based on viscous-inviscid interaction
model. A quasi-simultaneous approach to viscous-
inviscid coupling is used when some relationship
between normal and tangential velocity and its
Jongitudinal derivative is used as a boundary
condition for an inviscid flow in the preseparated
and separated regions. A standard boundary
condition on the normal velocity value is used for
attached regions. This approach was proved to be
rapidly convergent both for attached and separated
flows.
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The method is applied to calculation of a
transonic flow about a single airfoil (computer
code VISTRAN) and a subsonic flow about a
multi-element airfoil (high-lift system, computer
code MULTIVIS). Calculation of outer (inviscid)
flow with boundary conditions mentioned above is
carried out by singularity method for low speeds
(multi-element airfoil) or by a solution of a
modified transonic potential equation for high
subsonic speeds (single airfoil). In the last case the
modification of potential equation permits the
vorticity behind the shock to be taken into
account. Inner (viscous) flow is governed by
laminar and turbulent boundary layer equations in
an integral form. In the regions of preseparated
and separated flow these equations are solved in an
inverse mode in order to avoid the Goldstein
singularity at the separation and reattachment
points.

Comparisons of calculated results with
well-established experimental results both for single
and multi-element cases showed good agreement
including determination of maximum lift and its
dependence on Mach and Reynolds numbers as
well as on flap deflection for high-lift systems.
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