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Summary

This paper describes and evaluates a general
two-dimensional block structured grid generation
technique which is coupled with a high resolution
incompressible Euler/Navier-Stokes solver to
simulate steady low Reynolds number flows
around multi-element airfoils configurations. The
grids are generated using an object-oriented
algorithm which automates several stages in the
decomposition of the domain into non-overlapping
topologically rectangular regions. The solution
procedure uses a finite-volume formulation and
takes advantage of some recent advances in the
pseudo-compressibility concept, namely the use of
flux-difference to upwind evaluate the convective
fluxes. The effects of turbulence on the mean flow
are described by means of the Baldwin-Lomax
model. The discretized equations are marched in
time to steady-state using various implicit
procedures. The Williams wing-flap configuration
with 10° and 30° flap deflections is chosen as a
reference test case. The surface pressure
distributions computed in inviscid conditions at
zero incidence are found to be in good agreement
with Karman-Trefftz mapping and panel based
methods. Additional tests are carried out with
success in the turbulent regime up to chord-based
Reynolds numbers of 1.2 million, thus
demonstrating the efficiency of the numerical
scheme.

Introduction

With the progress achieved in numerical
algorithms and also in the field of computer
technology, computing flow field around complex
aerodynamic configurations is now possible. In

order to achieve optimum designs, new tools for
rapid and efficient analysis of high-lift
configurations are required. Computational fluid
dynamics offers great promises as a tool which
provides valuable insight into the flow phenomena
associated with high-lift system performances.
Nevertheless, the generation of acceptable body-
fitted grids is often quite a burden. The
fundamental problem with grid generation for
aircraft-like shapes is that each aerodynamic
component of the configuration has its own natural
structure. However, these structures are usually
incompatible with each other. This has lead to the
idea of generating grids whose topology is locally
consistent with each component but with some
global means of connecting the grids. This
naturally leads to the concept of block structured
grids.

Multi-element configurations present a large
number of challenging problems for the
numericists, these includes boundary layer
separation, wake flows, transition effects and of
course complex geometries. In take-off and landing
flow conditions, Mach number effects are
negligible mainly because of the low velocity level,
except maybe in the leading edge area of the main
airfoil. Consequently, the flow field may be
modelled using the incompressible form of the
Reynolds averaged Navier-Stokes equations.

Low Reynolds flows about high-lift systems
have been investigated by a number of authors.
Recent papers on the topic include the use of
structured patched grids(l'z), overlapping Chimera
gridso'm and unstructured grids‘é). Turbulence
effects are generally modelled using the Baldwin-

Lomax' " model, the Baldwin-Barth model(m, the
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Spalart-Allmaras model™ or various versions of the

The intent of the present work is to describe and
evaluate a general 2D block structured grid
generation technique which is coupled with a high
resolution  incompressible  Euler/Navier-Stokes
solver to simulate steady low Reynolds number
flows around multi-element airfoils configurations.
A vparticular accent is laid on the efficiency of
implicit time integration procedures through the
evaluation of single and multi-step(s) strategies.

Grid Generation

Generating  an appropriate grid around a
practical multi-element geometry can be a difficult
task. In particular, the construction of a single grid
system that covers the entire flow field can be
really hard or even impossible to realize. By
dividing the domain into non-overlapping
topologically rectangular regions, a local structured
grid may be generated within each block. Because
continuity of location of grid points is not required
at block boundaries, grids can be generated in each
block separately without any restriction. One of the
major advantages of using block structured grids
obviously lies in the simplification of the grid
generation procedure but this approach also easily
allows the grid refinement in zones where a fine
resolution is required. The sub-regions grids are
generated either by the solution of partial
differential equations (of hyperbolic or elliptic
nature) or by algebraic and NURBS (Non-Uniform
Rational B-Spline) interpolation.

The grids are generated using an object-oriented
algorithm which automates several stages in the
decomposition of the domain into non-overlapping
topologically rectangular regions. The whole grid
generation process is accomplished in 11 steps, as
described in fig. 1. Basically, the object-oriented
concept integrated within the code allows to give
the user freedom and flexibility to act at any time at
a given step without any interaction with the other
ones; the grid generation process then further
automatically proceeds using the latest available
data.

The airfoil geometry is modelled using NURBS
interpolation. This technique which has for instance

been used with success by Yu and al. 7 allows to
parametrize the geometry boundary C(t) as

n
> wi P Niu(®
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CH="—"7
> wi Ni(®)
i=0
with
Ni,l t =1 if v £t <vyy
=0 elsewhere
and
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where P is the control nodes vector and w is its
associated weighting vector; v; is the i-th
component of the normalized nodal vector
associated to curve C. Its dimension t,,, is given as
tmax = 11 - k + 2 where n represents the number of
segments on the original curve and k is the NURBS
order (k must be at least equal to 2).
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FIGURE 1 - grid generation strategy using the object-
oriented concept.

The blocking strategy around the Williams
wing-flap configuration is shown in fig. 2. The gap
region is first modelled by considering an
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equivalent airfoil whose geometry is defined in an
automatic way and is further gridded using
NURBS 2D interpolation extending the above
formula as

n

m
E 2 Wi Pig Nip(t) Nig(t)
i=0

sttt = =2

m
> Njp(®) Nig(t")
1=0
i=0

An hyperbolic-type grid is then generated

around the equivalent airfoil and the final grid is -

splitted into 8 blocks, including the gap region. A
partial view of the resulting grid about the airfoils
with 30° flap deflection is shown in fig. 3.

/

FIGURE 2 - blocking strategy about the two-element
Williams airfoil with 30° flap deflection.

il

FIGURE 3 - partial view of the 8 blocks grid about the
two-element Williams airfoil with 30° flap deflection in
inviscid flow conditions.

Mathematical Model

Mean Flow Equations

Coupling the continuity and momentum
equations with the artificial compressibility
formulation as developed by Chorin(g), the
Reynolds averaged Navier-Stokes equations which
describe two-dimensional steady incompressible
flows are given by

i

oU; (U Usy) op 0 oU;
e v R (Yot

where U, denotes the mean velocities and u; the
corresponding fluctuating velocities in x; directions.
p stands for mean static pressure and p and p for
molecular viscosity and density of the fluid,

respectively, overbars indicate time-averaged
quantities.
Turbulence Model

The Reynolds-averaging of the Navier-Stokes
equations introduces a further set of unknowns, the
so-called Reynolds stresses. For the very large
majority of numerical methods, these stresses are
related to the mean flow quantities through the
introduction of additional relations which describe
the turbulence model.

oy
P U T ST
1 Uj Htaxj

In the present method, turbulence closure is
provided by the Baldwin-Lomax algebraic
model”. Tt is a two-layer model which determines
the turbulent viscosity in an inner and outer layer
which are subsequently matched.

if 'y < Yerossover

if ¥ > Yerossover

K = Hinper

~ Houter

where Veosowr 18 the first point at which i
exceeds Lowr In the present work, the viscosity
switching is only effective as far as y’ < 35 in order
to avoid it to occur too far from the wall. In
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addition, the ratio of the resulting turbulent
viscosity to the laminar one is limited to 1000 to
prevent spurious high viscosities to appear within
the flow field and consequently alter the
CONVErgence process.

In order to overcome the extremely fine grids
required to model boundary layers accurately down
to the wall, the following law of the wall model is
used to evaluate the shear stresses at wall
boundaries.

+

1
U =535 In (1.01+9y")

Indeed, the cell Reynolds number Re, may be
defined at the walls as Re. = u'y". Once Re, is
known, the two above relations may be curve fitted
to deduce y~ and further proceed to evaluate the
wall shear stress 7, through the definition of u".
This approach has already been used with success
by Turner and Jennions'” and allows to drop the
Van Driest damping terms within the original
formulation.

The formulation of Granville'’ for the
evaluation of constants appearing within the model
is used to better take the effect of varying pressure
gradients into account.

The effect of transition to turbulence is
simulated using the Klebanoff intermittency factor
and setting |y, equal to zero everywhere in a profile
for which the maximum tentatively computed value
of p, is less than a threshold value, as given in the

original Baldwin and Lomax paper(g).

p=0 if (1) max < 14p

Boundary Conditions

An extended characteristic-based method is
used to evaluate the numerical boundary conditions
in a consistent way. The starting point is a
consistency condition for the inviscid numerical
flux function. The unknows at a boundary are
determined such that the flux function based on the
boundary and first adjacent solution vectors lead to
fluxes which satisfy the physical boundary
conditions. More details may be found in Wilquem
and Degrez(m.

The partitionning of the computational domain
in non-overlapping subdomains introduces internal
boundaries corresponding to the interfaces between -
adjacent blocks. Because the computations are
carried out separately in each block, a block
adjacency relationship must be defined in a
connectivity array for a cormrect evolution of the
solution. The data structure required to describe
this connectivity in particular includes two layers
of ghost cells which surround each of the blocks
sides; the second layer is needed at higher accuracy
orders because of the MUSCL extrapolation.

The multiblock strategy developed in the frame
of this work can either deal with direct connecting
or patched block interfaces. Consequently, great
care must be exercised in treating interface points
to transfer the information accurately. The
continuity of the state vector is enforced along the
boundaries shared by two direct connecting
blocks. In these conditions, the MUSCL
extrapolation as well as the evaluation of the
velocity gradients is simply extended through the
connectivity array across the interblock boundaries.
In the frame of patched blocks, the fluxes
computation is carried out for each interface
segments; in these circumstances, no extension is
performed in the evaluation of the velocity
gradients.

The update of the interface cells is performed in
an explicit way once each iteration. Computations
can then proceed in each block without the need for
further information from adjacent blocks. In
addition, the method also allows multiple boundary
conditions per block side, which significantly
increases the flexibility of the code.

Numerical Solution Procedure

The numerical solution procedure is based on a
conservative cell-centered finite volume method. A
second order accurate central difference scheme is
used to discretize the diffusive fluxes whereas the
convective fluxes are approximated by the Roe
flux-difference splitting scheme. High order space
accuracy is achieved using the MUSCL variable
extrapolation method. The discretized equations are
linearized locally and integrated implicitly in time
following a time-marching approach.
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Performing an implicit time integration, the
governing equations may be rewritten in the
following standard form

A&E = . Rn+l
At

where AQ" = Q™' - Q" represents the incremental
change in the cell-centered values of the solution
vector Q between time levels n and n+1. The
residual vector R"” is linearized in time about the
n-th time level as

oR V!
ntl _ pn Zar n
R'™ xR +(6Q) AQ

which results in

I RY  n_ on
(At+6Q) AQT=-R
or, in compact form

I n

where Jr is referred to as the real jacobian of the
residuals and Jr is its augmented counterpart. The
above relation represents the system of
simultaneous linear equations which has to be
solved for AQ" at each time step of the integration
process. In a majority of CFD applications, because
of the large and poorly conditionned properties of
the coefficient matrices, the system must be solved
in an iterative way.

Both single and multi-step(s) strategies are
tested in the frame of this work. Remembering the
general form of an iterative solution technique

f; AQn,k+l = -RP+( j} -Jg) AQn’k

where j; is the augmented preconditionning matrix
and k is the inner iteration counter, a m-step
scheme consists in performing m inner iterations
per time step. Starting from the initial
approximation AQ"™ = 0, the single step scheme
does not require the evaluation of the jacobian
matrices which are particularly hard to compute in
the frame of the Roe flux-difference splitting
explicit operator. In contrast, multi-steps schemes,
evidently more expensive per time step, may be

expected to significantly increase the convergence
rate of the non-linear iterative process and thus be
able to reduce the total CPU time to reach non-
linear full convergence. The symmetric point
Gauss-Seidel approximate factorization is used as a
preconditionning matrix. It is basically a two-steps
procedure which is equivalent to a lower Gauss-
Seidel sweep followed by an upper one.

At this stage, it is important to note that the
accuracy of the steady state solution is entirely
controlled by R". Consequently, the jacobian Jx
may be substituted by some approximation which
may unfortunately have some adverse effects on
the non-linear convergence process. In the present
work, Jr may either be estimated analytically using
the Yoon and Jameson approximation(m or
numerically through finite-difference evaluations of

the J. AQ™ product, that is

R(Q"+eAQ™)-R(Q")

€

Jg AQ™ =~

for a forward first-order approximation and

R(Q"+eAQ™)-R(Q"-&AQ™)
2g

JR AQ™K =~

for a central second-order approximation. The two
latter approximations, which belong to the so-
called jacobian-free methods, are a particularly
interesting way to go in situations where the Yoon
and Jameson approximation is too bad. A key issue
in using jacobian-free methods is the proper choice
of €. Following the recommendations of Issman
and Degrez''”, a fixed € = 10 is chosen.

Finally, in an attempt to further accelerate the
iterative process, the GMRES algorithm“s) may be
used in combination with the various multi-steps
strategies. Originally designed to iteratively solve
linear systems with non-symmetric coefficient
matrices, the GMRES method seeks for an
approximate solution AQ™" of the form

m
AQnm — AQn'O + Z z nk
k=1

where the vector z** lies in the Krylov subspace K
(Jr, 1o, m) defined by the matrix J; , the unit vector
Wi =10 /Y (fo =-R"-J:AQ™ ;¥ =] 1]]) and the
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size of the Krylov subspace m. This way of solving
will converge in the fastest manner as far as each
successive iterate ™ minimizes the residual norm
ir{| over the Krylov subspace.

The relative  efficiency of  different
combinations of the previously described solution
strategies and jacobian approximations is discussed
within the results section,

Results

The Williams wing-flap configuration with 10°
and 30° flap deflections is chosen as reference test
cases. Conceptually, a global C-type grid consisted
of 18070 cells and a sequence of 8 blocks is
constructed. Fig. 4 and fig. 5 show the comparison
of the computed surface pressure distributions
about the airfoils at zero incidence and in inviscid

conditions with the conformal mapping method of
(16)

Williams . and the panel method of
Coussement' .
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FIGURE 4 - surface pressure distribution about the two-
element Williams airfoil with 10° flap deflection in
inviscid flow conditions for o = 0°.

Although some deviations (as the jump in the
pressure coefficient distribution on the main airfoil
in fig.4) may -be observed because of an
insufficient grid quality in the region of the gap, all
methods compare quite well. The corresponding
predicted lift and drag coefficients for 10° and 30°
flap configuration are given in tables la and 1b.
The agreement between the exact and predicted
values is good.

Williams | Present Method
CL. msin aicfoit 1.69 1.75
Cy fap 0.34 0.34
Cop, mein airfoil -0.09 -0.06
CD, flap 009 009

TABLE 1la - exact and predicted inviscid lift (Cr) and
drag (Cp) coefficients about the Williams configuration
with 10° flap at zero incidence.

&
OM

. MAIN AIRFOIL !

Present Method
° Panel Method

Pressure Coefficient
A

Karman-Trefitz Mapping

1 i L A
0.0 0.2 04 0.6 0.8 1.0
Relative Chordwige Location - X/C

ok
2k
3
3 FLAP
g
3 4
o
5
2
g
&
Fn
Present Method
° Panel Method
N Karman-Trefftz Mapping
. 1 e
0.6 08 1.0 2

Relative Chordwise Location - X/C

FIGURE 5 - surface pressure distribution about the two-
element Williams airfoil with 30° flap deflection in
inviscid flow conditions for o = 0°.

From a theoretical point of view, the drag
coefficient should normally be zero in inviscid
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conditions, whatever the airfoil configuration is.
Practically, non zero numerical values are due to
artificial dissipation as well as truncation errors in
the fluxes approximations.

Williams | Present Method
CL, main airfoi 2.91 2.97
Cw fiap 0.83 0.75
Cb, main zirfoil -0.38 -0.29
Cb, fiap 0.38 0.36

TABLE 1b - exact and predicted inviscid lift (Ci) and
drag (Cp) coefficients about the Williams configuration
with 30° flap at zero incidence.

The corresponding convergence histories are
shown in fig. 6 by the rms value over the entire
field of the u-velocity residual. In both cases,
computations have been carried out with CFL=1
using the single step procedure in which the
Jacobian matrices are reevaluated only each 10
iterations. In these conditions, 3000 iterations and a
few CPU hours on a Pentium P90 are required to
obtain a 5-order magnitude reduction in velocity
residuals.
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FIGURE 6 - convergence histories for the Williams
wing-flap configuration at zero incidence in inviscid
conditions for 10° and 30° flap deflection.

To evaluate the effect of the various implicit
schemes on non-linear convergence, the viscous
turbulent flow over the Williams wing-flap
configuration with 10° flap deflection is computed
for a chord-based Reynolds number of 1.2 million
at zero incidence. The viscous grid is composed of
8 blocks containing 18319 cells with an initial
spacing off the solid surfaces of 0.0003 chord to
yield a y" of approximatively 30-50 using the law
of the wall. The outer boundary of the computed
domain is 20 chord lengths from the airfoils.

Fig. 7 shows the predicted velocity contours
computed using the 10-steps scheme where the
effect of the real jacobian on AQ" is evaluated by
means of a forward first-order finite difference
approximation. Full convergence is achieved within
2000 iterations on a Pentium P90. The block
boundaries, shown as dark lines, are transparent to
the velocity magnitude contours, indicating a
consistent treatment of the interface conditions. In
this case, no separation is found on the upper side
of the flap.

FIGURE 7 - velocity magnitude contours about the two-
element Williams configuration with 10° flap deflection
for Re = 1.2 million and o = 0°.

The corresponding total pressure contours are
shown in fig. 8. and demonstrate the development
of the boundary layers. The flow field consists of a
very thin boundary layer above the main airfoil and
is followed by a region of an inviscid core flow
which is limited by the viscous region produced by
the wakes of each of the airfoils.

FIGURE 8 - total pressure contours about the two-
element Williams airfoil with 10° flap deflection for Re =
1.2 million and o = 0°
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Seven differents combinations of the solution
strategies and jacobian approximations described in
the numerical solution procedure section, as
indicated in table 2 and subsequently referred to as
schemes A to G have been tested. A comparison of
the number of iterations and relative CPU time
required to obtain a S-order magnitude reduction in
velocity residuals for these various combinations is
listed in table 3.

Scheme Characteristics
A 1-step, jacobians reevaluated each 10 iter.
B 10-steps, Yoon-Jameson
C 10-steps, 1st order forward JFNI
D 10-steps, 2nd order central JFNI
E 10-steps, Yoon-Jameson, GMRES
F 10-steps, 1st order forward JFNI, GMRES
G 10-steps, 2ad order central JFNI, GMRES

TABLE 2 - list of schemes tested for the flow
computation about the Williams configuration with 10°
flap for Re = 1.2 million at zero incidence.

The corresponding convergence histories are
plotted in fig. 9. All cases are computed using
CFL=1.0. For the very large majority of schemes
investigated, the convergence history locally
depicts an oscillatory behavior which correspond to
maximum velocity residuals located in the vicinity
of the gap region. This phenomenom may probably
be understood as a grid effect due to the hyperbolic
grid generation technique which forces the grid
lines to be orthogonal along the surfaces even in
concave regions where it should maybe be better
not to force it. At this stage, a comparison of the
efficiency of various domain decomposition
strategies seems necessary to confirm this
hypothesis and will be included in a further study.

Scheme Iterations relative CPU

A 7381 1.00
B > 8000 -

C 7372 2.01
D 7369 2.98
E > 8000 -

F 1940 0.73
G 1938 1.25

TABLE 3 - number of iterations and relative total CPU
time required to obtain a 5-order magnitude reduction in
the velocity residuals for the flow about the Williams
configuration with 10° flap for Re = 1.2 million at zero
incidence.

The single step scheme in which the jacobians
are evaluated using the Yoon and Jameson
approximation and are updated each 10 iterations
here serves as a reference test scheme; its relative
CPU time is consequently set to 1. For all multi-
steps schemes tested, the treshold value used to
stop the linear iterative process and defined as the
reduction in residuals within the linear solver was
set to 0.01 with a maximum of 10 inner iterations,

Table 3 indicates that net savings of about 27 %
in terms of computational cost may be achieved by
using the multi-steps schemes instead of single-step
ones as far as the accuracy of the jacobian
evaluation is high enough to avoid inference with
the non-linear convergence behavior. Regarding
fig. 9, the Yoon-Jameson approximation (scheme
B) clearly appears to be particularly indequate, at
least in the frame of the test cases investigated. A
second order central  finite  difference
approximation of the Jx AQ" product (scheme D),
although evidently more accurate than a first order
forward one (scheme C), does not lead to an
increased convergence rate but appears to be a
much more time consuming approach.
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FIGURE 9 - convergence histories for the flow about
the two-element Williams airfoil with 10° flap deflection
for Re = 1.2 million and ¢ = 0°.

The use of the GMRES algorithm within the
multi-steps formulation has also been investigated
in cases for which the maximum Krylov subspace
dimension is limited to 10. Coupled with a first-
order forward finite difference approximation of
the Jz AQ" product, the overall scheme (named as
F) appears to be particularly efficient. The poor
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performances of scheme E confirms the bad effect
of the Yoon and Jameson approximation on the
non-linear convergence which cannot be enhanced
using GMRES. Again, the use of a second-order
central evaluation of the Jz AQ" product (scheme
G) appears more time consuming. All converged
solutions obtained using schemes A to G were
found to be identical within 1% accuracy.

Consequently and in the frame of test cases
investigated, it appears that the use of a multi-steps
scheme with a finite difference evaluation of the J
AQ" product and coupled with GMRES algorithm
(here named as scheme F) is the more efficient
scheme and is thus recommended for viscous flow
computations,

Conclusions

A computational investigation of the flow about
the two-element Williams airfoil with either 10°
and 30° flap deflection has been performed in
inviscid and viscous incompressible turbulent flow
conditions. Multiblock grids have been generated
in a fully-automatic way using the object-oriented
concept. Inviscid solutions at zero incidence were
compared and found in good agreement with the
Karman-Trefftz mapping method of Williams and
the panel method of Coussement. However, slight
discrepancies may be observed in C, distributions,
indicating a need for further grid refinement in the
region of the gap. A comparison of the efficiency
of seven different implicit strategies has been
performed in the turbulent regime at zero incidence
for Re = 1.2 million. Multi-steps schemes appears
more efficient than single-step ones as far as the
Jjacobians are approximated in an accurate way. In
the frame of the test cases investigated, a 10-steps
scheme coupled with a first-order forward
evaluation of the Jx AQ" product and further
accelerated using the GMRES algorithm appears to
be an efficient approach to solve viscous low
Reynolds numbers flows around complex multi-
element airfoils configurations on multiblock grids.
However, it is expected that the domain should be
divided in a minimum number of blocks because
the implicit- operators are expected to be more
efficient when applied over a large domain. The
impact of various grid topologies as well as
alternative turbulence and transition models on

accuracy and non-linear convergence behaviors
should also be investigated in a future study.

References

[1] Fritz W., ‘Calculation of Maximum and High
Lifi Characteristics of Multi-Element Airfoils’, In
AGARD Conference Proceedings CP-515 on High
Lift System Aerodynamics (1992).

[2] Bartsch P., Nitsche W., Britsch M., ‘Navier-
Stokes Computations of Turbulent Flow Around
High-Lift Configurations’, In AGARD Conference
Proceedings CP-515 on High Lift System
Aerodynamics (1992).

[3] Rogers S., Menter F., Durbin P., Mansour N.,
‘A Comparison of Turbulence Models in
Computing Multi-Element Airfoil Flows’, AIAA
Paper 94-0291 (1994).

[4] Mathias D., Roth K., Ross J., Rogers S.,
Cummings R., ‘Navier-Stokes Analysis of the Flow
about a Flap Edge’, AIAA Paper 95-0185 (1995).

[5] Cao H., Kusunose K., ‘Numerical Prediction of
Reverse Reynolds Number Effects for Multi-
Element Airfoils’, In Numerical Methods in
Laminar and Turbulent Flows 95, Vol IX Part 1
pp 457-468, edited by C.Taylor and P.Durbetaki,
Pineridge Press (1995).

[6] Barth T.J., ‘Numerical Aspects of Computing
Viscous High Reynolds Number Flows on
Unstructured Meshes’, AIAA Paper 91-0721
(1991).

[77 Yu T.Z, Soni B.K., Shih MH., ‘CAG/I :
Computer Aided Grid Interface’, AIAA Paper 95-
0243 (1995).

[8] Chorin A.J., ‘A Numerical Method for Solving
Incompressible Viscous Flow Problems’, Journal
of Computational Physics, 2, pp 12-26 (1967).

{91 Baldwin B., Lomax H., ‘Thin Layer
Approximation and Algebraic Model for Separated
Turbulent Flows', AIAA Paper 78-25 (1978).

[10] Tumer M., Jennions L., ‘An Investigation of
Turbulence Modeling in Transonic Fans Including
a Novel Implementation of an Implicit k-& Model’,

2240



ASME Journal of Turbomachinery, Vol. 115 pp
249-260 (April 1993). ~

[11} Granville P., ‘Baldwin-lLomax IFactors for
Turbulent Boundary-Layers in Pressure Gradient’,
AIAA Journal. Vol.25(12). pp 1624-1627 (1987).

[12] Wilquem F., Degrez G., ‘A Multiblock
Strategy for the Solution of the 21D Incompressible
Navier-Stokes [‘quations’, In Numerical Methods
in Laminar and Turbulent Flows ’95, Vol IX Part 2
pp  1185-1196, edited by C.Taylor and
P.Durbetaki, Pineridge Press (1995).

[13] Jameson A., Yoon S., ‘Lower-Upper Implicit
Schemes  with  Multiple Grids  for the FEuler
Fquations’, AIAA Journal 25(7), pp 929-935
(1987).

[14] Issman E., Degrez G., ‘Convergence
Acceleration of a 2D Multiblock Euler Navier
Stokes Solver’, von Karman Institute PR 1993-05
(1993). '

[15] Saad Y., Schultz M.,*"GMRES : A Generalized
Minimal Residual Algorithm for Solving Non-
Svmmetric Linear Systems’, SIAM Journal of
Sci.Stat.Comput. Vol 7(3) pp 856-869 (1986).

[t6] Williams B., ‘An Exact Test Case for the
Plane Potential Ilovw about Two Adjacent Lifiing
Airfoils’, RAE Report n®3717 (1971).

[17] Coussement G., ‘Modélisation Numérique des
Ecoulements Potentiels autour d’Obstacles par la
Meéthode des Panneaux’, Travail de Fin d’Etudes,
Faculté Polytechnique de Mons (1988).

2241



