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Abstract

The development and testing of a multi-block Navier-
Stokes solver for dynamic solid/fluid interactions is
reviewed. During the description of the code, special
features related to the time-dependent computations are
emphasized, and important issues to be considered in
the development of time-accurate simulation methods
are discussed. The discussion is supported by selected
results from test cases, including aeroelastical problems.
The purpose of the paper is to give general knowledge
about the performance of unsteady flow simulations.

Introduction

Navier-Stokes solvers for steady flows are nowadays
well-established and applicable to practical problems.
However, a large number of important flow problems is
characterized by time-dependent behaviour, requiring
time-accurate simulations. Additional complications in
the unsteady cases are often caused by flexible comput-
ing domains around deforming bodies. Furthermore, if
the deformation of the geometry depends on the flow, a
method capable of modelling solid/fluid interactions is
required to simulate the case.

Time-accurate Navier-Stokes simulations have been
performed since the early stages of computational fluid
dynamics, but only during the past few years has the de-
velopment of computers enabled rapid progress in the
field. The simulation of the dynamic interaction be-
tween fluid and solid is also becoming feasible. However,
due to the relatively short history of unsteady Navier-
Stokes calculations, no general concensus on the prac-
tical applicability of the various possible concepts has
been found, although the basic principles of the dynamic
simulations are clear.

Since 1990, a time-accurate Navier-Stokes solver for
compressible flows has been developed in the Labo-
ratory of Aerodynamics at the Helsinki University of
Technology. The finite-volume code working with multi-
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block structured grids is based on an established steady-
state flow solver, known as FINFLO, which is docu-
mented, for example, in Refs. 1 and 2. The time-
accurate version of the code relies on an implicit tem-
poral discretization and an iterative time-stepping.(®4)
The flow solver can deal with arbitrarily deforming com-
puting domains, and recently, it was coupled with in-
teractive calculations of structural deformations.(5:6)

In this paper, the development and testing of the
Navier-Stokes code for dynamic solid/fluid interactions
is reviewed. During the description of the code, issues
specific to the development of time-accurate simulation
methods are emphasized. The available alternatives
and the choices made for each feature of the present
solver are discussed, and the discussion is supported
by selected illustrative test results. The purpose is
to disseminate general information about the essence
of the unsteady flow simulations, which will hopefully
guide future work in the field.

Basic Flow Solver

General Formulation

The Navier-Stokes computations are based on the fun-
damental conservation laws for mass, momentum and
energy. Therefore, a conservative form of the numerical
simulation scheme is preferable. This requirement leads
naturally to a finite-volume formulation of the problem,
where the physical laws are written directly for each de-
formable, discrete computational cell bounded by m flat
segments as follows:

m
%VU+ZFk(Uk)-Sk =0 (1)
k=1
Here V means the cell volume and §k ’s are the vec-
torial cell surface segment areas. The column matrix
U contains the conservative variables: density, momen-
tum components and total energy. The flux vectors
F(U) - § related to each cell face represent all the con-
vection, diffusion and pressure gradient terms of the
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Navier-Stokes equations, not written explicitely here for
brevity. To take the cell face movements into account,
the convection terms contain the cell face velocity nor-
mal components.()

An established solution strategy considered here, too,
is to separate the spatial and temporal discretizations.
The technique, known as the method of lines, leaves a
wide variety of alternatives available for each subtask.
The first major choice concerns the type of computa-
tional grid to be utilized. The most established choice is
a non-overlapping structured multi-block grid that facil-
itates the use of efficient solution methods while main-
taining the conservation property. On the other hand,
the generation of patched grids for complex geometries
is difficult and very large deformations or geometry dis-
integrations, like store separations, cannot be handled.
The latter limitation can be avoided and the grid gener-
ation simplified by using overlapping structured grids,
known as Chimera-technique. However, the flow solver
becomes complicated, and the conservation property at
block interfaces is difficult to maintain. A totally dif-
ferent approach is to employ unstructured grids that
are easy to generate and adapt for complex deforming
domains. Their use for high-Reynolds-number applica-
tions is, however, not straightforward and such schemes
are still in an early stage of development, even for steady
flows. The flow solvers based on unstructured grids also
tend to be computationally relatively inefficient, which
is a drawback in intrinsically heavy time-accurate sim-
ulations. The ranking of the alternative approaches de-
pends on the applications in mind. If relatively stan-
dard, reasonably deforming bodies are to be studied
at high Reynolds numbers, the structured multi-block
scheme may be the most suitable. The capabilities of
this type of solver can be later extended by adding the
Chimera-technique. On the other hand, if very com-
plex geometries differing widely from each other are to
be studied and the Reynolds numbers are low or the
viscous effects can be neglected, unstructured grids are
at their best. The present flow solver is based on the
first alternative, biasing the subsequent discussion ac-
cordingly.

Spatial Discretization

The cell face velocity components must be taken into
account in the formulation of the spatial discretization,
i.e. in the calculation of fluxes F(U) - S. The addition
of grid dynamics is easy in some basic flux evaluation
methods, but quite complex in others.

In central-difference-type spatial discretizations, the ad-
dition of grid velocities into the convection terms is
trivial. In some situations, however, the necessary ar-
tificial dissipation terms may require adjustments from
their basic forms because the grid movement modifies
the magnitude of relative convection. For upwind-type
schemes, the complications resulting from the cell face

31

velocities vary between flux formulations. The well-
known Van Leer’s scheme becomes considerably more
complicated when the grid velocities are implemented
into it.(") This decreases the computational efficiency
that is more important in time-accurate simulations
than in steady-state cases. The overall efficiency issue
may also put some other sophisticated schemes in an un-
favourable position. In contrast to Van Leer’s scheme,
the modification for deforming grids is very easy for
Roe’s method, where the convection speeds are used as
distinct, clearly understandable components of the flux
formula. The only modification needed is a subtrac-
tion of the cell face normal velocity components from
the normal flow velocities in the flux difference terms.
Because of its general success in viscous calculations
and suitability to deforming grids, Roe’s scheme was
adopted for the present flow solver.(3:8)

During the code development, test runs were performed
with Van Leer’s and Roe’s method in a fixed grid. It
turned out that Roe’s scheme needed an entropy fix to
prevent a possible emergence of non-physical expansion
shocks. For this, the fix of Yee was successfully
implemented.(®®) The comparisons also revealed that
at high supersonic Mach numbers, Van Leer’s scheme
worked better than Roe’s, as shown in Fig. 1. However,
Van Leer’s scheme was not studied further.

a)

b) W LO S

/

FIGURE 1 - Instantaneous density contours in a shock channel
at an inflow Mach number of 3.0 computed inviscidly a) with Van
Leer’s scheme b) with Roe’s scheme.

Reasonable simulations require at least second-order
accurate spatial discretizations. In the scheme under
review, the evaluation of the flow states at cell faces
needed for the fluxes are computed from a MUSCL-type
difference formula with an optional flux limiter.(!) The
discretization is thus formally second- or third-order
accurate in smooth regions of the flowfield.

The viscous and heat fluxes do not require any special
consideration in dynamic simulations since their basic
forms are not changed by the grid deformations. The
thin-layer approximation with conventional central dif-
ferences can be applied, as done in FINFLO. The tur-



bulence effects related to the viscous stresses will be
discussed later.

Boundary Conditions

In external flow calculations, free-stream conditions can
be specified at the grid outer boundary provided that
the grid is large enough. This simple approach is
chosen in the solver under study. A simple analytical
circulation correction that may significantly improve the
accuracy of steady-state simulations cannot take time-
dependent effects into account.

At solid viscous walls, the flow velocities are to be set
equal to the grid velocity, and a flow tangency condition
can be applied at possible inviscid walls and symmetry
planes. It is important to maintain the order of accuracy
of the basic spatial discretizations, which can be done by
extrapolating the wall pressure and viscosity from the
flowfield with second-order accuracy and by applying
non-symmetrical differences for the diffusive gradients,
as done in FINFLO. The wall fluxes are then computed
from their basic, non-upwinded forms.

To be able to study complex flow regions with struc-
tured grids, a multi-block strategy must be used. In
FINFLO, the blocks are non-overlapping with continu-
ous cell distributions across the interfaces to facilitate
complete continuity and conservation of the solution.
For the calculation of the fluxes at common boundaries
of the blocks, states in the two cell rows adjacent to the
interface are transferred by utilizing two layers of ghost
cells outside each block overlapping the neighbouring
block. Maintaining the conservation properties with dy-
namic Chimera-grids may be difficult. Solutions to this
problem have been presented(®), but the required tech-
nique appears to be somewhat complicated and compu-
tationally intensive.

Temporal Discretization
Theoretical Considerations

Time-accurate simulations require constant time steps
everywhere in the computing domain unless some spe-
cial measures are taken. Since the smallest cells tend to
determine the time step lengths, the computations with
reasonable grids are bound to be heavy. For the tem-
poral discretization and the related time integration of
the flow equations, a wide variety of schemes has been
applied. The methods can be broadly classified into ex-
plicit and implicit schemes with different strengths and
weaknesses.

Owing to their relative simplicity, explicit time-
integration methods have been popular from the early
days of numerical flow simulations. Of these, differ-
ent versions of the Runge-Kutta scheme have become
best established. They are second-order accurate in
time, easy to code and straightforward to vectorize, but
they suffer from serious time-step stability limitations,

as do all the explicit schemes. This deficiency makes
them poorly suited to simulations of viscous flow at high
Reynolds numbers, which require very dense grids.

The stability limitations of the time step can be
avoided by using implicit schemes. When the in-
evitable computational complications are overcome, the
time step lengths will be governed by accuracy re-
quirements. By far the most popular implicit time-
integration method has been the first-order accurate
backward-Euler scheme, usually combined with an ap-
proximate factorization to facilitate the solution at each
time step. The method is robust, relatively simple
and appears to be practical for slowly varying situa-
tions. Calculations with second-order accurate implicit
schemes are also found in the literature. The three-level
fully implicit scheme has been succesfull, but the trape-
zoidal rule or the Crank-Nicolson scheme has suffered
from stability-related problems.

In order to be able to simulate practical high-Reynolds-
number viscous flows with reasonable calculation times,
an implicit formulation is necessary. In the smallest
boundary layer cells, the local Courant numbers may
then be of the order of 10® without losing the global tem-
poral accuracy. A higher-than-first-order discretization
combined with an iterative solution method appears to
be a promising concept for an efficient scheme. Based
on these considerations, the following family of two- or
three-level temporal discretizations was implemented in
FINFLO:

1+ = 1+ 20)(VU)" +4(VU)* !

= At[(1- HR" + BR™] ()

Here an abbreviation R = -3y ., F(U) - S, is
adopted for the sum of the spatial terms, and the
superscripts relate to the time levels involved. The
formula with two parameters facilitates the testing
of different schemes. The parameter v controls the
levels to be employed, and 3 defines the extent of the
implicitness. By selecting certain combinations of 7y and
B, for example the Crank-Nicolson scheme or the three-
level fully implicit scheme (3-LFI) can be specified.
The drawback of this formulation is the relatively large
computer memory requirement, since the solution at
three time levels and the residuals R at two time levels
must be storable. However, the solution for the higher-
order discretizations is no more complex than for the
Euler scheme.

Test Results

In initial inviscid test calculations with FINFLO, the
Crank-Nicolson scheme was generally applied. In the
channel case illustrated in Fig. 1, it gave similar results
at a reduced effort in comparison with the explicit Euler
scheme, which was still usable.(3)
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Further tests were performed with more realistic, vis-
cous and turbulent flow conditions. A suitable situ-
ation is the transonic buffet on a biconvex airfoil at
Re = 11 x 108, for which experimental results are avail-
able for comparisons.(!®) In this case, a strong oscil-
latory interaction takes place between the boundary
layer and shock waves on the fixed airfoil in a certain
Mach number range, posing a challenge for numerical
flow simulations. The calculations with the algebraic
Baldwin-Lomax turbulence model and a 192 x 64-cell C-
grid were successful,(*) giving results that agreed better
with the experimental data than the published reference
results obtained with coarser grids.

In this context, different temporal discretizations were
evaluated among other computational parameters by re-
peating a calculation of a certain period of oscillation.(*)
Only implicit discretizations were tested since at the
studied Reynolds number, explicit schemes are com-
pletely impractical. The Crank-Nicolson scheme that
was used in the early studies turned out to have stability
problems and eventually failed. Instead, the three-level
fully implicit scheme proved to offer a good combination
of accuracy and robustness, being much more efficient
than the first-order implicit Euler scheme. This result,
illustrated in Fig. 2, was so evident that all the un-
steady calculations performed with FINFLO since these
tests have applied the 3-LFI scheme. No stability prob-
lems or other difficulties have ever been encountered.
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FIGURE 2 - Behaviour of lift of a biconvex airfoil at Ma = 0.783
during the test period computed with constant time steps and
different temporal discretizations. The 3-LFI result is verified to
be numerically very accurate.(*) IE refers to the implicit Euler
scheme, and C-N means the Crank-Nicolson scheme that failed in
the test.

Solution Method
Theoretical Discussion

Implicit temporal discretizations lead to large equation
systems to be solved at each time step. Usually, the so-
lution is based on the linearization of the residuals R*+!
to obtain a workable formulation. However, the lin-
earization leads to numerical errors with non-linear flow

equations, degrading the basic discretization accuracy if
applied in a straightforward manner. A direct solution
of the equation system is presently not feasible in realis-
tic multi-dimensional simulations, but with structured
grids an approximate factorization can be performed to
obtain a solution of second-order numerical accuracy. If
the temporal accuracy of the basic discretization is of
second or higher order, the approximate factorization
introduces significant additional errors to the solution.
A proper implicit treatment of boundary conditions
causes difficulties, too. Especially problematic are the
block interfaces in multi-block grids, although a method
facilitating continuous one-dimensional sweeps through-
out the computing domain was recently published.(!!)
The errors discussed are specific to unsteady simula-
tions, not affecting the accuracy of steady-state simula-
tions with a time-integration approach.

The linearization and factorization errors can be com-
pletely eliminated, thus allowing enlarged physical time
steps while retaining the accuracy of the basic temporal
discretization by employing iterative solution methods.
The treatment of boundary conditions and block inter-
faces becomes simple, too. With unstructured grids, it-
erations are in any case necessary to enable a solution.
Several different iteration schemes have been succesfully
applied, including pseudo-time integrations within the
physical time steps, Gauss-Seidel variants and the GM-
RES method, possibly with pre-conditioning.

If a pseudo-time integration approach is chosen for the
iteration, only explicit schemes, like Runge-Kutta, are
applicable to unstructured grids. These can be applied
with structured grids, too, but high Reynolds numbers
may prove problematic. Implicit schemes applicable
only in structured grids are more robust, and such a
method is applied in FINFLO. The scheme is derived
from Eq.(2) by linearizing it at an intermediate state
k. When the new solution is written in a delta-form
and the residual R**! is linearized, an equation for
the corrections 6U/ at each iteration is obtained. The
equation applicable to each cell can be reduced to the

form

At OR.,
(1+7 = Birr L5100

= ‘—,—,%ﬁ{-(1+~/)v'*+1v'=+(1 +29)(VU) = y(VU)!

+At[(1 - B)R™ + BR*]} 3)

From this equation, U"*! can be iterated by computing
successive corrections for U¥, applying a matrix solver
required by the left-hand side until the process is suf-
ficiently converged. However, because of the approxi-
mations made in the adopted solver, Eq.(3) is modified
to ensure stability of the iteration at arbitrary physi-
cal time steps. This can be accomplished without af-
fecting the solution accuracy, because at the converged
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situation dU is zero. The stabilization is made by re-
placing v on the diagonal of the left-hand side with a
variable weight At/Ar, where A7 is a stability-limited
local pseudo-time step related to the solver employed.

After the stabilizing modification and a subsequent mul-
tiplication by Ar/(At + A1), Eq.(3) can be converted
to

oR,,
ou

where ATmeqa = AtAT/(At 4+ A7) and the modified
residual RX, , is the braced expression of the right-hand
side of Eq.(3) divided by At.

\oU = STmed pi (4)

ATm d
(l_ﬂ-_o—[ = yntl mod

yn+l

Eq.(4) is of the form used in typical implicit steady-
state flow solvers employing pseudo-time integration.
The present solver utilizes the steady-state FINFLO(1:2)
with minor modifications to obtain the corrections éU.
The scheme is based on an approximate factorization
and local pseudo-time steps determined by -a user-
defined Courant number and a diffusion stability cri-
terion. In addition, the convergence can be accelerated
by a multigrid algorithm based on the work of Jameson
and Yoon, the implementation of which in FINFLO is
described in detail, for example, in Ref. 1.

During the solution process, the blocks are handled se-
quentially within each pseudo-time step (iteration cy-
cle), keeping all the boundary conditions fixed. After
all the blocks have been computed, the block boundaries
are updated. The final result is completely continuous
when the calculation is sufficiently converged. As a re-
sult, the grid block interfaces and boundary conditions
cause no deterioration in the basic spatial or tempo-
ral accuracy. Two convergence criteria in addtion to
a specification of a fixed number of iterations were de-
vised. In the first criterion, a limit for the maximum
density correction is defined. The second one compares
the Ls-norm of the density corrections at each pseudo-
time step to the corresponding norm at the first step.

Test Results and Conclusions

Within the transonic buffet case discussed earlier, nu-
merous tests related to the iteration at each physical
time step were performed. The computational variables
discussed here are the length of time steps, the number
of iterations within time steps and the number of multi-
grid levels.

The effects of the time step lengths and the number of
iterations within time steps were strongly interrelated.
A certain total computational effort could be divided
between the number of time steps or iterations within
certain bounds to obtain similar results. In any case,
some iterations were necessary to properly update the
grid boundaries. Non-iterative calculations with very
short time steps were inaccurate and inefficient. Later
experience has suggested that generally, five iterations

are sufficient.

In steady-state calculations with FINFLO, the multi-
grid algorithm employing normally five grid levels en-
hances the convergence rate significantly, the attainable
speed-up factors being five to ten. Unfortunately, the
benefit of the technique in time-accurate simulations
seems to be much more modest. The tests revealed that
the use of only two grid levels appears to be beneficial,
the additional levels just consuming computational ef-
fort with a negligible effect on convergence. With two
levels, the test computations took just about 15 per
cent less effort than single-grid calculations of similar
accuracy, as illustrated in Fig. 3.
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FIGURE 3 - Behaviour of lift of a biconvex airfoil at Ma = 0.783
during the test period computed with constant time steps and
variable numbers of iterations and multigrid levels.

It can be thought that the observed poor performance
of the multigrid algorithm is related to the fact that in
unsteady calculations no disturbance waves are to be
rapidly spread through the computing domain within
physical time steps. This fundamental idea based on the
requirement of temporal accuracy is substantiated by
the lack of published, successful time-accurate multigrid
calculations. The author is unaware of any references
convincingly showing any significant benefit from the
technique in this context, although a few papers on
the subject have been published recently.(!2=15) The
issue appears to be open to debate and warrants further
research.

In addition to the disappointing multigrid efficiency, the
convergence criteria within physical time steps proved
to be problematic. A suitable limit for the maximum
density correction is case-dependent because in contrast
to steady-state calculations, very low values ensuring
always proper convergence cannot be applied due to
resulting excessive run times. Thus, the limit value
tends to depend strongly on the characteristic Mach
number and geometrical severity of the problem. The
relative Ls-norm of the density corrections is unreli-
able, too, being dependent on the instantaneous flow
state. If the situation is temporarily almost steady, the
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relative norm may never reach the specified limit, and
during rapid changes the absolute convergence may be
insufficient although the relative norm drops rapidly. It
seems to be very difficult to apply a convergence crite-
rion that would ensure sufficient convergence in different
flow cases without unnecessary calculations. Therefore,
FINFLO is normally run by specifying a fixed number of
pseudo-time steps within each physical time step, which
is certainly not optimal. The development of universal,
probably hybrid convergence criteria for iterative time-
accurate solvers is a topic requiring further work.

Overall, the computational efficiency of time-accurate
FINFLO is not as good as was hoped for. In typical
simulations involving periodic flow, 200-800 time steps
including 5 iterations per step are required to achieve
good temporal accuracy. It is felt that within the
present framework the iteration efficiency could prob-
ably be improved, perhaps by completely chancing the
principle, and the convergence criteria could certainly
be developed via laborous, systematic tests.

Treatment of Grid Deformations

Although the conservation form of the flow equations
is generally preferable in numerical simulations, the
geometrical conservation law has often been neglected.
This relationship connects the grid cell face velocities
and volume changes in such a way that the grid
deformations do not introduce any additional numerical
errors to the solution. The importance of respecting the
geometrical conservation law in practical calculations is
somewhat controversial, and conflicting arguments can
be found in the literature.

In developing the time-accurate FINFLO, the exact ful-
filment of the conservation of geometry was enforced. A
suitable mathematical formulation for the geometrical
conservation law is obtained from Eq.(2) by requiring
exact mass conservation in a free stream. By taking
account of the specified constant density and flow ve-
locity, an equation connecting the cell volume changes
and the cell face velocities is obtained. From this basic
formulation, a useful condition applicable to each cell
face separately can be deduced by understanding the
volume changes to mean the volumes AV swept by the
face within the time steps involved. With this reason-
ing, the geometrical conservation law in its final form is
written as

(1+7)AV™H —yAV™ = At[(1 - B)vRS™ + Bu T 57+

)
from which the cell face normal velocity components
v2*! can be solved after the grid node coordinates are
updated.

In addition to the cell face normal velocity, the cell face
tangential velocity component is needed for the calcula-
tion of viscous fluxes at the solid walls. The necessary
extra condition follows from the average direction in

which the cell face center is moving. Applying this idea,
a unique grid velocity vector fulfilling the geometrical
conservation law can be computed.

During the testing of the present solver, a direct com-
parison between the conservative and a simplified non-
conservative treatment of the grid deformations was
performed. The test case was a transonic aileron buzz,
where a control surface of a NACA 6-series airfoil oscil-
lates at a large amplitude driven by the dynamic inter-
action of moving shock waves and separating boundary
layers.(16) As can be seen in Fig. 4, at least in this case,
the geometrical conservation law and the grid velocity
evaluation method were not critical factors concerning
the predicted motion.(®) The practically identical results
obtained with three different schemes for the cell face ve-
locities support the claims about the minor importance
of the law. On the other hand, the speed-up of the cal-
culations resulting from the simplifications is negligible.
To avoid unnecessary sources of errors in calculations
involving general dynamic grids, it is still advisable to
apply the easily realizable conservative scheme.
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FIGURE 4 - Aileron deflection histories in a transonic aileron
buzz computed with different grid velocity evaluation methods.

Turbulence Modelling

Principles of Modelling

The simulation of turbulence effects is even more prob-
lematic in unsteady flow calculations than in steady-
state cases, at least until inherently time-dependent
large eddy simulation (LES) becomes practical. Re-
alistic present-day and near-future studies must be
based on a time-averaging of turbulence, leading to the
Reynolds-averaged Navier-Stokes equations. The time-
averaging itself may be a source of trouble in some ap-
plications if the time scales of turbulence and the os-
cillations of the main flow interfere. If the turbulence
cannot be reasonably filtered from the overall vortical
flow, the models based on this assumption may behave
unpredictably. Very little is known about the severity
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of this potential problem, and it is normally not consid-
ered.

Evident difficulties in the turbulence modelling in time-
accurate calculations are related to the computational
efficiency. Very sophisticated, complex models tend to
make the code impractically heavy to use. The com-
plex models also tend not to be very robust. It is unac-
ceptable if the user has to monitor a long computer run
closely and possibly change some computational param-
eters during it. On the other hand, a fundamental diffi-
culty in the time-dependent cases comes from the need
to model turbulence history. Still more complications
follow from possibly moving transition points. Even in
steady-state applications, the modelling of transition is
not a well-established technique.

The most advanced turbulence modelling methods
based on the Reynolds-averaging are known as Reynolds
stress models (RSM) or second-moment closures. In
RSM, the apparent turbulent stresses emerging from the
time-averaging are solved from individual partial dif-
ferential equations for each stress component, enabling
the modelling of turbulence unisotropy. In some appli-
cations, the property is shown to be crucial. However,
this type of model appears to be immature for practi-
cal time-accurate simulations since little if any such re-
sults have been published. Suitable formulations even
for steady-state calculations are still under debate. In
any case, the models will require substantial computa-
tional resources.

A simpler approach is to apply the Boussinesq eddy-
viscosity approximation to the turbulent stresses. The
approximation reduces the modelling to a modification
of the effective viscosity in the viscous terms of the
laminar-like equations. An inevitable side-effect is the
assumption of isotropic turbulence, which in some cases,
especially in those involving swirling flows, spoils the
modelling realism.

The most sophisticated models based on the Boussinesq-
approximation rely on two partial differential equations
for selected turbulence-related quantities, one of which
is normally the turbulence kinetic energy. These quan-
tities together define the addition to the effective vis-
cosity. The time-dependent formulation of the two-
equation turbulence models gives them a capability to
take the history effects into account, which makes them
physically reasonable in time-accurate simulations. In
addition, two-equation models are not in principle tied
to the concept of boundary layer, and they are relatively
straightforward to apply in multi-block or unstructured
grids. However, the models can be computationally
relatively inefficient, they may have difficulties in the
near-wall treatment, and mixed laminar/turbulent flows
cause practical complications in their application. In
particular, moving transitions are difficult to handle
with them.
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Because the second equation besides the one for the
turbulence kinetic energy in all two-equation models is
somewhat heuristic, it can be argued that a model based
on just one partial differential equation could work
about as well. This is the motivation of one-equation
turbulence models, in which there is currently consider-
able interest. New formulations designed specifically for
aeronautical Navier-Stokes simulations involving par-
tially laminar flow, like the Spalart-Allmaras model,(!?)
have recently emerged. This type of model, having ba-
sically all the capabilities of the two-equation models
while being computationally more efficient and robust,
appears quite promising. However, there is not yet
much relevant experience to draw firm conclusions.

The simplest methods of simulating the turbulence ef-
fects are the algebraic turbulence models. The turbu-
lent viscosity predicted by them depends only on the
local and instantaneous flow conditions. In steady-
state cases, the limited dependency is often justified,
but the total lack of history effects in turbulence mod-
elling makes the algebraic formulations at least doubt-
full in time-dependent studies. General deficiencies of
these models are the incapability to deal with separated
flows and practical application difficulties in multi-block
or unstructured grids. On the positive side, algebraic
turbulence models are robust and computationally effi-
cient, transition can be easily defined, and their accu-
racy within their calibrated application range is known
to be relatively good in steady-state calculations.

Turbulence Model Tests with FINFLO

Todate, four turbulence models have been tested in
time-dependent calculations with FINFLO. The sim-
plest of them are the two most established algebraic
models in aeronautical CFD, namely the Baldwin-
Lomax and the Cebeci-Smith model. Of the two-
equation models utilized, Chien’s low-Reynolds-number
k — e model(!®) is well-known. It is also widely accepted
that the model is not particularly suitable to aerody-
namics with characteristically strong pressure gradients
and flow separations. A new two-equation model giv-
ing promising results for steady aeronautical flows, even
when flow separation is involved, is the k—w/e model de-
veloped by Menter.(*?) The model switches between an
w equation and an € equation dynamically in an effort to
combine their best features. The switching appears to
make the formulation rather delicate for unsteady flows.
In addition, the eddy viscosity limitation of the model,
called SST (Shear Stress Transport), tends to further
reduce its robustness. Nevertheless some calculations
were performed with Menter’s model for comparisons
with Chien’s model.

Several test cases were studied with the algebraic mod-
els. The Baldwin-Lomax model was applied to the



transonic buffet discussed earlier and to airfoils oscil-
lating in pitch in transonic conditions.(29) The compu-
tations themselves were straightforward, and the results
obtained agree well with available, corresponding refer-
ence calculations, but only fairly well with experimental
results.(Y) However, the observed discrepancies cannot
be said to be only related to turbulence modelling since
there are some obvious anomalies in the experimental
data.(29) Because no further calculations with more ad-
vanced models were performed with FINFLO or found
in the literature, it is not known whether an improve-
ment in the turbulence modelling would reduce the dif-
ferences between simulations and experiments.

The Cebeci-Smith model was applied to two aeroelas-
tical problems. The first case is the transonic aileron
buzz(1®) related to Fig. 4, and the second one involves
a two-degree-of-freedom flutter of a NACA 64A010
airfoil.(*") In both cases, trouble-free computations with
192 x 64-cell grids gave similar results to those of the
reference calculations.(16:21)

The aileron buzz case was also studied with Chien’s and
Menter’s models.(®) It turned out that the simulations
utilizing the two-equation models consumed about a
six-fold computational effort compared to the Cebeci-
Smith model for similar temporal accuracy. The two-
equation models required about four times as many
iterations per time step as the algebraic model to obtain
sufficient convergence within constant time steps, and
each iteration with two extra equations consumes about
50 % more computing time than the operation with the
mean flow equations only.

The regular aileron oscillation amplitudes obtained
with Chien’s and Menter’s models differed somewhat
from the Cebeci-Smith results at the nominal Mach
number of 0.82. The result obtained with Chien’s
model agrees best with the measurements by reaching
the largest negative deflections, as seen in Fig. b5a.
Much larger differences between the models are seen
in the aileron hinge moment histories of Fig. 5b, where
especially the curve obtained with Menter’s model looks
curious. In careful, additional studies it was verified
that the result is really temporally quite accurate.
Thus, it is concluded that the observed behaviour is
characterictic of Menter’s model as implemented in
FINFLO. A detailed study of the flowfield revealed that
the oscillations in the hinge moment are related to a
shedding of pressure disturbances from the shock root
into the shear layer, which in turn is probably caused
by a periodic switching between the w and € equations
in certain local flow conditions. Although reliable
reference data is lacking, it appears that Menter’s model
is not well-suited to flow cases of the type studied, and
it was not applied in further tests.
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FIGURE 5 - Aileron a) deflection and b) hinge moment histories

in a transonic aileron buzz computed with different turbulence

models.

At Ma = 0.82, the oscillations with Chien’s model
started from the zero aileron deflection, as observed
in the wind tunnel, whereas the Cebeci-Smith model
predicted a decaying motion with this initial condition.
Extra calculations were performed at varying Mach
numbers to check the difference in the motion stability
predicted by the two turbulence models. At Ma =
0.83, the algebraic model produced a weakly growing
oscillation initiated from the steady state, and at Ma =
0.81, the oscillation was strongly damped. However,
at this lower Mach number, Chien’s model still gave
a diverging motion. Thus, the stability boundaries
predicted by the models differ significantly from each
other, which is an unpleasant outcome.

In the flutter case with small oscillation amplitudes
and no flow separation, the turbulence model should
not have any effect on the solution. As expected, the
computations with the Cebeci-Smith model and Chien’s
model gave practically identical results. However, the
computations with the two-equation model required
again a six-fold computational effort compared to the
ones with the algebraic model to achieve similar, suffi-
cient accuracy.(®

Structural Coupling

Temporal Discretization ;
To calculate structural deformations or rigid body
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movements, the solid-state equation of motion must
be applied to each structural degree of freedom. In a
general case, this results in a coupled matrix equation.
By omitting the matrix notation, the equation can be
expressed in the simple conceptual form

mi+ci+kg=A (6)

where m denotes a mass quantity related to each degree
of freedom g, ¢ refers to structural damping, and k is the
stiffness or spring constant. The structural properties ¢
and k may be non-linear functions of the motion driven
by the flow-induced force represented by A.

For the temporal discretization and time integration of
the equation of motion, a method of comparable ac-
curacy to the accompanying flow simulation should be
applied to obtain a balanced, efficient system. Compu-
tations with several explicit and implicit formulations of
varying complexity have been published,(21~24) but the
benefits of added sophistication have not been demon-
strated in realistic simulations. In any case, simplicity
and an easy coupling between the flow analysis and the
structural analysis are desirable properties.

Based on the above considerations, a simple explicit
second-order accurate time-integration scheme for the
structure was adopted for the solid/fluid interaction
tests with FINFLO. The acceleration and velocity are
differenced centrally around time level n and substi-
tuted into Eq.(6). Utilizing the aerodynamic forces
known at the time level n, too, the structural coor-
dinates ¢ at the new time level n + 1 can be readily
solved. In a one-degree-of-freedom case or with uncou-
pled structural modes, the solution can be written di-
rectly as

(4m — 2At%k) g™ — (2m — cAt)g" ! + 2A12 A4
@m ¥ cAD)
(M

where the superscripts refer to the time levels. When
the new structural coordinates have been solved, the
grid for the flow solver can be updated and the grid
velocities evaluated. Subsequently, a new flow solution
at the time level n + 1 can be computed to start a new
cycle.

n+1
q

The accuracy of the structural time integration was
studied in a case involving a lateral oscillation of a
circular cylinder in a low-speed laminar flow.(®) Before
the coupled solid/fluid interaction calculations, the
scheme based on Eq. (7) was studied by a separate
program that computed the cylinder movement as
driven by a prescribed sinusoidally varying external
force. For this single-degree-of-freedom case containing
some viscous damping, an analytical reference solution
can be found. The test runs confirmed that the
numerical method is quite accurate even for large
amplitude oscillations with time step lengths expected

to be required by the related flow calculations, as shown
in Fig. 6.
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FIGURE 6 - Numerical and analytical solutions for forced,
growing oscillations of a cylinder near resonance.

The subsequent actual simulations of the solid/fluid
interaction produced results that agree very well with
a reference(®®) in every aspect. However, for accurate
predictions, the time step length had to be reduced from
the value that was found sufficient for the structure only.
The necessary step length corresponding to about 125
steps per oscillation cycle was 2/5 of the value required
by the integration of the cylinder motion.

Other solid/fluid interaction test cases simulated with
FINFLO are the aileron buzz and the two-degree-of-
freedom flutter discussed earlier. These turbulent cases
required 200-500 steps per cycle to achieve sufficient
accuracy for the flow simulation even with prescribed
structural behaviour.

Based on the test results it is concluded that the flow
solution clearly dominates the interaction simulations
and determines their overall accuracy. The simple
structural time integration scheme tested is still a
stronger link than the flow solution in the complete
system.

Structural Modelling

Simple structural models having just a few degrees of
freedom can be connected directly to the flow solver,
and the solution of the equation system derived from
Eq.(6) can be written in a closed form. For more
general cases involving deformations, a finite-element
model is to be employed. It is reasonable to assume that
the dynamic model of the structure for any practical
coupled simulation can be represented by a few hundred
degrees of freedom at most. Consequently, the algebraic
equation system related to the updating of the structure
can be easily solved by common mathematical library
routines. For complex structures, a separate analysis
before the coupled calculations may be necessary to
reduce the size of the model.
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Structural non-linearities do not pose any problems in
time-integration methods where the damping and stiff-
ness properties can be re-evaluated at each time step.
However, if the structure behaves linearly, natural vi-
bration modes can be efficiently used as the degrees of
freedom. In addition to the reduced computationa] ef-
fort, this approach enables the use of measured struc-
tural properties, for example from a ground vibration
test, instead of the calculated ones. In some cases, this
option may save a large amount of work. Suitable in-
terpolation and lumping schemes are to be utilized to
convert the flow-induced forces into the form needed
by the structural model. The conservation of mechani-
cal energy must be considered in this task to maintain
accuracy.(26)

Conclusions

The development of a time-accurate Navier-Stokes
solver and its coupling to solid/fluid interaction has
been reviewed. Related to each component of the sim-
ulation method, available options and their favourable
and problematic features have been discussed, empha-
sizing the issues specific to time-dependent simulations.

The ranking of possible grid types is probably
application-dependent, but it seems likely that in the
near future structured multi-block grids will still be
a reasonable option for typical aeronautical problems.
This is largely due to their computational efficiency that
is more important in inherently heavy time-dependent
simulations than in steady-state studies. At least par-
tially related to the efficiency is also the selection of the
spatial discretization method that should allow an easy
treatment of deforming grids.

Practical high-Reynolds-number simulations require an
implicit temporal discretization. Test calculations with
the solver reviewed demonstrated that the three-level
fully implicit temporal discretization offers a good com-
bination of robustness, accuracy and efficiency. The
simple implicit Euler scheme is much less efficient, and
the Crank-Nicolson scheme is prone to stability prob-
lems. An iterative solution at each physical time step
appears favourable, enabling an easy and accurate treat-
ment of boundary conditions and possible grid block in-
terfaces. However, to devise an efficient iteration is not
straightforward. The multigrid technique, highly effi-
cient in steady-state applications, does not seem to offer
any dramatic benefits in time-accurate simulations. It
is also difficult to find universal and reliable convergence
criteria that would ensure just enough iterations.

Moving or deforming grids are relatively easy to cope
with. Although the geometrical conservation law does
not appear to be a critical factor, it is recommended to
be fulfilled to avoid unnecessary sources of errors since

this can be done at negligible computational cost.

The most serious source of errors in the unsteady flow
simulations is the modelling of turbulence, as in com-
putational aerodynamics in general. A specific issue
related to the solid/fluid interaction calculations is the
predicted stability of the motion, which can depend di-
rectly on the turbulence model in use. The importance
of computational efficiency related to turbulence model
types is also amplified in long time-accurate calcula-
tions. The simulations with algebraic models are rel-
atively efficient and the related results may be good,
but the inability to take turbulence history effects into
account degrades the reliability of such calculations.
The physically more sound two-equation models have
the potential to be somewhat more reliable if formu-
lated robustly, albeit at significantly increased compu-
tational cost. One-equation models appear promising as
engineering tools, too, but Reynolds-stress models will
probably be restricted to special purposes in the field
of time-dependent studies. In conclusion, it is felt that
most leverage in further turbulence model development
for unsteady flows may be found in improved versions of
continuously formulated one- and two-equation models.

In solid/fluid interaction simulations, the time integra-
tion of the structural responses should be at least as
accurate as the flow solution. This requirement is easy
to fullfil since the flow simulation appears to be the crit-
ical element of the combination. Based on the results of
three test cases studied with FINFLO, it seems that the
simple second-order accurate explicit time-integration
scheme chosen for the solid state equation of motion is
sufficiently accurate for interaction simulation. Since
the time steps for the present structural integration
could be more than twice as long as the ones required by
an accurate flow solution, it appears that more sophisti-
cated schemes just consume unnecessary computational
effort.

As final comments concerning the flow solver reviewed,
it is considered to be applicable to a wide variety of flow
conditions, basically quite accurate and very robust.
The turbulence modelling is an obvious weakness but
certainly not unique to FINFLO. The computational
efficiency of the method is reasonable but could proba-
bly be enhanced by a fine-tuning or more fundamental
changes of the iterative time-stepping, requiring further
research.
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