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Abstract

This paper describes a method for the solution of
the unsteady thin layer Navier-Stokes equations about
aerofoils undergoing in-plane oscillations. The method has
been used to study the development of the unsteady
flowfield around a NACA 0012 aerofoil at flow conditions
representative of rotor blades in high speed forward flight.
In thi s paper two cases are considered, in the first (which
has a moderate advance ratio) calculated shock-boundary
layer interactions are weak and fair comparison is found
between calculation and experiment. In the second case
(which has a higher advance ratio) calculations indicate
that the flowfield is no longer symmetric for a range of
azimuth angles following shock induced separation. This
behaviour was not observed during experiments and
consequently agreement between calculation and
experiment is poorer. This phenomena is related to the
occurrence of shock induced separation. It is possible that
this behaviour is suppressed by three dimensional effects,
which are not modelled, during rotor tests. In order to
establish confidence in the present method calculated
results are also presented for the steady flowfield around
the RAE 2822 aerofoil and the self-excited periodic flow
of arigid 14% thick circular arc aerofoil.

Introduction

In principal the Navier-Stokes equations contain
all of the necessary flow physics for the calculation of the
flowfield around helicopter rotors in forward flight.
However, despite significant progress in the last decade
the accurate calculation of such flows remains beyond the
current capabilities of computational fluid dynamics.

The problems which arise in calculating the
flowfield around helicopter rotors may be broadly
categorised as retreating blade dynamic stall, advancing
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blade compressibility effects and the production,
convection and interactions of vorticity in the rotor wake.

Dynamic stall is the unsteady separation at high
lift coefficients associated with bodies performing time
dependent motions. It is a process which is governed by
complex flow physics including transition, separation and
large scale vortex shedding in the proximity of lifting
surfaces. Reviews of both experimental and computational
progress in this field have been presented by Carr' and
Carr and McCroskey®. Performance of a wide range of
algebraic, one- and two-equation turbulence models was
investigated by Ekaterinaris, Srinivasan and McCroskey™.
It was found that none of the turbulence models tested
were capable of predicting deep stall, although more
recent turbulence models offered significant improvements
over standard two-equation models. Transition from
laminar to turbulent flow was also demonstrated to play an
important role in the overall development of the unsteady
flowfield. Recent experimental measurements have
shown that compressibility effects become important at
moderate Mach numbers (0.3) and can promote the onset
of dynamic stall.

Unlike fixed wing aircraft helicopter rotors
operate within their own wake, an accurate treatment of
the rotor wake is therefore critical for reliable performance
prediction. Non-physical dissipation of vorticity, as a
result of numerical approximation of the Navier-Stokes
equations, represents the most important obstacle to the
accurate calculation of the rotor wake system. McCroskey
has reviewed progress in the measurement and prediction
of rotor wakes™. Recent work aimed at reducing non-
physical dissipation of vorticity has concentrated on
reducing the truncation error of the numerical
approximations by grid refinement in areas of high
vorticity®” and the use of higher order difference
schemes®”.  An alternative  approach, vorticity
confinement, has been proposed by Steinhoff 49 jn which
a self-interaction term is added to the momentum
equations. This additional term depends on the local
velocity and prevents numerical diffusion by convecting
vorticity back towards the vortex core.
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Since the  pioneering  experiments  of
Tijdemann'" in the mid 1970’s there has been great
interest in the development of computational methods for
the analysis of unsteady shock-boundary layer interactions.
Recent work in this field was comprehensively reviewed
by Edwards and Thomas*?. Experimental investigations
of self-excited periodic flows have been reported by
McDevitt et al'® and Mabey et al'® for 14% and 18%
thick bi-convex circular arc aerofoils. Levy’s"® solutions
of the Navier-Stokes equations for these aerofoils
qualitatively reproduced the oscillatory trailing edge/shock
induced separations observed in the experiments. More
recently Rumsey et al'® have performed calculations
using a one-equation turbulence model for an 18% thick
circular arc aerofoil. The scale and frequency of the
calculated oscillations show good agreement with
experiment.

In forward flight the motion of the rotor blade in
the plane of the rotor disc can be represented by an
aerofoil oscillating in translation. Favier et al’™'® have
investigated the influence of this motion at low free stream
velocities in isolation and when coupled with pitching
oscillations. Analytical expressions for the lift transfer
function have been obtained by Van der Wall and
Leishman® for incompressible flow which show good
agreement with incompressible Euler calculations. In the
transonic flow regime Lerat and Sides®” examined in-
plane oscillations with the Euler equations with some
success. More recently Habibie, Laschka and
Weishaupl® and Lin and Pahlke® have used the Euler
equations to study translation, plunge and pitching
oscillations.

At very high advance ratios the Euler equations
do not provide an adequate representation of the flow
physics due to the occurrence, of strong shock-boundary
layer interactions which have important consequences for
the development of the unsteady flow. In the present work
a finite volume method based upon Oshers flux difference
splitting is used to solve the thin layer Navier-Stokes
equations for the transonic flow around aerofoils
undergoing in-plane oscillations. A turbulent contribution
to viscosity is provided by the Baldwin-Lomax turbulence
model. This method has been used to study the unsteady
aerodynamics of a NACA 0012 aerofoil at flow conditions
representative of the high speed forward flight of non-
lifting helicopter rotors. Two cases were considered, in the
first case weak shock-boundary layer interactions were
observed, while in the second case much stronger
interactions including shock induced separation occurred.
In order to validate the current approach calculations were
also performed for the steady transonic flow about the
RAE 2822 aerofoil and the self-excited periodic flow of a
14% thick circular arc aerofoil.
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Governing Equations

The Navier-Stokes equations express the
conservation of mass, momentum and energy and may be
written in integral form for curvilinear co-ordinates as,
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in which Q is the domain of the control volume, S is the
boundary of the control volume, Q is the vector of
conserved variables, E; and F, are the convective flux
vectors and E, and F, are the viscous flux vectors in the §
and m directions respectively.

In this work the thin layer form of the Navier-
Stokes equations are solved. Under the thin layer
approximation derivatives in the tangential direction are
neglected in the viscous flux terms. Equation (1) is
unaltered and the flux vectors are given by,
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and p, u, v, P, ¢, Re, Pr are density, Cartesian components
of velocity, pressure, speed of sound, Reynolds number
and Prandtl number respectively. U and V are the
contravariant velocities calculated from,
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Equation (1) is extended for moving bodies in the
following manner. Consider the one dimensional
continuity equation,
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Integrating for a control volume whose boundaries move
over time we obtain,
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After differentiation of the first term with respect to time
and some further manipulation Equation (4) may be
rewritten in the following form,
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in which %% is the velocity with which the control volume

surface moves, referred to as the grid velocity. Similar
results follow for the momentum and energy equations.

This analysis shows that the governing equations
may be rewritten for moving bodies by replacing the
velocity in the convective flux terms (Equations (2a)) with
the relative velocity of the fluid with respect to the moving
grid. The convective flux vectors become,
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in which the contravariant velocities are now calculated

from,
v ﬂ)
dt

In the present work only rigid translations and
rotations of the grid are considered.

Numerical procedure

Oshers flux vector splitting method® is

employed for the spatial discretisation of the convective
flux terms, Equations (6a). Higher order spatial accuracy
is obtained using MUSCL interpolation together with a
flux limiter. The viscous terms are discretised using
central differences. The algebraic turbulence model
proposed by Baldwin and Lomax is used to provide a
turbulent contribution to the viscosity. It has been
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demonstrated by Qin® that such an approach captures
both shock waves and shear layers accurately allowing the
reliable prediction of shock-boundary interactions.

After spatial discretisation the governing
equations are reduced to a system of ordinary differential
equations which are integrated in time using a first order
Euler implicit scheme. One implicit step of the method can
be written as,
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flux Jacobian in the n-direction. The flux Jacobians are
calculated using analytical expressions. While It is
possible to obtain Jacobians for the Baldwin-Lomax
turbulence model they do not exhibit a sparse structure.
For this reason turbulent contributions to the flux Jacobian
are neglected.

Equation (7) represents a sparse, system of linear
equations of the form,

[Al{x} = {b} ®)
which can be solved using conjugate gradient methods. In
this work restarted GMRES “® is employed. The system of
equations represented by Equation (8) are generally ill-
conditioned which has severe consequences for the
convergence of conjugate gradient methods.

In order to improve the condition of the system
matrix, and hence the convergence behaviour of the linear
solver, preconditioning is required. We seek a
preconditioning matrix which when used to pre-multiply
Equation (8) results in a new system of linear equations,

[CIAl{x}=[C]{b} €))
which is more amenable to solution by iterative
techniques. The preconditioner used in this work was
proposed by Badcock and Richards ®” . They have
demonstrated that a method based upon ADI factorisation
provides a fast and effective preconditioner for the two-
dimensional Navier-Stokes equations.

Results

The method described in the proceeding sections
has been applied to the calculation of steady and unsteady
flows for several aerofoils. Results of steady computations
for the RAE 2822 aerofoil are presented which indicate
the overall level of accuracy of the numerical scheme. The
ability of the method to predict unsteady shock-boundary



layer interactions is demonstrated by calculation of the
self-excited periodic flow which occurs for a rigid 14%
thick bi-convex circular arc aerofoil at a freestream Mach
number of 0.83. Finally calculations of the unsteady
flowfield around a NACAOQ012 aerofoil undergoing in-
plane motion are presented. Two cases are considered. In
the first case there are weak shock boundary layer
interactions while in the second there are much stronger
interactions which include shock induced separation.

Steady flow around RAE 2822 aerofoil.

Steady state calculations were performed for the
RAE 2822 aerofoil at a Mach number of 0.73, a Reynolds
number of 6.5 million and an angle of attack of 2.79
degrees in order to establish the overall accuracy of the
numerical method. Calculations were performed on a
relatively coarse grid having 159 grid points in the
streamwise direction (100 on the aerofoil surface) and 48
grid points in the normal direction. Calculated pressure
distributions are compared with the experimental data of
Cook et al®® in Figure (1). The computations show good
agreement with experiment over the entire aerofoil,
although the location of the shock wave is slightly
downstream of that observed in the wind tunnel tests. The
calculated lift coefficient of 0.791 is in fair agreement with
the experimental value of 0.803.

Self-excited periodic flow for a circular arc aerofoil

For a small range of Mach numbers close to the
onset of shock induced separation Mabey!® observed
unsteady periodic flow on a 14% circular arc aerofoil. In
order to validate the present method for unsteady flow,
calculations were performed in free air for Mach numbers
in the range 0.80 to 0.88, o = 0 degrees and a Reynolds
number of 7 million. Transition between laminar and
turbulent flow was fixed at 0.02 chord lengths from the
leading edge. A relatively coarse grid containing 159
points in the streamwise direction and 48 points in the
normal direction was employed.

The behaviour of calculated lift coefficient with
non-dimensional time is presented in Figure (2) for a
Mach number of 0.83. There is good agreement between
the magnitude of the calculated oscillations and those of
the experiment (which are indicated by the dashed lines).
The calculated non-dimensional frequency of 1.21 is
considerably higher than the measured frequency, which is
. approximately 1.0. The poor agreement of the calculated
frequency parameter with experiment can be attributed in
part to weaknesses in the algebraic turbulence model
employed here. Ramsey et al"® have demonstrated that
more accurate predictions of the frequency parameter can
be obtained using higher order turbulence models.
Calculations of the unsteady flowfield at M=0.83
reproduce the characteristic oscillations between shock
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induced and trailing edge separation, see Figure (4),
observed from experimental flow visualisation.

In the experiments of Mabey unsteady periodic
flow was established at M=0.83 and persisted until
M=0.86, this range of Mach numbers is indicated by the
solid lines in Figure (3). The calculated onset Mach
number for flow unsteadiness (M=0.82) and the range
over which unsteadiness is observed are in fair agreement
with those found in the experiment, see Figure (3).
Previous calculations of the periodic flow around an 18%
thick circular arc aerofoil indicate that the Mach numbers
for which oscillatory flow is observed are sensitive to the
inclusion of wind tunnel wall effects, see pages 249-250 of
Edwards and Thomas®®, the present calculations were
performed in free air.

Unsteady flow with no discernible period was
also calculated over a much wider range of Mach numbers
(0.8 to 0.88). This phenomena, which is of a much smaller
scale than self-excited periodic flow, is caused by small
random oscillations of the upper and lower surface shock
waves and was also observed in the experiments.

The calculations detailed above demonstrate that
the current numerical scheme is capable of predicting
unsteady flow phenomena which arise as a consequence of
shock-boundary layer interactions. Inconsistencies
between calculation and experiment can largely be
attributed to the neglection of wind tunnel wall effects and
inadequacies in the algebraic turbulence model currently
employed.

NACA 0012 aerofoil with in-plane motions.

The normal component of Mach number for a
rotor blade section located a distance r from the axis of
rotation is given by,

M
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in which R is the radius of the rotor blade, My, is the tip
Mach number in hover, u is the ratio of forward flight
speed to tip speed in hover (the advance ratio) and y is the
azimuth angle. Neglecting three dimensional effects
Equation (10) provides a basis for calculating the
aerodynamics of helicopter rotor blades using the in-plane
motions of aerofoils. Under this approximation the
rotational speed of the rotor blade provides a mean flow
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The aerodynamics of the NACA 0012 aerofoil
undergoing rigid in-plane motions have been studied for
flow conditions representative of helicopter rotors, in the
remainder of this section results from this study are
presented.

Fully turbulent Navier-Stokes calculations were
performed on a fine grid containing 259 points in the
streamwise direction (200 on the aerofoil) and 96 grid
points in the normal direction for a NACA 0012 aerofoil
undergoing  in-plane  motions  described by
M_ =05113(1+05263sin(0.1976t)), the angle of

incidence was O degrees and the Reynolds number based
upon chord was 1 million. These conditions represent the
flow at t/R=0.84 on the rotor blade tested by ONERA® at
a hover tip Mach number of 0.598 and an advance ratio of
0.45.

Figure (5) shows the unsteady pressure
coefficient on the aerofoil at azimuth angles of 30, 60, 90,
120 and 150 degrees. At low azimuth angles the calculated
flowfield is dominated by a rapid expansion of the flow at
the leading edge, this is a characteristic feature of the
relatively blunt NACA 0012 aerofoil. As the freestream
Mach number continues to increase a region of high
pressure gradient develops towards the trailing edge, this
region grows in extent until eventually shock waves form
on the aerofoil close to the mid-chord point. The shock

waves then migrate towards the trailing edge growing in -

strength. The maximum Mach number is obtained at 90
degrees azimuth while the maximum shock strength is
obtained at an azimuth angle slightly beyond 90 degrees as
the flow begins to decelerate. As the flow decelerates
further the shock waves move back towards the aerofoil
mid-chord point decreasing in strength before finally
disappearing.

The importance of dynamic effects can be
demonstrated by comparing unsteady  pressure
distributions at symmetric azimuth angles, i.e. azimuth
angles which have the same instantaneous Mach number.
For instance, comparing Figures (5d) and (5b) we observe
dramatic differences, with and without a shock wave
respectively. The influence of flow unsteadiness is further
demonstrated when unsteady results are compared with
steady calculations performed at -the appropriate
instantaneous Mach number. In Figure (6) such a
comparison is made for azimuth angles of 60 and 120
degrees. From this figure we see that shock strength is
reduced when the flow is accelerating, while for
decelerating flow dynamic effects are unfavourable.
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The flow physics in the unsteady calculations are
in good qualitative agreement with experimental
observations. There is no suitable experimental data with
which the current unsteady computations can be validated,
instead comparison is made with three-dimensional rotor
tests. In Figure (5) calculated pressure distributions are
compared with those obtained in the rotor experiment of
ONERA™®. Agreement is generally good for cases in
which there is no shock wave, azimuth angles of 30, 60
and 150 degrees. At 90 degrees azimuth the calculated
shock wave appears to be moderately weaker than in the
experiment and is located a little further towards the
trailing edge. Results at 120 degrees azimuth compare
poorly with experiment upstream of the shock wave. The
calculated shock wave occurs more than 10% aft of the
position recorded in the experiment and is of much greater
strength.

A second calculation was performed for the
NACA 0012 aerofoil undergoing in-plane oscillations
described by M..=0.5136(1+0.61sin(0.185t)) with a=0°
and Re =1 million. The flowfield for these conditions was
previously calculated by Lerat and Sides®" using a two
dimensional unsteady Euler code.

Figure (7) shows the time history of lift
coefficient for four cycles of the in-plane motion. A fine
grid containing 259 grid points in the streamwise direction
and 96 grid points in the normal direction was employed.
1080 time steps per cycle were used and the residual was
reduced at each time step by at least 2.3 orders of
magnitude. Despite the symmetric nature of the current
problem, a symmetric aerofoil and o=0°, lift is developed
on the aerofoil for azimuth angles in the range 90 to 180
degrees. Although the solution is periodic the lift
coefficient changes sign for successive cycles, this
suggests that the source of the non-symmetric behaviour
alternates between the upper and lower surfaces of the
aerofoil.

A major concern was that this behaviour was an
artefact of the numerical scheme rather than a true
reflection of the flow physics. In order to remove any such
doubts the influence of important numerical parameters
(convergence tolerance and time step) on the computed
solution was investigated, see Figure (8). Over the range
considered the convergence tolerance of the linear solver
did not appear to have any significant effect. Variations in
the computed solution were observed for larger time steps
than those used in the current calculations, further
reductions in time step beyond that currently employed
were found to be unnecessary.

The Euler calculations of Lerat and Sides'™’ were
performed for one half of the domain with symmetric
boundary conditions and consequently the possibility of
non-symmetric flow is suppressed. Euler calculations
performed with the present method for the whole domain
do not exhibit non-symmetric behaviour, this strongly
suggests that any such behaviour arises as a consequence
of viscous interactions.
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Further details of the unsteady flowfield are
presented in Figure (9) in which instantaneous density
contours are plotted for selected azimuth angles during the
fourth cycle of the in-plane motion. As before a region of
high density develops over the aerofoil as Mach number is
increased. Shock waves develop towards the mid-chord
point and begin to move downstream. Figure (9c) shows
that at 90 degrees azimuth the flow is largely symmetric.
Figure (9d) reveals that by 105 degrees azimuth the flow
has become non-symmetric. The boundary layer on the
upper surface remains attached, while shock induced
separation is indicated on the lower surface. The shock
wave on the lower surface begins to move forwards as the
flow decelerates and the lower surface boundary layer
remains detached. The shock wave on the upper surface
continues to move towards the trailing edge for a short
period of time. By 120 degrees azimuth both the upper and
lower shock waves are travelling towards the leading edge
and diminishing in strength. The lower surface shock
vanishes shortly after 150 degrees azimuth and by 180
degrees azimuth a largely symmetric flow has been re-
established.

The establishment of a non-symmetric flowfield
appears to be related to the occurrence of shock induced
separation, this explains why such behaviour was not
observed in previous Euler calculations at the same flow
conditions or in the in-plane calculation presented earlier.

McDevitt and Okuna® have reported the
occurrence of non-symmetric flow for a stationary NACA
0012 aerofoil at O degrees incidence. This behaviour was
characterised by periodic fluctuations in force and moment
coefficients and was associated with the occurrence of
shock induced separation. McDevitt and Okuna
determined a boundary beyond which buffeting of this
kind will occur. Their measurements indicate that at an
angle of incidence of O degrees the onset of buffet in
steady flow will occur for a Mach number above 0.83. The
maximum Mach number attained during the current
unsteady calculation was 0.827. Although this Mach
number is below that for the onset of buffet it is likely that
the unfavourable effects of decelerating flow will lead to a
significant increase in shock strength sufficient to cause
boundary layer separation. In rotor experiments three
dimensional effects are likely to have a strong influence
once the flow has separated, the approximation of the rotor
by in-plane oscillations will no longer be valid and
consequently much poorer agreement between experiment
and the current approach would be expected.

In Figure (10) comparison is made between
computed pressure coefficients at the mid-chord point and
experimental measurements for azimuth angles in the
range O to 180 degrees. Fair agreement is observed
between calculated lower surface pressure coefficients and
experiment, while for the upper surface agreement is poor
for azimuth angles beyond the onset of shock induced
separation. Also included in Figure (10) are the results of
Euler calculations performed using the present scheme and
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that of Lerat and Sides. There is good agreement between
both sets of Euler calculations. Also of note is the good
agreement between the upper surface pressure coefficients
obtained from Navier-Stokes and Euler calculations.

Conclusions

A numerical method for the calculation of the
unsteady flowfield around aerofoils undergoing in-plane
oscillations has been presented. Calculations of the steady
flowfield around an RAE2822 aerofoil and the unsteady
self-excited periodic flow around a 14% thick aerofoil
have been presented which demonstrate the validity of the
current approach. The unsteady aerodynamics of a NACA
0012 aerofoil undergoing in-plane motions representative
of the forward flight of helicopter rotor blades were
studied. Two calculations have been presented; In the first
calculation good qualitative agreement was found between
the computed flow physics and those observed in
experiments. Fair agreement was also observed between
computed and measured pressure distributions over most
azimuth angles. For the second case a non-symmetric
flowfield was calculated as a result of strong shock-
boundary layer interactions. Poor overall agreement
between experiment and computation beyond the onset of
shock induced separation was observed. It is suggested
that the onset of a buffet like unsteady phenomena in the
two dimensional calculations, which is suppressed by three
dimensional effects in the rotor experiments, explains
these discrepancies.

Work is now underway to incorporate a higher
order turbulence model into the current code. This should
provide more accurate predictions of self-excited flow
around bi-convex aerofoils and it is hoped that such
changes will provide a firm basis with which to look at the
combined translation-pitch  oscillations which are
representative of the motion of lifting rotor blades.
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Figure (1) RAE 2822 Aerofoil: 0=2.79°,M..=0.73,
Re =6.5 million.
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Figure (2) 14% thick bi-convex circular arc aerofoil:
0=0.0°,M..=0.83, Re.=7.0 million.
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Figure (3) 14% thick circular arc acrofoil: measured Figure (4) 14% thick bi-convex circular arc acrofoil:
and calculated boundaries for periodic flow. calculated instantaneous density contours.
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Figure (5) NACA 0012 aerofoil: a=0°, Re.= 1
million, M..=0.5113(1+ 0.5263sin(0.1976t)).
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Figure (6) Comparison of steady and unsteady
calculations.
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Figure (7) NACA 0012 aeofoil, Re.= 1 million,
M..=0.5136(1+0.61sin(0.185t)): Time history of C.
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Figure (8) NACA 0012 aeofoil: Influence of time
step and covergence on calculated result.
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Figure (9) NACA 0012: Instantaneous density
contours for selected azimuth angles.

29

1.0 | — Experiment ‘ Y
{ | = = - Lower surface o
~~~~ upper surface
© Euler
O  Lerat and Sides

-1.5

Y T T Y T T T T T Y T T .- ]
] 90 180

Azimuth Angle

Figure (10) NACA 0012: Comparison of measured
and computed pressure coefficients at x/c=0.5.



