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Abstract. A method for the calculation of 3-D
compressible unsteady flows involving freely moving
bodies is presented. Based on a Cartesian cut cell
mesh and a high resolution, upwind, finite volume
scheme, this approach deals with moving body prob-
lems as follows: firstly, a background Cartesian mesh
is generated on the domain, where the boundaries
of solid bodies are represented by different types of
cut cells; secondly, solid bodies are allowed to move
across the stationary mesh by utilising a cell merg-
ing technique. The flow solver used is a MUSCL-
Hancock Godunov-type scheme. A HLLC approxi-
mate Riemann solver is used to estimate the fluxes
at fluid interfaces but an exact Riemann solution for
a moving piston is incorporated on static or mov-
ing solid boundaries. Several examples are provided
to demonstrate the capability of the method for the
simulation of unsteady flows involving either static
or freely moving bodies.

Introduction

Numerical simulation of unsteady, compressible
flows involving rigid bodies in relative motion has
been a computational challenge for many years. The
main problem in predicting such flows arises from
the fact that body motion will not only produce a
highly complex time-dependent flow, but will also
necessitate a change in the computational domain.
As a result, additional complexities in the governing
equations and the mesh system will be introduced.
The major capabilities required for the accurate sim-
ulation of unsteady flows involving moving bodies
are:

1. Efficient mesh systems. A mesh system is
required to efficiently incorporate the move-
ment of computational boundaries as the bodies
move;

2. High resolution numerical schemes. Such
schemes are needed to simulate accurately time-
dependent flows with shock waves and other
flow discontinuities.
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It is not surprising therefore that only a few at-
tempts have been made to model problems with
moving boundaries/bodies. These applications have
utilised either structured or unstructured mesh tech-
niques. Unstructured mesh methods commonly use
a global unstructured mesh and incorporate periodic
local or global remeshing to account for the moving
boundaries or bodies. Either finite element [1, 2] or
finite volume solvers[3] are used for the discretisa-
tion. For structured mesh methods, on the other
hand, one promising approach is the Chimera [4] or
FAME[5] philosophy of overlapping several meshes,
each of which is specific to an appropriate section
of the geometry. This approach requires continu-
ous identification of mesh intersection points from all
overlapping meshes to transfer information between
the various mesh patches but does not eliminate the
need for body-fitted grids.

In this paper, we present an alternative approach
for the prediction of unsteady compressible flows in-
volving freely moving bodies. Based on a Cartesian
cut cell mesh and a high resolution upwind finite
volume scheme, this approach.differs from other ap-
proaches mainly in that the mesh used is stationary
and moving bodies are allowed to cross the mesh-
lines. Hence, it requires no changes to the governing
equations, no need to enforce geometric conservation
laws nor remedies for skewness of the moving mesh
or cells near moving boundaries. The rest of the
paper is organised as follows: firstly, the generation
of a suitable Cartesian cut cell mesh is presented;
secondly, details of the numerical flow solver are de-
scribed; thirdly, the extension to moving boundary
or body problems is given, followed by some typi-
cal test problems; finally, in the final section, some
conclusions are drawn.

Cartesian Cut Cell Mesh

A Cartesian cut cell mesh can be generated simply
by ‘cutting’ solid bodies out of a background Carte-
sian mesh. Hence three types of cells are formed in



the computational domain: flow cells, cut cells and
solid cells (see Figure 1). Furthermore, each cut cell
is handled by replacing any number of intersecting
planes within this cell by 7 approximating planes
including 6 interfaces and one solid face. Since we
utilise a finite volume technique to discretise the gov-
erning equations, the generation of a Cartesian cut
cell mesh involves specifying the type of each cell
and providing geometric information relating to the
cut cells.

Initially, all cells are flagged as either flow or solid
cells. Once all the intersections between the bound-
aries of solid bodies and mesh lines have been es-
tablished, the cells which intersect with the surfaces
of solid bodies are defined as cut cells. Sweeps in
two directions across the background mesh are then

performed to identify which cells are surrounded by

solid or cut cells. These cells are registered as solid
cells.

Solid Geometry Description

Body surfaces are described by triangulated surface
facets obtained directly from a CAD package or by
a surface triangulation procedure. Unlike the sur-
face triangulation used in many unstructured mesh
generation techniques, where the size of the triangle
is fixed by the requirements of the flow solver, the
surface facets in our Cartesian cut cell approach are
chosen to be just large enough to accurately define
the surfaces of the bodies. For example, a planar
surface of a solid body needs only to be divided into
two triangular facets. These triangular facets are
stored in a set of vertices with connectivity lists so
that the surface normals are oriented properly in the
flow domain. These triangular facets are used only
to find the intersections between the boundaries of
solid bodies and the background Cartesian mesh.

Finding Intersections

Once the geometry of a solid body has been de-
fined, the next step is to find the intersection points
between the background Cartesian mesh and the
boundary of the solid body. Since the geometry of
the solid body is represented by a series of trian-
gular facets, the problem is reduced to finding the
intersection points between an individual Cartesian
mesh line and an individual triangular facet. The in-
tersection of a straight line with a plane can be found
in a straightforward manner. First, two equations of
both the plane and the straight line are described by
a parametric formula. Unless they are parallel or co-
incident, the solutions for the parameters can be ob-
tained exactly. These parameters are then checked
to determine whether the intersection point is on the
plane or its extended plane. Details of intersection
problems involving a straight line and a flat plane
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Figure 2: A cut cell in three dimensions

can be found in [6]. Once all the triangular facets
have been checked, all the intersection points on an
individual mesh line will have been found.

Usually, cut cells only occupy a small portion of
the total number cells in the flow domain. Hence
they are stored in a series of lists including connec-
tivity data with respect to the background mesh. As
the intersection points along an individual mesh line
are obtained, they are registered in the cut cell lists.
This process is repeated until all the mesh lines have
been dealt with.

Determining the Cut Cell Information

Once the calculation of all intersections between the
mesh lines and the geometry of the solid body has
been completed, all geometric information concern-
ing the cut cells will have been determined. From
the finite volume point of view, these include the di-
rection of the outward normal vector for the solid
face, the area of every face, and the volume of each
cut cell. We only calculate the area of 6 interfaces
of each cut cell according to the intersection points
on the cell edges. If an interface of a cut cell is lo-
cated inside a solid, the area of the interface is set to
zero. The solid boundary (or face) is approximated
by the non-planar quadrilateral pgrs (see Figure 2).
Although the normal vector and area of the solid
face are not explicitly included, they can be com-
puted by taking the difference in the exposed areas



of opposing interfaces, that is:

|8 = /(8L — S5)2 + (S, — 83)2 + (8L - 81) (1)

n=(S; - 8,8, 8,5, - S)/IS|. (2

Finally, the volume is calculated using the Gauss
divergence theorem, which transforms the required
volume integrations into surface integrations over
the exposed interfaces and solid faces.

Finding Merging Cells

If time accurate solutions are required, the stabil-
ity constraint will be severe on arbitrarily small cut
cells. In our calculations, a cell merging technique is
used to ensure stability and we first need to deter-
mine which cells should be merged. By providing a
minimum volume criterion V,,;, for a cut cell, find-
ing a neighbouring cell to merge with depends on
the slope of the solid face of the cut cell.

The Numerical Scheme

Governing Equations

The Euler equations for three-dimensional, com-
pressible flows in a general moving reference frame
may be written in integral form as

4 UdV +

z ), StF-ndS:O (3)

where U is the vector of conserved variables and F
is the flux vector function, m is the outward unit
vector normal to the boundary S;, which encloses
the time-dependent volume V;. U and F are given
by

P p(v = vs)
pu pu(v —v,) +pi
U=| pv | F= pu(v = vs) + pj (4)
pw pw{v —vg) + pk
€ (€+p)(V—VS)+pV3

where p,u,v,w,p and e are density, z-, y- and z-
components of fluid velocity v, pressure and total
energy per unit volume, i, j and k are the Cartesian
unit base vectors and v; is the velocity of the bound-
ary of the control volume V;. In this paper, we use a
stationary background Cartesian mesh to deal with
moving boundary problems, therefore, v = 0 on the
flow interfaces of a cell but on a moving solid face of
the cell, v, is the velocity of the moving boundary.
Finally, the governing equations are closed by the
ideal gas equation of state,

p=(y-1) [e—g(u2+vz+w2)}. (5)

Numerical Discretisation

The flow solver. used here is a MUSCL-Hancock
[7] Godunov type scheme with appropriate modifi-
cations. This is a second-order, two-step, upwind
scheme. The predictor step uses a non-conservative
approach, which defines an intermediate value over
a half time interval At/2,

At &
+3
(VO)G* = (VO = 5 Y F(U)-S¢ (6)
I=1

where M; is maximum number of cell faces. For a
flow (or uncut) cell, M; = 6; for a cut cell, M; = 7.
The flux function F(U;) is evaluated at the mid-
points of cell faces following a linear reconstruction
of the flow solution within each cell, via,

U, = U:ij + %nl . VUZk (7)
where n; is the normal unit vector of face I and
VUZ,, is a limited gradient vector in space (see next
section).

The corrector step of the scheme is fully conserva-
tive. The intermediate solution from the predictor
step is used to define a set of left- and right-hand
states for a series of Riemann problems. The solu-
tion of these Riemann problems provide a set of up-
wind interface fluxes which are used to update the
flow solution over the time interval At,

M, 1
VU = (VUYL — Aty F (UPR) s (8)

ik
=1

where the upwind flux ¥ (U{‘ ’R) is obtained by solv-

ing a local Riemann problem normal to cell interface.
The left- and right-hand states at interface [ may be
calculated by

ik ijk )
UR=U"C2 +1nR.vU"

{ U =UJL? + Inf . VUL,
n(ijk)

n{ijk)

where n(ijk) relates to the right neighbouring cell.

To solve the Riemann problem, either an exact
Riemann solver or various approximate Riemann
solvers can be used. Here, an HLLC [8] approximate
Riemann solver is used at fluid interfaces. However,
an exact Riemann solution for a moving piston is
used on the solid boundaries (faces) of a cut cell,
where the flux is evaluated as follows

0
P(S, — S})
F;-S=| py(St—87) (10)
pr(S, — S7)
P VsnlS|
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Figure 3: Calculation of gradients on a cut cell

where py and v, are the pressure and normal veloc-
ity arising from the Riemann solution on the moving
solid boundary.

Since the MUSCL-Hancock scheme is condition-
ally stable, stability problems will occur in the pres-
ence of arbitrarily small cut cells if a time step
based on the flow cell size is used. Here, a cell
merging[9, 10] technique is implemented since it is
not only simple but can also be extended to moving
boundary problems.

Gradient Calculation

The gradient calculation is straightforward on flow
cells away from a solid boundary. For cells near a
solid boundary, a different approach is used. Since
a solid boundary can be either static or moving,
appropriate boundary conditions must be imple-
mented in the gradient calculation. Considering a
2-dimensional case, if reflection boundary conditions
are used on a solid boundary, the variables in fic-
tional cell R (see Figure 3) can be obtained by

PR = Pij
VR=Vy —2(vy; n)n+2(vy-n)n (11)
PR = Pij

ern =pr/(y—1) + Lpr|ve/*

The gradients on cut cell (¢,7) may be of two types:
flow and solid in each mesh direction. Consider the
gradients in z-direction, the flow gradient can be
calculated as for flow cells,

Ul =G (Ui, - Ui, Uiy —Uiyy) (12)
where G is a slope limiter function which is used to

prevent over- or under-shoots. The limiter function
may take the following forms:

the Superbee limiter

G(a,b) = s - maz {0,min(2|b|, s - a),

min(jb|,2s-a)} s = sign(b) (13)
or the van Leer limiter
w gy 1+ lale/a
G0 = e (19

Then, the solid gradient is estimated similarly, that
is

U; =G(Ur-U;;U;; - Uiy ;) (15)

Once the two types of gradients have been calcu-
lated, an area average technique is used to obtain
unique gradients in the z-direction:

U, = (S{Uf + S3U3)/Sh0a (16)
Stz = Maz (S, S7) 17)

S; =18; - 53 (18)

S'zf = Sra;'mz - S; (19)

with a similar calculation for the gradients in y-
direction. A gradient vector in cut cell (i,j) can
then be obtained as

VU, = [ gy } , (20)

and a reconstructed solution vector U(z,y) can be
found anywhere within the cut cell from

1
U(:L', y) = Uij + 5!1 . VUij (21)
where n is the normal unit vector for any specific
interface or solid boundary.

For 3-dimensional problems, similar techniques
can be used to provide gradients in the z-direction.

Extension to Moving Body Problems

Description of Body Motion

Body motion can be either one dimensional or multi-
dimensional. For one dimensional motion, a veloc-
ity for each data point on the surface of the body
is prescribed so that the total body motion follows
a prescribed trajectory. If each data point has a
different velocity, the problem involves body move-
ment as well as body deformation. Otherwise, the
problem can be considered as rigid body motion.
Therefore, it is relatively simple to describe one di-
mensional rigid body motion by prescribing a single
velocity. For multi-dimensional problems, however,
rigid body motion often involves both translation
and rotation. Instead of prescribing the velocity of



every data point on the body periphery, we first de-
termine the translation velocity v, and the rotation
angle velocity w, for one point (e.g. the mass centre)
in the body, and calculate values at other points on
the body from v, and w,. In practice, v, and w, can
be estimated from the pressure distribution acting
on the surface of the moving body. In the follow-
ing, we briefly describe how to determine the new
position of the moving body and the velocity of any
point on the body based on known values of v, and
We-

See Figure 4, the position vector of point p on the
surface of the solid body is given by

Yy =T¢+T, =T;+T, +TI, (22)
therefore, the velocity of point p is
Vp = Vet We X Ty (23)
Now, define a unit vector e, and e,, as

I, We
= = — 24
€r lrrl 3 €en lwc‘ X € ( )

Given the time step At, the new position and veloc-
ity of point p (see Figure 5) can be obtained from

Ad = w At (25)
rptt =1 + |r}|[cos(Ad)e, + sin(Ade,]  (26)
=1 4oy At (27)

rptt =t et (28)

VI = v 4w x 1Pt (29)

Once all points on the body periphery have been
updated, the new position of the moving body is
known.

Cell Merging on Moving Boundaries

In the Cartesian cut cell approach, any solid bod-
ies are simply cut out of a background Cartesian
mesh, where the boundaries of the solid bodies are
represented by different cut cells. Once the bodies
move, the cut cell information undergoes changes.
In essence, these changes can be divided into four
categories:

1. Cut cell becomes solid cell;

2. Clut cell becomes an uncut flow cell;

3. Cut cell remains unchanged,

4. Uncut flow cell becomes a cut cell.

Categories 3 and 4 do not cause any problems
within the finite volume scheme. However, where
a cut cell becomes solid (category 1), the volume of
the cell at the end of time step is zero; obviously
this will lead to problems within the flow solver. For
category 2, although the cell finally becomes a flow
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Figure 4: The position vector of a point p on the
solid body
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Figure 6: Cell merging on a moving boundary



cell, failure to consider the new-born cell will result
in strict conservation being lost. In general, all these
problems can be solved by using a cell merging tech-
nique [9, 10]. The basic idea is to merge a small cut
cell with one or several neighbouring cells so that any
interface between the merged cells is ignored and the
waves are allowed to travel in the larger merged celi
without reducing the global value of At.

Considering a two-dimensional example, a time
step, At, based on flow cell B, will be too large for
cut cell A which will become solid after At (see Fig-
ure 6). To merge the two cells, we first compute the
updates at cells A and B as usual,

My, B
A(VU)pp=—-At Y F;- S (30)
=1

Then, we ignore the interface between cells 4 and B,
and update the merged cell C' simply by combining
the volume updates of cells A and B,

A(VU)e = A(VU) 4+ AVU)p (31)

The fluxes on the interface |ed| between cells A and
B cancel out automatically since the flux calculation
is conservative. The conserved variable U for cell C'
at time t"*! is

(VO = (VUL +(VU)R

My Mg
— At (ZF, Si+ Y F- sl> (32)

I=1 1=1

Although the cut cell A finally vanishes, its con-
tribution to the mass, momentum and energy, will
be transfered into neighbouring cells so that con-
servation is automatically maintained. The process
of cell merging may reduce the integration accu-
racy at solid boundaries; however, it has been shown
that this need not affect the global accuracy of the
calculation[11] and has caused no noticeable detri-
mental effect in practice.

In order to prevent a single cut cell from becoming
solid without merging with neighbouring cells, an
appropriate estimate of time step is introduced,

Vs Vmin

vl

Atw,y,z = (33)

maz(|vg| )+a’

z,Y,27 T,Y,2

At = Cpp min(Aty, Aty, At,) (Cpr < 1.0) (34)

where a is sound speed.

Numerical Results

2-D Wedge Channel Flow

The first example concerns an inviscid channel flow
at My, = 2 past a fixed wedge. The channel is 1

unit high and 6.5 units long. The wedge is located
from 4.25 to 6.25 units with 0.26795 unit height so
that a 15° compression corner and a 15° expansion
corner are formed by the wedge. Figure 7 shows the
geometry of the wedge and channel, where a uniform
Cartesian mesh of 260 x 40 cells was used. A free
stream flow at Mach number M., = 2 is assumed to
pass through the channel from right to left, and an
attached oblique shock is produced at the compres-
sion corner. The oblique shock is then reflected at
the upper wall of the channel. Meanwhile, a strong
expansion fan is created at the top rear corner of the
base region. The expansion fan interacts with the
lower wall of the channel so that an oblique shock
appears in the base region. Figure 8 shows density
contours at two different times ¢ = 1 and 2.

We then specify an impulsively started wedge
moving at Mach 2 into quiescent gas, expecting an
identical flow field. In this case, the wedge is posi-
tioned initially from 0.25 to 2.25 units (see Figure 9).
As in the fixed wedge case, an attached bow shock
and an oblique shock in the base region are gradu-
ally produced and then reflected at the upper wall.
At time t = 2, the wedge has moved to exactly the
same position as in the fixed wedge case. Figure 10
shows density contours at two time stages t = 1 and
2 respectively. Comparing the two cases, we can see
there is little difference between a wedge moving at
M,, = 2 into quiescent gas and fixed wedge placed
in a Mach 2 free stream. Identical flow features are
created by the Cartesian cut cell method with fixed
or moving boundaries.

3-D Store Release Prediction

Store release from aircraft has been a computational
challenge since the beginning of flying. Consider the
case corresponding to supersonic flight. During store
separation, many complex physical flow features are
produced. These features include shock/shock inter-
actions, shock/boundary layer interactions, turbu-
lent separated flow and relative body motion. Given
the complexity of these physical flow features, our
efforts are concentrated initially on the solution of
the Euler equations.

The problem considered here is as follows: ini-
tially, a store is placed in a cavity external to which
is a free stream flow at M, = 1.5. Inside the cav-
ity, the flow is stationary with the same pressure as
the free stream flow. The store motion is prescribed.
Because of the flow symmetry, only one half of the
flow field has been calculated. In the present calcu-
lations, a Cartesian mesh with 100 x 62 x 30 cells was
used on a domain of 200 x 124 x 60 units. The trans-
lational and rotational velocities for the store centre
of mass were v, = [0.0,-0.5]" and w, = 0.00023,



respectively (non-dimensionalised with respect the
free-stream speed of sound and the diameter of the
store). Once the store has been ejected, the result-
ing flow-fields are shown at different times. The po-
sition of the store at each time is determined by the
method described above. Figures 11 to 13 show the
positions of the store, the Cartesian mesh and den-
sity contours at two different times.

Figure 12 shows the computed flowfields at ¢t = 50.
At this time, the store has emerged from the cavity
and a bow shock is produced around the nose of the
store. Behind the bow shock the flow expands to su-
personic conditions and two normal shocks appear
downstream on the body surface. Meanwhile, sev-
eral vortices can be seen in the cavity. The store
continues to fall and at ¢ = 100, the bow shock
moves with the store while the normal shocks have
moved further aft. The flow features become very
complex inside the cavity, where shocks and three di-
mensional vortices are visible (see Figure 13). From
the computed results we can see, that although a rel-
atively coarse mesh has been used, the shocks and
other flow features are captured as sharp disconti-
nuities, demonstrating the effectiveness and promise
of the present Cartesian cut cell method for moving
boundary/body problems in compressible flow.

Conclusions

A Cartesian cut cell method for the computation
of 2 or 3-dimensional unsteady compressible flows
involving both static and freely moving bodies has
been presented. In this approach, a stationary back-
ground Cartesian mesh is used and moving bodies
are allowed to arbitrarily cross the mesh-lines; conse-
quently, only cells near solid boundaries need special
treatment as the bodies move. The main advantage
of this approach is that it can deal with moving body
problems without a moving mesh, hence problems
such as mesh distortion, body motion restriction etc.
which occur when using other mesh approaches are
avoided completely.

The Cartesian cut cell method has been validated
against known unsteady flows and subsequently ap-
plied to a sample problem of a store release into
a Mach 1.5 stream. The computational results
indicate good potential for the Cartesian cut cell
method for practical applications involving moving
body problems.

Since the present approach is based on a sta-
tionary background Cartesian mesh for dealing with
moving boundary/body problems, adaptive mesh
refinement techniques can easily be implemented.
With suitable mesh refinement it should be possible
to begin the task of extending the inviscid method
to viscous flows.
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Figure 7: Cartesian mesh for fixed wedge
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Figure 8: Density contours at ¢t = 1 and 2 for fixed wedge in Mach 2 flow

Figure 9: Cartesian mesh for moving wedge at t =0

Figure 10: Density contours at ¢ = 1 and 2 for wedge moving at Mach 2
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Figure 13: Density contours at ¢ = 100
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