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Abstract

Smart components are more and more widely used in Aero-
space structures, since they offer new possibilities for dis-
tributed control. Of the several kinds of smart sensors and
actuators, only piezo components are considered in the paper.
General methods of solution are described with reference to
very simple examples, such as beams and plates, in order to
outline main features and problems with this kind of control.
In particular, the well known problem of structure-piezo in-
teraction is discussed.

Another problem of interest is the adequacy of stiffening and
damping propertie~, that must be such that application of
smart component will really be able to improve structural
characteristics. Mathematical conditions for this to happen
are very briefly discussed.

As for fields of real interest in Aerospace Technology, torsion
and associated aeroelastic properties could -in principle re-
ceive some substantial help from Smart Structures, but avail-
able robustness and authority are not yet sufficient. Also,
wave propagation control is discussed, essentially on simple
schemes: the idea is substantially to have active regions where
wave amplitudes are measured, and actuators are placed in
such a way as to have closed loop dispersion functions capable
of suppressing some unwanted vibrations outside the active

region. Analytical formulations, numerical examples and bib-
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liography complete the work.

It should be noted that this manuscript is delivered to ICAS
around May 20th 1996. Since the final presentation is sched-
uled for September, it is likely that new material will be
added.

1 Introduction

Receiving the Guggenheim Award is a great honour for
an aeronautical engineer, or researcher. It is surely one
of the highest acknowledgments in the world, a distinc-
tion everyone operating in our field can desire after a
long career, as it is in my case. But the recipient has
some rules to respect. First of all, to write a paper on
a subject he can choose, and, I have been requested, the
paper should not be a review of what has been done and
of what is being done in the field that has been indicated
by the Author.

For the rest, I have been left, and I felt, free to tune my
writing and my presentation according to my views and
my style.

People like me have the task to understand things and
to help other, probably more active, people, to under-
stand those things. So, I tried to expound what seemed
to me to be the basic ideas of the research and explo-

ration in the field of Smart Structures in the aerospace
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domain. This is the field to which today, probably, the
highest density of scientific meetings is corresponding,
since it has its roots in the modern mentality of controls:
whatever event, not only in the technical field, should be
controlled, leaving nothing outside the human will, or,
even worse, leaving it to hazard. It should be borne in
mind that a Guggenheim lecture is not a lecture for spe-
cialists only, but for the common public.

There are several kinds of applications of smart struc-
tures technology. The general idea is, obviously to aid to
improve performances of an aerospace machine, avoiding
unpleasant phenomena such as excessive, or at least un-
controlled, movements and deformations, reducing over-
all, or local, stability.

This is especially achieved through a proper increase of
structural rigidity and/or a proper enhancing of struc-
tural damping,.

Other applications would refer to Health and Usage Mo-
nitoring Systems (HUMS), which is not treated here, but
is a very promising field, since it tries to answer a ques-
tion everybody has: how long is this piece of machinery
going to live? My personal view is that, in some decades,
HUMS could be applied to human body too, although I
am not sure I would be happy to use it.

Smart Structures Technology, as such and as an inde-
pendent discipline, started some 20-25 years ago, and
just now it starts showing cost benefits. Many impor-
tant papers [1][2][3] have shown how distributed sensors
and actuators have opened the opportunity to apply dis-
tributed control to problems where concentrated controls
through electric or hydraulic actuators seemed too heavy,
not sufficiently reliable or efficient.

The physical principles on which smart components are
based are well known: piegoelectricity, shape memory
(for some alloys), magnetostriction, electrostriction, and
so on. Probably the most popular are piezoelectric actu-
ators and sensors, to which this lecture is devoted, also
because it is the field in which I am currently and deeply
involved with my School of enthusiastic, wonderful young
engineers.

The great problem with piezo components is that their
authority as controllers is not yet sufficient for the aims
of modern technology. Piezoelectric coefficients are very

small (see App.X), and the maximum sustainable electric
field should not exceed some 1000 V/mm , and also this
limit should be considered in the general field of overall
onboard safety in aerospace applications. So the maxi-
mum attainable free-strain, which is a real index of the
control authority, is of the order of magnitude of 300-
400pue.

This has led somebody to say that Smart Structures have
been probably oversold [4], also because transition from
laboratory environment to real environment has proven
to be more difficult than expected. So smart control is
really efficient or simply viable only for those problems
where amplitudes to be controlled are reasonably small.
Prime candidates are in the acoustic field (panel acous-
tic fatigue is a typical example), although here another
problem may arise from high modal density. It seems for
the moment rather difficult to efficiently control problems
where forces are great (such as, for instance, divergence),
also because many of such problems are associated with
torsional facts, in which smart components are not very
efficients, as we will see.

In my opinion, this is a field in which a close collabo-
ration between technologists and engineers is mostly de-
sirable. Is it possible to ”design” a material with some
specific characteristics? New modern ideas, such as vir-
tual manufacturing, smart production (which does not
mean production of smart materials) could help a lot in
this area, providing the community with what everybody
is waiting for, i.e., higher authority components.

But further improvements are needed also as far as dura-
bility, which has not yet been proved, is concerned. It
is of smart sensors and actuators what has been of com-
posites which were seen rather suspiciously some thirty
years ago and are now being used more and more widely.
The list of aerospace engineering problems in which smart
structures have been used or are considered for use is
rather lengthy, and it is reported in Appendix VIII: each
of them would deserve a discussion, a proper analysis, a
bibliography index, etc. Unfortunately (or, better, for-
tunately for me), this is outside the scope of this paper.
I would also like to mention another technique to which,
in my opinion, not sufficient attention has been devoted,
and it is the active control of wave propagation in a
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one-dimensional continuum, that can be considered as
a waveguide where disturbances propagate and are re-
flected and fransmitted. One can think to control struc-
tural vibrations by altering the properties of transmis-
sions of some elements in such a way as to prevent them
to be transmitted to all the structure, or at least to a crit-
ical region of interest. Some criticism was made to this
idea on the basis that is applies only to one-dimensional
problems: forgetting however, or possibly not knowing,
that a wing or fuselage structure, whose interest in aero-
space is out of question, is a one dimensional finite con-
tinuum, perhaps with some thousands of degrees of free-
dom, but one-dimensional. We will see it.

2 A general formulation

The equilibrium equation for a continuous body B reads
Vo-p = 0 inB (1)
Ro—q = 0 on OB

The meaning of the symbols is explained in Appendix I.
The constitutive equations for a piezoelectric material [5]

are written:
& froomd
D =

Again, for symbols, see Appendix I.
Solving the first of eqs.(2) for ¢ and substituting into
eqs.(1) yields:

SEo +dE
dTo + P°E )

V(He)-p = pg inB 3
R(He)—q = gqg on OB )
where H = [SE]_l and:
pe = V(HAE)
{ 5 = R(HE) ®

The Lhs. of (3) are the same of the classical theory of
elasticity: so pg, gg play the same role as p, q; in other
words, they can be considered as additional (or piezo-
electric) forces. From this point of view, the situation is
very similar to the problem of Thermoelasticity, or Ther-
mal Stresses Analysis.

For a complete solution of the problem one should also

write the equations ruling the electrical diffusion within
the body, coupling it with (3), then solve the partial
differential system arising from the coupling, with the
relevant boundary and initial condition. This has not
been done in the paper, where E (or, better, the electric
potential defined by E = grad V) is supposed to have
a known spatial distribution, whereas its time variation
is ruled by control purposes. It should also be noted
that the coefficients in (4) need not to be constant; in
particular, not all the elements are piezoelectric and at
the boundary between piezoelectric and non-piezoelectric
mutual forces have the same expression as qg.

It is seen, however, that the electrical field has a driv-
ing capacity, or actuator effect, generating forces whose
value and variation are capable of providing the required
control. On the other hand, by eliminating o between
the two egs. (2), one obtains:

D=d"He+ (P’ —dTHJ)E (5)

It is clear, from (5), that one can have an electric dis-
placement even if £ = 0. This means that a piezo ele-
ment can act as a sensor too, providing electric charges
(associated to D) and consequently feedback current and
voltage, in order to achieve the requested control.

3 Application to structural dy-

namics

We consider now the case of thin-walled structures (which
are the only ones of interest in aerospace applications) in
which (or just on the surface of which) we place piezo-
electric patches. A finite element approach is the tool we
generally have at our disposal.

Now, if we consider egs.(3) we see that nothing new arises
as far as the Lh.s. terms are concerned, giving rise to
mass, stiffness, structural damping matrices and the load
vector. We may account for the piezoelectric terms as for
an increase in total potential energy, given (for the j-th
element) by:

U = /wT(zl,xg,xa)V(HdEj)dBj—l»

H
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+ / W' (21,25, 23) R(HAE;) d(3B;)  (6)
B,

where w is the generic displacement vector in B;. Deno-
ting by X; the values of the degrees of freedom relevant

to B; we can write
v T
Ui = X;" BE; (M

where we suppose that E; remains constant within the
piezoelectric part of B;, although it can vary from patch
to patch. The expression of matrix P; is given in Ap-
pendix II. So, finally, the dynamical equation of the struc-
ture for the degrees of freedom described by the vector

X reads (with obvious meaning of the symbols):
MX +HXN + KX = F+PE (8)

where F is the electric field vector, F the external load

vector and P the matrix of P;’s, properly assembled.

4 TIllustrative example: a smart

beam

We consider the structure of fig.(1); here we have a beam.
with N pairs of piezoelectric patches, symmetrically pla-
ced along its upper and lower surface. Physical dimen-
sions and positions of patches are assumed to be given,

but, for the moment, not specified.

Piezoelectric patches
| e e .

.

NN

AN

N .

\\ \\-\\s‘,
N

N

Figure 1: General layout of a smart beam

As we will sec, this is a rather simple example, but we
can learn much from its analysis, in view of further ap-
plications to more complicated and general strucures [6].
We will study two different kinds of connections between

patches and hosting structure: the first kind is when the

patch (considered as an extensional bar) is attached to
the beam via a rigid member, see fig.(2), and is elsewhere
free: the second case, shown in fig.(3), is that of a contin-
uous bondage between patch and beam, which have the

same displacements at the interface.

patch

—
Ay

Figure 2: Pin-jointed connection

patch

AN\

Figure 3: Full-bondage {continuous) connection

Let us start by treating the problem in the frequency
domain. We easily find the end-forces on the k-th patch
in terms of the (transformed) beam rotations 85, 0% at
the patch ends. Now, if we apply positive voltage Vi on
the upper patch, and equal and opposite voltage on the

lower patch, we have control moments given by:
rk -
Mg =
Mlk =

ckoOE 4 ek of 4 iy (9)

08 + kK oF 1 kv (10)

The values of the coefficients ¢® and v* for the k-th ac-
tuator are given in App. IIL
If we now introduce the vector © of the nodes rotations,
the vector M of the nodal moments, the vector V' of the
actuator voltages, and we denote by v and (' the properly
assembled matrices of u}“ and c}c, we can write eqs.(9)-
(10) as

M=CO+vV (11)

Since the rotations must be the same on the beam and
on the patches, the f.e.m. version of the host structure

equation reads:

O =GCm(M+Mu)+ G Fy (12)
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where (7, is the matrix dynamic Green’s function that
links rotations and bending moments, Gy is Green’s func-
tion relating rotations with forces, M4 and F, are ap-
plied moments and forces, if any. From (11) and (12}):

O =24V +04 (13)
where
Za = ( ;;zl - C)_lv
éA - (I—GmC).‘l(GmMA+GfFA)

Z4 is often referred to as the electromechanical impe-
dance matrix, or open-loop transfer function of the sys-
tem [7][8].

Consideration of the above scheme may give rise to some
criticism, due to the fact that the piezo patch does not
fully take part in the host structure motion (in the spe-
cific case, the transverse motion of the beam). For this
reason, a more realistic scheme to use is that correspondig
to an actuator completely bonded to (or imbedded in) the
host structure. In this case, we simply ignore the contri-
bution of (! in eq.(11), and take for G,,, and G Green’s
functions obtained by adding the stiffness and mass of
the piezo to the stifluess and mass of the beam.

The beam is now activated, but not yet controlled. For
this purpose, we must relate the input V to © and its

time derivatives through amplifier factors g? and g!:

V= (g2 + jwg:)O (14)
It shold be noted that g7 and g! are to be chosen ac-
cording to the control strategy to be planned. The con-
trol systern must transform measureable output quanti-
ties into input control voltage. For this reason, in real-
ity the measured quantities upon which control is based,
are electrical charges and currents on the sensor faces,
strictly related to © and dO©/dt (see App.III) [9].

From (14) and (13) we obtain the relation

O =2Z:0,4 (15)
with the closed loop transfer function:
Ze = (1= Za (g2 + jwgl)] ™" (16)

From the knowledge of Z¢ we can obtain the time do-

main results, once given the expressions for M4(t) and

Fa(t).
A better perspective to the problem can be gained using
time domain analysis. Here it is convenient to write the

equation of motion under the form:
amM* X 4+ 0 H' X + a; K*X =
L*X +alL*X +F (17)

where quantities with an asterisk are nondimensional
quantities, F' is the external load vector and X are nondi-
mensional degrees of freedom.

The dimensional coefficients a,,, a, ar, a? and al are
a measure of the importance of the various terms in the
total balance. For the specific case under concern, their
value is given in App.I11L.

“ Characteristics H Beam ” PZTﬂ
Length (mm) 2000 j 1000
Width (mm) 400 400

Thickness (mm) 40 0.2
Young’s Modulus 70 63

(N/m? x 10°)
Mass Density (kg/m3) || 2700 || 7630
PZT constant - 180
(m/volt x 107°)

Table 1: Characteristics of a smart beam

Modat Displacement
1 T T T
0.8 - without actuationt — i
: i with actuation -~~~

0.2

Amplitude
IS
A §
=::_?___“__~_‘
: i

-0.2
-0.4 ¥yt
-0.6 V ¢
08 Uu R LI TR TS RO N i
p i ;
0 5 10 15 20 25 30
Time

Figure 4: First Mode response ((=0.01)

A numerical case was worked out for a cantilever rectan-

gular cross-section beam, whose characteristics are given
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in tab.(1).

The results are relevant to time history of modal ampli-

it could have been expected.

Modal Displacement
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Figure 6: Third Mode response ((=0.01) 0.4 / i ,
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Control here extends exactly over the first half of the s o i
beam, with a closed-loop gain (G1=4000 V/Amp (see = ] ¥i
. . N A
App.I1I{c)). T know that literature is full of more com- YA ‘
M
plicated examples, but I want to show here something v | :
special. youy
) i i L
Figs.(4),(5) and (6) show the evolution in time for a pro- 0.2 04 _ 08 0.8 1
ime -

portional structural damping ¢ = 0.01. It is seen that

the increase in damping associated with piezoelectric ac-

tuations is sensibly increasing with modal frequency, as
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Figure 9: Third Mode Response ((=0.005)

Figs.(7),(8) and (9) provide the same results for ( =



0.005; the resuitant damping factor is not much different
from the previous case.

5 Illustrative example: a smart
plate

For the case of a plate-like structure, we essentially have
to follow the same procedure as with the beam. The
equations in the frequency domain are the same as (11)
and (12); here too we can make a distinction between
pin-joint and continuous bondage: in the latter case we
ignore the contribution given by C (which, in this case,
would be an extensional membrane); the values of the
v’s are reported in Appendix V.

There are several excellent papers describing the general
behaviour of a smart plate, see [9]. In the time-domain,
we still have eq.(17) with the proper expressions of the
quantities appearing in it, not reported here for the sake
of brevity.

As illustrative example, the open-loop transfer function
was worked out for the structure described in tab.(2)
(damping factor, missing in the table, is assumed ( =
0.01), whose general arrangement is shown in fig.(10), see

[10]. Shear flexibility and rotary inertia were considered.

L
\

pi¢zo patch

)f/ chedk point

Figure 10: Smart plate scheme (simply supported)

There we have four actuators simmetrically placed, and

the transfer function is calculated in the three check

In-phase actuation (++++)
1e-01 LN N S B SN BN R

10-02

1e-03

le-04

Amplitude {rrvsec/Volt)

1e-05

- A S T VAR O S A O
mt 250 m2 m3 500 md4mS 750 m6m7
Frequency (Hz)

Figure 11. Vertical velocity response of point 1

points showed in the same figure. The four actuators
patches are driven by a sinusoidal voltage of constant
amplitude that can be positive (4+) or negative (—) for
each of them independently.

Figs.(11) and (12) provide results for the points 1 and
3 in the case (+ 4 ++), that means in-phase actuation
of all four patches; continuous lines are relevant to full
bondage, while dotted lines to pin-joint case. Although
the trend is similar, there is a considerable shift in the
resonance peaks , i.e., near the resonant frequencies of
the uncontrolled plate (indicated in the figures as ml.
m2... etc). This s surely due to the influence of adding
patch mass and stiffness to the structure.

In-phase actuation (++++)
VT

1e-01 IR S B

1e-02

16-03

19-04

Amplitude (mvsec/Volt)

1005 F :
‘pin-joihed s

1606 [ T TR SR O R A A
ml 250 m2 m3 500 m4mS 750 mém7

Frequency (Hz)

Figure 12: Vertical velocity response of point 2

Fig.(13) provides with similar results for check point no.3.
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when the four actuators are driven out-of-phase (+ —
+-).

In both cases resonance peaks, as calculated with the full-
bondage scheme, are not far from the eigenfrequencies of
the host structure.

QOut-of-phase actuation (+-+-)

18-07
gl b N AL
E 1000 Y.t o -,
3 AL
L‘é 16-10 A,,‘/. ....... ‘\," .......... R T -
< ¥ full bonged +~—
: \ ‘ { ‘pin-joihed +---
to-11 fromd ok I T e
1012 T P
ml 2560 m2 m3 500. md4ms 750 mém7
Frequency (Hz)
Figure 13: Vertical velocity response of point 3
” Characteristics ” Al faces | Honeyc. core l PZT ”
Length (mm) 600 600 66.7
Width (mm) 500 500 55.6
Thickness (mm) 0.2 6.35 0.2
Young’s Modulus 70 1.02 63

(N/m? x 10°)
Shear Modulus 26.9

0.434 (x) | 24.2

(N/m? x 10°) 0.213 (y)

Mass Density 2700 83.3 7630
(kg/m?)

PZT constant - - 166

(m/volt x 1079)

Table 2: Mechanical Properties (smart plate)

6 Stiffening and damping efficiency

Eq.(17) is very general: it is practically the same for
all possible controlled structures, each kind of structure

having the proper expressions for the constants, the ma-

trices and the degrees of freedom relevant to it.
It is convenient, first of all, to reduce eq.(17) to a nondi-

mensional form, letting

a t F
T2 = % = = f:——-
aj T Am
0 1
_ ap O_ac 1 a,
ap = —/ o, = — o, =
Tak ag Tak

we have the standard form:
M*X + o H' X + K*X = oL*X + olL*X + f (18)

So we see that terms containing o (direct position feed-
back control: DPFC) and ol (direct velocity feedback
control: DVFC) play the role of increasing stiffness and
damping characteristics of the system.

By inspecting eq.(18) one can pictorially say that forces
involved in dynamical equilibrium (through the asterisks
matrices) define the respective shape (i.e, how they are
distributed within the structure), and by nondimensional
coefficients, defining the relevant robustness. In partic-
ular the coefficients o and ol are related to maximum
piezoelectric strain and to control gains.

In the frequency domain, eq.(18) reads

{~w®M" + jw [apH" —alL*] + [K* —aL*]} X = f
(19)

which provides the closed-loop transfer function, already
defined in detail for the beam.
In the frequency domain, it is also possible to make a
distinction between controlled and uncontrolled degrees
of freedom (see App.VI).
Let us especially concentrate on DVFC. Generally L* is
a sparse matrix if sensors and actuators are co-located:
also, in general it is not symmetric, however, if its sym-
metric part is non-positive defintte, the closed loop sys-
tem 1s energy dissipative. This means that, if this is the
case, DVFC control cannot destabilize or reduce the sta-
bility of the system, whatever the choice of the feedback
system is. Also, the pole location of the closed loop sys-
tem will never be placed, in the complex plane, at the
right side of their locations for the open loop system.
In order to apply the method, therefore, it should be
checked that for the particular choice of actuators and

sensor, the matrix is non-positive definite. Although a
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general rule does not exist, for the complete matrix L*,
some indication can be found in {11].

The form of eq.(18) is very similar that relevant to other
fields of structural dynamics, where one has mass, stiff-
ness, structural damping and other forces. This is, for

instance, the case of
e Aeroelasticity
e Flexible bodies in orbit
e Thin structures with in-plane forces (Buckling)

Each of these forces can either stabilize or destabilize the
system. The relevant rules have not yet been fully estab-
lished.

Obviously, 1t is often convenient to use modal format.
If we have the diagonal eigenfrequency matrix, and the
modal matrix of the "nude” system, i.e, with K* and M~
only, we can easily write eq.(18) in terms of modal ampli-
tudes, achieving a significant reduction in the size of the
differential system (even if, of course, some difficulties are
introduced). One of the most serious problems is time-
integration schemes, some of which may exhibit conflict-

ing characteristics of accuracy, stability, duration.

7 Torsional control

Torsional control is of great importance in aeronautical
structures design, since such structures undergo aeroela-
stic phenomena, which are deeply connected with tor-
sional stifiness. Therefore the use of smart materials in
wing structures is generally confined to the increase in
torsional stiffness rather than in damping.
Unfortunately, however, piezoelectric actuators produce
extensional strains, not shear strains, so twist control in
a beam or a beam-like structure is usually accomplished
by orientating the patches at an angle to the beam’s lon-
gitudinal axis {see fig.14).

Furthermore, practically available materials are isotropic
in the plane normal to the poling direction, so that their
authority on the torsional movement is rather poor, be-
cause it arises only from the bending-twisting coupling
effect due to the anisotropic properties of the composite

laminate and to the sweep angle of the wing, if any.

A recently proposed alternative technique would consist
in using piezoelectric elements, activated in such a way as
to produce cross-section warping and, consequently, an
angle of rotation, thus improving the torsional stiffness
of the structure.

. piezo patches

AN

Figure 14: Torsional control with diagonal patches

A

7,

A

Section A-A

4

Figure 15: Torsional control using bimoment

A typical case was worked out in [12]: the results ob-
tained with DAP elements control (i.e., patches at some
angle with the beam axis) are compared with results
achieved using a bimoment due to opposite piezoelec-
tric stresses in a logitudinal element (see fig.15).

The relevant results can be read in the original paper:
suffice here to say that the bimoment control in this case
induces section rotations almost three times greater than
with DAP approach; however, in both cases the rotation
control is very small, as confirmed by the analysis per-
formed in Appendix VII.
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8 Aeroelastic applications

The problem of the aeroelastic behaviour of an aircraft
is one of the major concerns in aeronautical design. Due
to the high flexibility of their use, composite compo-
nents can prevent, or delay, undesired phenomena, such
as divergence, flutter, aileron reversal, and/or unwanted
changes in aerodynamic loads. In dynamical problems,
however, simple use of composites may not be sufficient,
or viable. Thus, piezoelectric devices could be envisaged.
When dealing with aeroelastic problems, adequate mod-
eling for structural and aerodynamic behaviour should
be available.

For the former, there exist a large number of models,
starting from simple analytical solutions to sophisticated
finite element approaches: since, however, in Aeroelas-
ticity global rather than local quantities are of interest,
classical methods may need some updating.

For aerodynamics, in principle, unsteady formulations
should be used, since quasi-unsteady aerodynamics might
give poor results. Thus, in aeroelastic control, new matri-
ces and relevant coefficients (typically related to dynamic
pressure, made somehow nondimensional) enter the loop
described by eq.(17). Such matrices generally play a role
similar to DPFB and DVFB control.

A reasonably complete treatment of the problem is given
in [13] to which the reader is referred. We will confine
ourselves here to illustrate the numerical example con-
tained in it.

piezo sensor

iezoelectric actuators

passive layers

Figure 16: Wing piezoelectric laminate

The structure here considered is a cantilever wing. In or-

der to apply the proposed method, a wing active element

consisting of 20 layers was considered, fig.(16); the first
three upper and lower are piezoelectric: the first two are
used as actuators, while the third one acts as a sensor.
Maximum attainable free strain is 180 pe: DVFConly is
present, with a gain of 1000 V/A.

The structural model of the wing is an equivalent plate,
where chordwise and spanwise variations of structural
parameters can be accounted for: displacements are mod-
elled by a chordwise power series and, for each term, by
spanwise beam-like shape functions. In this way, global
quantities are the unknowns [14].

As far as aerodynamics is concerned, piston theory in su-
personic flight was considered, at M=1.5, and dynamic
pressure of 5400 N/m?. The wing has an aspect ratio of
10, and positive sweep angle of 45 degrees.

With this choice of actuators and sensors, the symmet-
ric part of control matrix to be non-negative is verified,
so we are sure that piezos act as dampers. Each of the
active elements, for a total of 3 near the clamped ends,
is assumed to coincide with one of the 16 spanwise ele-
ments taken for the structural model.

The results presented here are relevant to the case of
a gust corresponding to a unit angle of attack for two

models:
(1) step gust
(i1) one-minus-cosine gust

Both have a duration of 20 seconds.

Wo

Figure 17: Tip displacement response to gust (i)
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Fig.(17) shows the time history of flexural (average) ﬂip
displacement, made nondimensional with respect to the
wing length.
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Figure 19: Applied voltage during gust (i)

Fig.(18) is relevant to the tip rotation. The results clearly
show the increase of damping in the system due to DVFC
control.

A physical linitation exists to the maximum voltage (or,
better, to the electric field) that can be applied to a
piezoelectric lamina, due to the fact that the electric field
should not exceced the depoling field, which, for the case
under concern, has been taken as 10® V/m.

This condition has been checked, fig.(19), where the elec-
tric field (made nondimensional with respect to Epmqz ) is
shown. Similar results are shown in figs.(20) and (21)

for case (ii), where, however, a fairly smaller percent of

45 50

damping is obtained, due to the fact that there is a higher

aerodynamic damping.
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Figure 20: Tip displacement response to gust (ii)
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Figure 21: Tip torsional response to gust (i1)

9 Static control of lifting surfaces

Control of lifting surfaces could, in principle, be achieved
through the two different approaches described in art.7.
Piezo-patches imbedded in the wing composite layup or
spanwise actuators replacing spar elements could pro-
vide an apparent increase in torsional stiffiness, since they
are capable of inducing torsional deformations such as to
counteract the effects of aerodynamic torques [15][16].

The problem is studied in great detail in {17] [18], where
a complete solution is provided for the case described in
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fig.(22)(axial actuators) and in fig.(23)(embedded actu-

ators).

Piezoelectric icCtuatory

prezocliectne actuators

Figure 22: Actuator bay configuration

Orthotrooic layers

stringers
)
1
N
1 . - Ly
middle V ﬂ“//’ ;\‘
plane |

Figure 23: Wing box section

4 @

l

A\

BENDING

TWISTING

Figure 24: Actuator torsion and bendig effects

In the first case. on account of the coefficients daz there
will be an elongation of the stringers: thus, if the ele-

ments 1-3 have positive voltage and the elements 2-4 a

XL

negative one, there will be an antisymmetric, or twisting
movement (see fig.(24), right), whereas for 1-2 positive
and 3-4 negative there will be a symmetric, or bending
motion (see fig.(24), left). On the contrary, the effect
of embedded layer is principally due to anisotropy and

angle-of-sweep effects.
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Figure 25: Center line elastic response with N activated
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Figure 26: Center line elastic response with N activated

ribs

Figs.(25) and (26) show the center line vertical displace-
ment response to aerodynamic loads for /0o = 200 m/s.
on a wing with A = —30° in both cases (axial actuators
and embedded actuators) with different number of active
elements. .

Figs.(27) and (28) show similar results for tip twisting
angle. Tt should be said, however, that the results are

not very realistic, since no check on the upper limit for



Viner was made. Further work should include this limi-
tation, and then results are likely to change.
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Figure 27: Torsion elastic response with N activated
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Figure 28: Torsion clastic response with N activated ribs

10 Active control of wave propa-

gation

We consider here a one-dimensional, indefinite (but not

necessarily infinite), structure, referred to a longitudinal -

r-axis. A good example of interest in aerospace engi-
neering is a shell wing or a fuselage, where, also, geomet-
ric characteristics are dependent on . The structure is
considered in dynamic conditions and we shall conduct
a frequency domain analysis, App.IX (see also [19] [20]
[21].

XLl

The conditions of the structure are defined through a
state vector Y(x,w) which includes not only displace-
ments but internal forces too; f.i, for a simple beam, ¥’
consists of four variables: lateral displacement, rotation,
internal bending moment and internal shear force. For a
shell wing the situation is much more complicated, [22].
It is well known that, in such approach, it is possibie to
define a propagation function P(zg,z;,w) relating the
state Yy at a station zg to the state Y] at a station z,.
This is practically equivalent to solve the structural prob-
lem with initial rather than with end conditions. This is,
in general a non-natural way to solve structural prob-
lems, and it could easily be seen that it would be a non
practicable, although formally correct way of operation.
[t should be borne in mind, however, that this is not the
aim of wave propagation analysis, which seeks relation-
ships between states independently of the circumstances
which have produced such states (forces, constraints, en-
vironment ).

State can also be defined by means of "waves”, corre-
sponding to eigenmodes of propagation, which are not
the eigenmodes of the structure, and which are an index
of how energy is transferred, and how the state is trav-
elling, along the structure, in the two directions of the

reference axis.

Actuator
1 T
f f
-+
X
’
= :X
X ° 4
P e, outgoing waves
— incoming waves

Figure 29: Wave propagation control

Let us now consider, fig.(29), a portion of structure be-
tween two sections: here we can define "entering waves”

and "outgoing waves” and range each group in a vector.



Furthermore, there will be, in general, some discontinuity
in the element: for our purposes, the only discontinuities
of interest are forces, if any, applied between the two sec-
tions. With this in mind, the basic relationship between
outgoing wyy: and incoming w;, waves is:

Wout = S(J:Ov I[,W) Win + ’d)f (20)

where S(zg, x1,w) is the so-called dispersion function, v
the load-generating function, and f is the applied force.
For control purposes we have the situation described in
fig.(29). Let us assume we have waves propagating along
positive z, and we want to control vibrations somewhere
outside the region R (active region), defined by sections
zo and x;. At such sections we put two sensors (not
necessarily piezo- or anyhow smart) and an actuator in-
side the region. In order to design our control we must
produce forces

f = G(w) m(w) (21)

where G(w) is the gain-matrix and m(w) is an observed
vector, related to waves amplitude by:

m{w) = MinWin + Moy Wout (22)

where M;,, and M, are appropriate matrices. Combin-
ing the above equations we have the closed-loop disper-
sion function:

5 =[] — ¢vG(W)Moyi] S + vG(w)Min] (23)

Therefore, through proper selection of the matrix gain,
we can obtain the requested closed loop dispersion func-
tion.

In principle, if n is the order of the state Y, [n x n] is
the order of the dispersion function, so n x n. parameters
could be controlled through. In practice, however, only
a much smaller number of d.o.f. is measurable, and only
a much smaller number of control forces is available.
Fig.(29) (from [21]) is relevant to the case of a beam: al-
though many choices could be possible, here, the choice
was made of taking the mean line curvature as the ob-
served quantity. As far as gains are concerned, only one

parameter was taken, so the matrix G(w) reduces to a

scalar g(w) and, consequently, only one of the compo-
nents of the closed loop dispersion function can be cho-
sen. Also, the desired control was designed in such a way
that the outgoing wave was cancelled. For this purpose,
a simple expression for the gain as a function of w can
be obtained, as represented in figs.(30) and (31).
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Figure 30: |g(w)| vs. dimensionless frequency
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Figure 31: phase of g{w) vs. dimensionless frequency

11 Experimental work

Experimental results are of prime importance in our field.
Our Department is deeply involved in an ESA-sponsored
program which is, however, at its first steps in the Labo-
ratories of San Diego State University. I hope to be able
to give a full report on the results at the time of the final

version and of the presentation in Sorrento.
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12 Conclusions and future work

The conclusions are already contained in what I have
said above. I must confess to feel a little frustrated on ac-
count of the limitations associated with small amplitudes
requirements I tried to illustrate several times. In certain
areas smart structures could prove excellent, but much
has to be done in terms of reliability, confidence, afford-
ability, production technology. In my opinion, much has
to be done also to understand basic priciple of control,
optimization of sensors and actuators position, strate-
gies, etc.

From our viewpoint the goal we shall try to reach is to
acquire a better knowledge of what seems to be today the
needs of a modern society: better materials, better con-
trol, better experience. And use of mathematical models
on realistic structures, what we are currently doing.
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A Appendix I

In eqs.(1) o = [01, 02,03, T23, T13, T12]T is the vectorized
stress-tensor (with the convention 04 = 723, 05 = 713 and
06 = Ti2), p(€1, 2, x3,1) is the external force per unit
volume and V is the differential operator transforming o

into body stress-forces:

il B
2 0 0 0 5oy 7
v=1| 0 -53—2 0 5% 0 2 (24)
3 i 3
0 0 35 35 25 O

Furthermore, ¢{x1, €2, 23,t) is the force per unit surface,
applied to the boundary 0B and the finite operator R is

given by:
[£ 51 0 0 0 agz Q3
R= 0 (s3] 0 ag 0 [¢5} (25)
¢ 0 a3 Q2 O3 0

where oy, o, as are the director cosines of the outer
normal to 0B.
In eqs.(2) € denotes the vectorized strain tensor

T
€ = [e1,€2,€3,723, 713, 712]

SE is the [6 x 6] elasticity tensor for constant E, dT is
the [3 x 6] piezoelectric matrix. Choosing the intrinsic
coordinate axes according to symmetry, that exists in
certain classes of piezoelectric materials, the piezo matrix

reads:

0 0 0 0 ds O
=] 0 0 0 dyg 0 0 (26)
d31 d3zz daz 0 0 dse

Finally, E is the vector of the electric field, D is the elec-
trical displacement, P is the [3 x 3] electric permissivity
tensor for constant o.

The above expressions hold for three dimensional ele-
ments. For two dimensional elements, the vectors o and
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¢ simply reduce to

o

[01,02,7'12]’[

e = [e1,€2,712)7

In the matrices V and R columns 3, 4, 5 and row 3 must
be deleted.

For one dimensional elements we have

o = l[oi]
e = [e]

vV = d/0c
R = [a]

where a3 reduces to unity, on account of normality con-
dition.

B Appendix I1

In general, in a piezo patch, E; = const, so the first term
in Eq.(6) is vanishing. As far as the other term is con-
cerned, we set w(zi, 2, 23) = Nj(z1,22,23)X;, where
the N;’s contain the shape function assumed in the f.e.m.
approach. In a rectangular flexural plate, where only the
tranverse displacement w,(z,,zq, z3) is of interest, we
have 3 d.o.f. for each node, and using a four-node ele-
ment a total of [4 x 3] d.of; so N; is a (well-known)
[1 x 12} matrix; use of intermediate nodes may increase
the value 12, as well as consideration of shear flexibility.
In an extensional membrane, we have in-plane displace-
ments v = u(xy, 22, 23), v = v(x1, 2y, x3), and, for bi-
linear shape functions, a size [2 x 8] of the matrices N;.

Thus, for the matrix appearing in eq.(7) we have now

P = o, N;TR(Hd) d(8B;) (27)
Clearly, the integration expressed by the above equation
is to be extended only to the positions of the element
which are occupied by piezoelectric materials, since, else-
where, d = 0.

C Appendix III

(a) Consider the piezo patch of fig.(2) as an extension
bar, with:

A, = cross section

E, = modulus of elasticity

L, = lenght

pp = mass per unit lenght
u = axial displacement

where the subscript ”p” refers to piezoelectric. For the
equation of motion in the frequency domain we have
d%u

Ez-g-l-)\f,_:() (28)

where

2
A2 = 2 tp Ly

P B A E=z/L, w=u/L,

Integration of eq.(28) with the boundary conditions %(0) =
iig and #(1) = 4, yields:

sin[py (1 = §)] +

sin(pp)

sin(ppé)
! sin(pp)

= %o (29)

In order to compute end-forces on the bar, we can ap-
ply the one-dimensional version of the first of egs.(2),

obtaining:

- E,A Ly,d

Ny = - {pp (@1 csc(pp) — o cot(pp)) — —%—-—%V]
P »

. E,A _ Lpd

M= =22 [pp (@1 cot(pp) — o cse(py)) ~ 2= V] (30)
P P

where h, represents the piezoelectric bar thickness (neg-
ligible with respect to beam height). Denoting by z, the
distance of the patches from the beam axis, we easily
obtain the coefficients appearing in egs.(9) and (10):

Cop = —C11 = “22’;; I Pp COt(pp)
P
E,A
cop = —C1g = —-2z§ 2 L pp, csc(pp)
P
E,A
Vg = -V = -Zzz P pd31
hP
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(6} Consider a beam of lenght L,, flexural stiffness E, I,,
mass per unit length p, and divide it into n elements.
Let 6 = % The cases of nonuniform beam or nonuniform
lenghts are easily treated, keeping for the above quanti-
ties a reference, or a mean value, and considering vari-
ation in the individual mass, stiffness, control elements.
For the transverse displacement w = L,w in one element.

{xj—1,%;) , we can use the classical cubic approximation,
and write:

w = .\'J-T‘I’

where \]T are the d.o.f of the j-th element (wyp, 8, ), 8;)
and ¥ is the vector of the shape functions:

¥i(€) = 1-3¢2+26
¥a(€) = (£-262 4836
¥a(€) = -3¢*-26°
val€) = (-2 +&%)8

with 0 < ¢ < 1.

So, the kinetic energy in-the element is written:

1 /o ow\’ % U
=3 ) (&) e, o

where:

i

i
M; /0 v d¢

9
Mn = pgl;

For the elastic potential energy:

.)

1 [ Pw\" P
5=§/r_, [Dala(ar.z) d.l?:ak,\;r[\j,\j (32)

1 g2 T
. v v
R = 22 4
R AT
a . Eala
k= La

The matrices M, K* of egs.(31) and (32) are then
assembled version of M; and I\'j‘.
Note, however, that the above treatment is greatly sim-

plyfied. For a better understanding of piezo-patch inter-
action, see [23].
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(¢) The scheme of the layout for the piezo of the beam
is considered n fig.(32).
The piezoelectric moment for a 1V voltage and the charge

collected on the sensor because of deformation are respec-
tively (see App.IV(b)):

MP
Qp =

‘22;,(131 pr
zpd31 Ep b (81— )

it

and, so, if we have gains G and G for @, and Qp:

M. = M,V =M, (GQ,+ GIQP) -
- (QZpdalEp b) (2pd31Ep b) ((;OQP + GlQp) =
dé df
= 2zpdsi Epb)? [Gowl ~fo)+ 6 (Tj—fi - —d?(Z)] )
dé, df
= al(6; ~0p)+al (—dt_l - "Jig)
where
a‘c) = ‘ZGQ(zpd:ilpr)z
al = 2G;(zpd3 Epb)?

that are the coeflicients appearing in eq.(17). Consider-
ing the j-th element of the beam

(01 - 90 )]- - Lj X
(0.1 - 90) _ = LJX'
j
where X is the vector of all the beam d.o.f.. thus as-

sembling the element matrices L;, one obtains the global
matrix L™,

piezo axis

hp p
beapraxis
-
: X" X
—-

Figure 32: Piezoelectric patch layout



D Appendix IV

{a) For a structure having modal format defined by fre-
quencies w, and modes W, (&), where & is the vector

defining positions, we have

GE#) =Y W, (@)W (1) (33)

2 2
w w
r=1 r

In the frequency domain, damping effect is often ac-
counted for by considering a complex modulus £ = Eg(1+
Jjn), which is equivalent to set in eq.(33) w2(1 + jp) in-
stead of w?: so we have the complex expression of Green’s
influence matrix

o0
. WX (&)W, (#)
Gl+ GII — r r 34
’ ;wz—w,?(lﬂn) 34

(b) In the one-dimensional case under concern, the first
of egs.(2), with respect to o reads:

o6 1%
oy =E, [ZP% - dznz—]
'p

where, using previously defined notations, z, is the dis-
tance of the patch from the beam axis and h, is the
thickness of the patch. Thus the piezoelectric bending
moment is :

Mp =F d';l (b hp)QZp = 2~pd31E bV (35)

where b = width of the beam and of the patch (the thick-
ness hy, is assumed negligible as compared to z,).

For the sensor, co-located with the actuator, the second
of eqs.(2) yields:

o8
D =dsi01|lv=0 = d31 E, i

So, the electric charge collected is :

//DdS-—b/ Ddz =

" o6
= gpd';lE b/’ —é——dz' = Zpd';lE b (91 —90)

Qp:

E Appendix V

A laminated piezoelectric wing plate is made of several
piezoelectric as well as non-piezoelectric laminae. In gen-
eral each lamina is oriented at an angle a with respect to

a global reference system. Introducing the stress-matrix

transformation:
2 2 —2sc
T(a)y= | s2 ¢? 2sc (36)
s¢c —sc c?—s?

using, for brevity, the notation ¢ = cos(a) and s =
sin{), we obtain the constitutive equation relating o

to ¢ as:
og=He—-rE (37)
where
H = TTHT
r = TTHd
E = [00 E7

with H representing the orthotropic second-order tensor
of elasticity. Now, if we compute the bending and twist-

ing moments, we obtain

M, +h/2
M, | = / zodz = Dk + vV
M, ~h/2

denoting by & the curvature vector and by D the stiffness
matrix of the plate,

1N
:E.Zz

where z; and z;_1 are the upper and lower limits of the

H(J) (38)

j-th layer, HY) is the matrix relevant to the layer. Indi-
cating with h; the thickness of j-th patch, the piezoelec-
tric matrix »; is given by:

-

From above, it is seen that the actuating effect of piezo

)
_7 1)— (39)
J

laminae or patches is to introduce bending or twisting
moments of value (39) acting on the plate at the sides
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of the patch. For a rectangular, orthotropic element, we
only have bending moments acting parallel to the patch
sides.

F Appendix VI

Let us define .X'| as the vector containing the controlled
d.o.f of a structure and X, as the vector of the uncon-
trolled ones; partitioning the matrices appearing in (19)
and indicating with indices 1 and 2 the part of each ma-
trix corresponding respectively to X; and X; we can
write:

ij = {"‘sz;k+jwahH;k+K;k} j,k: 1,2
and the equation {(19) becomes:
[Jll —jWG’EL;I.—OSL;‘] 4‘21 +.]124X_'2 = fl
(321 —jwalLs — oL\ | X, + 302Xy = f

Elementary matrix algebra allows to eliminate X3 be-
tween the two foregoing equations leaving only X, as
degrees of freedom. This has tacitly been done in the
example concerning the beam, where rotation only were
controlled.

G Appendix VII

We consider a simplified model of a shell-wing structure,
as showed in fig.(33), under the action of a bimoment
at the free end, consisting of four equal and opposite
forces of intensity Ni. On account of symmetry, we only
have rotations f = Ay} and doubly antisymmetric axial
displacement v = L%. By writing the equations of equi-
librium and of clasticity of the stringers and of the ribs
and introducing the adimensional coordinate n = y/L,
we have [24]:

d’v  6GS df 2GL? _
— 4 —0——T =0
dt "V 2EAdn " EA

d*0 46 L?dv _

dn? o Sdnp

with the boundary conditions:

(40)

n=20 — v=6=0

n=1 = 4755

dg 4817 _ dv
1=0, -—
dn

and the above symbols:

2 2,
=t =
§=ph—B o=P+b

A = stringers section S=a-c

E = Young’s modulus G = Shear modulus

From the above equations one obtains easily:

Ny cosh(yn — 1)

bm) = HEA 72 cosh(7)
2 _ 86L2 ﬁhﬁu
T T TEA B+ A,
4612
b= %S

If N; is the force provided by an actuator, then 7 =
Ni/EA is the relevant strain. In current aeronautical
structures 7 is a relatively high number (~ 15), i de-
pends on the aspect ratio and on the wing shape and
8/0 is of the order of 1.

Made these cosiderations, if we take the value 7 = 300u¢
as maximum admittable strain, with ¥ = 15 and g = 500,
we obtain 8(1) ~ 0.67-1073 rad, i.e. =~ 0.4°, a very small
number.

"
= /;7,

:

Figure 33: Simplified model of shell-wing

H Appendix VIII

We shall confine ourselves here to list some of the major
fields of application of Smart Components (Structures,
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Materials, Systems) in Aerospace Technology. A great
deal of information is taken from [4]:

(i) Application of Smart Technology to helicopters has
proven successful, see also [26]. Some major achieve-
ments were relevant to isolation of helicopter fuse-
lages from blade passing noise. Recently also high
frequency transmission is satisfactory controlled th-
rough use of magnetostrictive actuators.

(ii) Control of cabin noise is one of the fields in which
substantial successes have been obtained, and in
which a good deal of improvements is expected:
again the reason of the success lies in the small
amplitudes involved.

(iii) In the propulsion field, distributed actuators pla-
ced around the surface of the nacelle intake have
allowed to obtain a substantial reduction of noise
coming from fan blades. .

(iv) As well known, acoustic loads at take off of a rocket
are one of the major concern for designers, and here
too alleviation is possible.

(v) Coming back to Aeroelasticity, it seems possible to
reduce or even suppress tailplane or fin buffeting
by incorporating actuators in their structure.

(vi) Acoustic fatigue also might be one of the fields of
interest, with some hopes for increasing lifetimes of
sandwich panels, widely used also in Space Struc-
tures.

(vii) Isolation of avionic equipment, for any aerospace
vehicle, from all sources of vibration and shock
would be of great benefit, and possibly allow to
use cheaper components.

(viii) In space application, antennas deployment system
could be one of the prime candidates for use of
Smart Structures.

I Appendix IX

In general, for a one-dimensional structure in the fre-
quency domain, the equation of the state Y reads with
2n degrees of freedom:

dY (z,w)
de
Firstly, let us consider the case of a cylindrical structure,

= A(z,w)Y (z,w) (41)

so the matrix A is independent of z.

Waves are obtained by setting Y(z,w) = Z(w)e!® in
eq.(41) and thus obtaining the well-known equation pro-
viding eigenvalues and eigenmodes

(pI-A)Z=0 p =p(w) (42)

_ For nondissipative structures, eq.(42) provides, in general

n roots for p?, so the state vector can be written in terms
of eigenmodes as

Y=Wuw W =[Z1|Zs]...|Z0)] (43)

where wave amplitudes satisfy the equation:

d

7‘:- = Aw)w (44)
and A(w) is the diagonal matrix of the eigenvalues.
The propagation function, relating wave amplitudes in

two stations is found as

X(.’l?(),ﬁl?l,w) :dzag e"PJ'(z'l‘l‘o) (45)

where positive as well as negative values fot the p;’s are
to be considered.

Wayves amplitudes can be rearranged and partitioned in
terms of incoming and outgoing waves, and consequently

one obtains the dispersion function S(w) given by:

S’(a:o,ml,w) = [ S(')l il :l (46)

where S is the same as X, confined to positive values of
p;’s only. For nonuniform structures, special analytical
devices should be used [25].
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J Appendix X

Typical electromechanical properties of ceramic piezo-

electric materials:

Charachteristic min value maz value
Piezoelectric Charge | ds3 153 593
constant day -60 -274

(10~ 1?m/V) dis 330 741
Elastic constant | Y& 6.1 9.3
(101°N/m?) YE 4.4 7.4

A piezoelectric ceramic can be depolarized by a strong
electric field with polarity opposite to the original poling
voltage. The limit on the field strength is dependant on
the type of material, the duration of the application, and
the operating temperature. The typical operating limit
is between 500 V/mm and 1000 V/mm for continuous
application.
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