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Abstract

This paper deals with the nonlinear static analysis
of multilayered elastic plates subjected to conservative
loads. Based on Reissner-Mindlin theory FSDT (First
Shear Deformation Theory) a finite element model is
developed. Nonlinearities of von Kdrmdn ype are taken
into account. A four node plate finite element with as-
sumed shear strain fields is employed in the numerical
tnvestigations. For purpose of comparison the results
related to the classical Kirchhoff plate approzimations
CLT (Classical Lamination Theory) are obiained by ap-
plication of a penalty technique to the shear correction
factor. Numerical studies concern the postbuckling be-
haviour of plates accounting several geometries (square
and rectangular, thick and thin plates), laminations
(symmetrical and not symmetrical), loading cases (azial
and biazial compression, shear and combined loadings)
and geometrical boundary conditions (simply supported,
hinged and clamped edges). The following main conclu-
sions have been acquired. 1) The FEM is a good tool to
trace the postbuckling of anisotropic flat panels. Fur-
ther in respect to other approrimate methods, its possi-
ble application does not depend on both boundary con-
ditions and lamination schemes. 2) It is confirmed that
the nonlinear effects are very important in the analysis
of multilayered plates and that the shear deformation
effects are very much subordinate to both multilayered
lay-up and loading configuration, furthermore they are
greater in the large deflections field. 3) In respect to pre-
buckling and buckling analyses, much more care should
be taken to impose boundary conditions when the posi-
buckling range has to be traced.

1 Introduction

Composite technology has played and will continue to
play an important role in the aerospace industry. Tak-
ing advantage of their light weight, high strengh and
anisotropic properties, which can be tailored by vary-
ing the fiber orientation and stacking sequence, lami-
nated composites can be used to fabricate highly effi-
cient structures. While these material possess all the
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above advantages, their structural response is quite
complicated and still not fully understood. One of
the important problems deserving special attention is
the study of their nonlinear response in both sense of
large deflections and postbuckling. In fact the well-
known postbuckling strength exhibited by metallic pan-
els has permitted the design of conventional aircraft
structural elements to operate within the postbuckling
range and evidently a better understanding of the post-
buckling behaviour of composite panels constitutes an
essential requirement toward a rational employment of
their strength. Experimental research activities are car-
ried out in many laboratories over the world; see Chai,
Banks and Rhodes [1] as a recent example and for lit-
erature. Usually these are very expensive and the cost
of a parametric study becomes prohibitive. From this
point of view attempts to model analytically and nu-
merically the nonlinear behaviour of composite struc-
tures are very welcome. To this argument the attention
of the present paper is devoted. Some aspects which
are useful for our purpose are discussed in the follow-
ing text.

The first one coming from the last twentyfive years lit-
erature concerns the two-dimensional theories for mod-
elling anisotropic structures. Considerable literature
(among the others see the review article of Noor and
Burton [2]) has shown that increasing the orthotropic
ratio of the lamina and the plate thickness, the trans-
verse shear deformation effects cannot be neglected and
the classical Kirchhoff plate approximations CLT (Clas-
sical Lamination Theory) must be substituted at least
by Reissner-Mindlin model, FSDT (First Shear Defor-
mation Theory). To notice that many improved theo-
ries, including Higher-order effects HSDT (Higher or-
der Shear Deformation Theory), are available from the
open literature, especially in order to characterize local
phenomena; these will not be considered in the present
work. Furthermore the articles by Librescu and Stein
[3], by Librescu and Chang [4], [5], by Palazotto and
Tsai [6] and by Carrera and Villani [7] have shown that
the shear deformation could assume even more impor-
tance in the large deflections range.
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Another important aspect concerns not symmet-
rically laminated plates (in respect to their middle
plane). The coupling between in-plane and out of plane
strains exhibited by such plates makes the effects of
nonlinear terms very important even though low level
of the in-plane applied loads are considered, see Sun
and Chin (8] and Jensen and Lagace [9]. For such plates
the classical buckling load of Euler-type analysis looses
sense, as well discussed by Leissa in [10]. Moreover
dealing with the cylindrical bending of asymmetrically
laminated plates, the author in [11] has found the possi-
bility of a snapping-type phenomenon for the compres-
sion loading case, i.e. the nonlinear terms have tragic
effects.

Although many papers and results are available for the
linear analysis including FSDT and HSDT effects, the
literature is quite exiguous about nonlinear response of
generally laminated composite plates. These results are
even less when shear deformable and/or not symmetri-
cally laminated plates are considered. That is mainly
due to the following reasons: (1) analytical closed form
solutions are available only for very few cases related to
simple lamination sequence, geometries and boundary
conditions; (2) when approximated methods are em-
ployed the computational costs of a nonlinear analy-
sis are very high mainly because a system of nonlinear
equations must be solved iteratively at each loadstep.
Applications to the large deflections analyses of analyt-
ical methods as those quoted in Chia’s book [12], in the
already mentioned papers [3],[4],[5] and in those cited
in the overview article by Chia {13], are quite attrac-
tive. Their limitations hold upon the fact that the pos-
sibility of finding an approximate solution is strongly
dependent on both boundary conditions and multilay-
ered lay-up, in fact to these must be related the shapes
employed in the a priori expansions of the unknown
functions. Within these subjects very welcome are the
recent progresses made by approximated methods of
the computational mechanics and particularly by the
FEM (Finite Element Method), as tools to trace the
nonlinear response of many different problems: see [14]
for isotropic structures and [15] for multilayered ones.
In fact by the use of FEM techniques the limitations
of the analytical methods are easily subjugated, nev-
ertheless FEM formulations (especially when concern
plates and shells) are very often affected by numerical
deficiencies as locking which can be overcome by imple-
mentation of some numerical tricks, see [16].

The present work is a sequel of previous author’s works
[7], [11],[17] and [18] directed to investigate composite
plates by FEM. It uses a shear deformable plate finite
element of Reissner-Mindlin type. Nonlinearities of von
Karman type are included (large rotations, large strains
and material nonlinearities are not considered herein).
To the end to obtain low band length of FEM stiffnesses
matrixes the simple four node plate element Q4 is im-
ployed. The numerical efficiency of this element has

been reached by application of assumed shear strain
fields concept discussed by Dvorkin and Bathe [19] and
Hinton and Huang [16] among the others. The multi-
layered formulation of this element has been proposed
by the author in [20] and implemented in the FEM
code MATCO which is available at DIAS. For purpose
of comparison the CLT results are obtained by imple-
mentation of a penalty technique applied to the shear
correction factor. Elastic flat plates subjected to static
conservative loads are considered. Both symmetrically
and not symmetrically anisotropic laminated plates are
analyzed. As novelty in respect to the previous works,
compression (in both directions), in-plane shear and
combined loading cases are investigeted. Furthermore
new boundary conditions and plate geometries are ex-
plored. The contents have been organized as follow.
Sec.2 quotes outlines of the governing FEM equations,
describing the standard solution methods of the nonlin-
ear system of algebraic equations and the used Reissner-
Mindlin finite plate multilayered elements; numerical
investigations are performed in Sec.3 to which the con-
cluding remarks follow.

Yy Nyy g
Nxy
Nxx ny Nxx
ey i b <=
a Nxy .
==>Nxy
Ny |

Figure 1: Plate geometry and notations.

2 Outlines of FEM descriptions

2.1

Governing equations

Consider an elastic body subjected to static loads and
under prescribed boundary conditions. If the body is
assumed to execute an arbitrary set of infinitesimal vir-
tual displacements, from the actual configuration, the
following variational equation holds [21]

0¥ = §W D
8V is the virtual variation of the strain energy and §W
is the virtual variation of the external work. Upon ap-
plication of FEM approximations, the variational equa-
tion (1) then reduces to a nonlinear set of algebraic
equations that we write in the two following equivalent
forms [22], [23]

{e({a}. {PN} = 0;

[K.({dhHa} ={r} (@
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where!;

{¢} is the n-dimensional vector of the nodal displace-
ments and/or rotations;

{¢} is the n-dimensional vector of the resultant nodal
forces (inner plus external forces);

{p} is the n-dimensional vector of the nodal forces
equivalent to the external loads (which is assumed
deformation independent);

[Ks] is the secant stiffness matrix.

The Eqn.(2) constitutes the point of departure for finite
element calculation of geometrically nonlinear systems.
In addition it’s assumed that the structure is subjected
to a proportional loading

{p} = A{f} 3)

where {f} denotes a fixed reference load vector and )
is a load-scaling factor, load parameter.

2.2

The Eqn.(2) gives the FEM model of the physical prob-
lem. A standard solution scheme is obtained through
the following straightforward application of the New-
ton’s method between the initial state i and the un-
known state i 4 1 (in the neighbourhood of i):

{Sores} = [{90}’{9} ]{A‘I} + [{‘P}’{p} ]{Ap} (4)

in which the load level is treated as a variable; the no-
tation ,.. denotes partial derivative. Within the limits
of our assumptions we have

{Ap} = AMSY; {pwug } = [Kr({¢'})]
{ospy } =11

Standard solution method

(5)
where
[K7] is the tangent stiffness matrix;

[I] is the unit matrix;

{Aq} = {¢**'} — {¢’} is the incremental nodal dis-
placement vector;

AX = X! — )\ is the incremental load factor;

{pres} = [K.{¢'}}{d'} — X {f} is the residual nodal
vector of the nodal forces (unbalanced nodal forces
vector).

1Brace and square brackets denote vectors and matrices re-
spectively, We refer to the displacements formulation of the
FEM.

Upon substitution of the previous notations, the incre-
mental Eqn.(4) becomes

[Ki{Aq} = {pres} + AXf} (6)

Since the load level X is treated as a variable, an ex-
tra governing equation is required and this is given by
a constraint relationship of the form c¢({Aq},A)). Fi-
nally the following complete system follows

{Ki]{AQ} = A'\{f} + {Sarea} (7)
c({Agh,AX) =0

The constraint equation is method dependent. In the
numerical applications we will refer to a modified ver-
sion of the arc-length method as proposed in {17} and
[23] in conjunction with full Newton-Raphson method.

2.3

The contents of this section should be considered a brief
description of the detailed formulation quoted in the
author’s work [17],[18] and [20], in which explicit ex-
pression of vectors and matrixes are quoted.

Description of the plate elements

Displacement model. In order to take into account the
effects of the transverse shear deformation, the displace-
ments field is assumed to be of the following Reissner-
Mindlin form

'u(x,y,z) = “o(z;y) +z¢,,(z,y)
v(z,y,2) = v(z,y)+ 2¢y(z,y) (8)
w(z,y,2) = w(z,y)

in which z,y and z denote the coordinates of an orthog-
onal cartesian reference system, see also Fig.1. u,v and
w denote the displacements of a generic point along the
directions z,y and 2 respectively. u°, v* and w?® are the
displacement components of a point on the reference
surface  of the plate. ¢, and ¢, denote the rotations
of the normal to the reference surface in the planes z—z
and y — z respectively, in which the rotations due both
to the bending deflections (w,, ,w,y) and to the shear
deformations are included.

The displacement field (8) permits us to refer to
isoparametric formulation. According to isoparamet-
tic formulations the unknown functions in the domain
Q of the element can be written as the coordinates

(uoy”oawo;¢z)¢y) = {N}T{Q} (9)

{N} denotes the vector of N,, components (N, is the
number of the nodes while the apexes T denotes trans-
position) which are the shape functions.

Hook's law of the lamina. We consider a multilayered
plate of constant thickness h, consisting of a finite num-
ber N, of thin layers of orthotropic material and uni-
form thickness perfectly bonded together. The princi-
pal axes of elasticity of any individual layer are assumed
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to be parallel with the laminate axes. The material pro-
perties and the thickness of each layer may be entirely
different. As usual by neglecting the normal stresses
0, the constitutive relations for any individual layer
in matrix form hold:

{o:} = [Qs){es} (10)

Strain-displacement relations. In a cartesian tri-
orthogonal reference system, the following nonlinear
strain- displacement relations of von Karman type hold

1 2
Eyy = Uiy T35Wyy

€xy = Uy +Vyp +W,p Wy

fzz - u13 +w,r ;

— 2,
€pz = Uy +- W5

2
(11)

€rz = Vs +W,y

Upon substitution of the Eqns.(8) and (9) in the previ-
ous ones, the following relations in matrix form hold

{e} = {a} + {en} = [Bl{g} = ([B] + [Bu]){a} (12)

[Bi] and [By;] denote the displacement independent and
dependent part of the matrix [B] respectively. The
strain variations are:

8{e} = [Bé{q} ;

where

[BY] = [B{]+[Bj] (13)

[Bf1 = [Bi] ; (B3] = 2(Bni] (14)

Secant stiffness matrix [Kg] . Within our assump-
tions, the secant stiffness matrix can be computed by
writing the variation of the elastic strain energy as in

the following

§¥ =< {o}T{e} >= {q}"[Ks)6{q} (15)

and for our elements we have
[KS] = [Ko] + [Klnl] + [Knll] + [Knlnl] (16)

where?

[Kl= < [B]T[Q.)B]> (17)
[Km]= <[B]T[Q.][BS] > (18)
[Kanl = < [Bu]T[Q.][BI] > (19)
[Knini]l = < [B)T[Q,)[BE)] > (20)

and

[K,] is the displacement independent part of [Ks], i.e.
the stiffness matrix of the linear problems;

[Kini, [Knn), [Knini] denote the displacement depen-
dent components of [Ks].

2In the previous relations we used the notation < () >=
E:';’l fv' (..)dV, in which V, denotes the volume related to the
s-layer.

The derived form of [Ks] is not symmetric. Its sym-
metrization was proposed in [17]:

(21)

where [K,,] has the same structure of [K,] (see next
subsection) but it is only related to the linear part of
the stresses in the element.

[Ks] = [Ka] + 5lKni] + 5Ko]

Tangent stiffness matrix [Kr]. Within our assump-
tions, the tangent stiffness matrix can be computed by
writing the second variation of the elastic strain energy
in the following way

8% = 6(6%) = 6{q}" [Kr)é{g} (22)

After same manipulations we get the following form:

[Kr] = [Ko] + [Kni] + [Ko] (23)
where
§{g)" (K, =< {o}" 6[BY] > (24)
[Kni]l = [Kini] + 2{Knn] + 2[Kaini] (25)
in which

[K,] is the displacement independent part of [Kr),
it’s the same as that in [K];

[Kni] denotes the nonlinear contribution directly dis-
placement dependent, it is the same at Eqn.(22);

[Ks] denotes the nonlinear contribution coming from
terms which appear in the form of stress resultants
times curvatures. It is known as initial stress stiff-
ness matrix or geometric stiffness matrix.

1 © Sample Points

Figure 2: Nodes and sample points in the Q4 finite
element.

Assumed shear strain concept. Because of its low
band length, in this subheading we refer to particu-
lar case of the Q4 finite element. Large literaure has
shown that numerical tricks as reduce or selective in-
tegration of the stiffness matrix are not sufficient to
improve the performances of Q4 element. Patch tests
have revealed that in large displacements analyses while
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reduce integration often causes zero determinat of these
matrixes, the selective case could lead to solutions os-
cillating around the equilibrium paths. In order to es-
tablish numerical efficiency, the assumed shear strain
concept was applied in [20] to the multilayered plate
formulation above presented. Based on a mixed inter-
polation of the tensorial components the method dif-
ferentely treats the shear contribution to the stiffness
matrix in respect to those coming from the bending and
in plane parts deformations. The shear stiffness is not
computed at the nodes but in correspondence to four
sample points M, N, P and Q (see Fig.2) according to
the following interpolations of the shear strain fields:

1 1
€2z = 5(1 +n)el, + ;- n)ed (26)

1 1
es = 5(1+8)e) + 5(1- ey (27)
In which £, n denote the natural coordinate on 2. The
theoretical fundamentals of such approximation in rela-
tion to mixed concepts are discussed in many published
papers, see Hinton and Huang [16] for example.

Laminates and mechanical datas

(0°/90°/45°/ — 45°)symm.

(0°/90°)symm.

(0°/90°/45°/ — 45°),

Mechl | By =40,E; = 1,G;; = Gt = 5, v = .25

Mech2 | By =40,E; =1,Gy = 5,Gpe = 2,v =25
Description of geometrical boundary conditions |

LAM1
LAM2
LAM3

SSSS | z=0,b~w=0,y=0,b~>w=0

HSSS |y=0~u=v=w=0y=b~»w=0;
z=0b~w=0

CCCC | 2=0,b~ w = ¢y, = 0;
y=0b~>w=¢;, =0

{ Tab 1. Datas for the introduced acronyms. ]

3 Results and discussion

Tab.l gives the mechanical properties of the uti-
lized laminae and the introduced notations to indicate
boundary conditions. The standard symbols have been
used to denote mechanical properties of the lamina
along the orthotropic directions I and t. We refer to
consistent unit in all the investigations. Three lami-
nates are considered, two of these are symmetric (one
of which is ortotropic), the third one is not symmetric.
Two simply supported and one clamped geometrical
boundary conditions are taken into account.
Exception made of Fig.5 where the nine node ele-
ment Q9 of lagrangian family has been used, the Q4
element with assumed shear strain fields will be em-
ployed. Imperfections will be simulated by application
of transverse disturb loads in the form of a point load
2, (applied at the plate center) or a constant distri-
bution of pressure p7!,. With reference made to Fig.1,

the in plane applied loads are denoted by Ngz, Nyy and
Ngzy, i.e. compression along the directions z and y,
and shear load respectively. These values correspond
to the resultant forces which are uniformely distribuited
at nodes along the edges of the plate. The apex ™’ de-
notes components of the reference load vector {f} so
that, according to Eqn.(3), effective loads hold:

P;s's = /\P;":, p.ziia = ’\p:;:a'
Likewise the in-plane loads are:
Nyz = ANg,; Nyy = ANy, and Ngy = AN;,.

a,b, and h are the geometric plate dimensions along
the z,y and 2z directions respectively. The FSDT and
CLT results are referred to the value x=5/6 and x=10
respectively. All the results takes the form of laod pa-
rameter A vs transverse displacement at the plate cen-
ter W,. We make note that W, is not always coinciding
to the maximum normal deflection of the plates. This
depends on the laminate and both mechanical and geo-
metrical boundary conditions. Additional datas of the
treated problems are directly quoted in captions and
sketches of the figures.

10

mesh
2l -©- 10 x 10 y
- 12 x 2
- 14 x 14
A 8 x16
0 i
-20 -16 -10 -5 0
We
Figure 3: Convergence analysis of Q4 finite ele-

ment with assumed shear strain fields, for a square
compressed plates. Datas: Ny, =-33, pji,=-3.E-5;
=b=100, h=10; LAM2, Mech2; SSSS.

Fig.3 shows the convergence rate of the Q4 element.
Different meshes are considered: from 10x10 (100 el-
ements) to 16x16 (256 elements). The nonlinear re-
sponse in both prebuckling and postbuckling range of a
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square compressed thick simply supported plate is anal-
ysed by means FSDT. A symmetric lamination scheme
is investigated and the transverse disturb has the form
of a constant distribution of normal pressure.

0.03
0.02
A
"3 \
\
H
0.01 :
- a/h=10 l:
~E ash=100 ;
St {
~—— FSDT
) i
-2 -15 -1 -0.5 0

Wc/h

Figure 4: Effect of shear deformation vs plate thickness
for square compressed plates. Datas: Ny, =-13, P;f,=-
.1; a=b=120; mesh 12x12, Q4; LAM2, Mech2; SSSS.

Effects of thickness and ortotropic ratio on postbu-
ckling of compressed plates. To highlight the effects of
transverse shear deformations Fig.4 compares a thick
orthotropic compressed plate plate to a thin one. For
scale reason the value f‘g is plotted at the y-axis. Fig.5
compares two compressed plates related to two different
values of the ortotropic ratio %} Then we confirm that
thickness and orthotropic ratio increasing, the trans-
verse shear effects cannot be neglected. Moreover the
importance of this effects increase in the large deflec-
tions field.

Postbuckling of in-plane loaded symmetrically lami-
nated plates. Figs.6-9 compare the postbuckling re-
sponse of two symmetrically laminated plates. Both
CLT and FSDT results are plotted and four different
loading cases are considered: axial compression, biax-
ial compression, shear and combined. Imperfection has
been simulated by application a transverse disturb load
at the plate center. Value of the W, double of the plate
thickness h are investigated. W, increasing the equi-
librium state depends on both lamination scheme and
loading case. In particular the shear deformation effects
assume more importance for the in-plane shear loading
cases.

25 T
% - -©- EVEN40
O ~E- EV/Et-26
»0 RN - BLY
SO — FSDT
s
i

156

10

Wc¢

Figure 5: Effect of shear deformation vs ortotropic ra-
tio %‘- for square compressed plates. Datas: Ny, =-20,
P, =-.2; a=b=9, h=10; mesh 4x4, Q9; LAM2, Mech2
with variable E;; HSSS.

76

~ A LAM1
N -B- Lam2
n

N --- OLT

—— FSDY

Figure 6: Comparison of two symmetric laminates for
a square axially compressed plate. Datas: Ny, =-13,

12 =-.1; a=b=120, h=12; mesh 12x12, Q4; LAM1
with Mechl, LAM2 with Mech2; SSSS.
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40 ,
A\\ A LAMY
AN B LAM2
A\ === oLT
30 A — F8DY |
“n.
y G, - A
ol AL
A\s B NN N
20 B gy Ba
\A\& Bﬂa§&
B \ B
L
10 S8 \!
0 ‘
-25 -20 -15 -10 -5 0
Wc

Figure 7: Comparison of two symmetric laminates for
a square biaxially compressed plate. Datas: Ngy
Nz=-13, P}, =-.1; a=b=120, h=12; mesh 12x12 Q4
LAM1 with Mechl LAM?2 with Mech2 SSSS.

140
A\ ;
R £ LAMt
120 \‘.'_\.\ B Lamz2
T - oL
\A — FSDT
100 p

u-__..‘\“\“- \\A\

“a\ \\\

60 .‘\ AYS.Y
‘S\B_

'D-_Gvﬁzzi;

40 D\S\_
5
20
0
-26 -20 -15 -10 -5 0
We

Figure 8: Comparison of two symmetric laminates for a
square plate subjected to in-plane shear loading. Datas:
N;y=-13, P} =-.1; a=b=120, h=12; mesh 12x12, Q4;
LAM1 with Mechl, LAM2 with Mech?2; SSSS.

Postbuckling of in-plane loaded not symmetrically la-

minated plates. Not symmetrically laminated plates are
considered in Figs.10-11.
Because of the coupling stiffnesses Bj;; (between in-
plane and out-of-plane deformations), no disturb loads
need to create initial inflections. Fig.10 compares three
loading cases: compression, shear and combined. As for
the symmetrically laminated plates, the shear deforma-
tion effects are very much affected by loading cases.

By variyng the ortotropic ratio Fig.11 considers the
effect of the coupling stiffness on the postbuckling of
shear loaded plates. We notice that the shear deforma-
tion effects very much depend on coupling stiffnesses
magnitude.

40 :
& LAMI
- LA
N LAM2
---- oy
i “ — FsDT
“a
A |o- s
AR B
~‘~B~“\ h -~
" \\ N N
\\ N
- N\& '
—s— \A‘&A\F
10 .
b
0
-25 -20 -16 -10 -8 ¢

Figure 9: Comparison of two symmetric laminates for
a square plate subjected to combined loads: shear and
biaxial compression. Datas: Ny, = Nz = Ng =-
13, Pj7,=-.1; a=b=120, h=12; mesh 12x12 Q4; LAMl
with Mechl, LAM2 with Mech2; SSSS.

Comparison of two possible manners of loading plate
edges. In the linear analysis or in the buckling of plates
(classical bifurcation analysis of Euler-type), the distri-
bution of the load along the plate edges which leads to
a constant distribution of the correspondent in-plane
displacements is assumed load level independent. In
fact in the classical eigenvalues analysis this ditribu-
tions increase by means of a loads factor until a bifur-
cation point has been reached. In the analysis at the
previous figures we have done the same, in fact in our
FEM formulation the loads increase throught the load
parameter A.
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100

& compr. —F comb. ~A- ghear

--- or

— F8DTY

Figure 10: Comparison among three different loading
cases for a square not symmetrically laminated plates.
Datas: compr Nj,=-13, comb Ny, = N;, = Nzy=-
13, shear N, =- 13; a=b=120, h=12; mesh 12x12, Q4;
LAMS3, Mechl1; SSSS.

120

A~ EVEt-10 B El/Et-40
— F8DT

X~ ENVEt=2
--- LY

Figure 11: Effect of coupling stiffuesses B;; for a square
not symmetrically laminated plates subjected to shear
loadings. Datas: N;,=- 13; a=b=120, h=12; mesh
12x12, Q4; LAM3, Mechl; SSSS.

But in the large deflections range, as revelead in [7]
and [18], the load ditributions which need to maintain
the relative edge displacements distribution constant is
load level dependent. In Fig.12 the two possibilities of
uniform loads and uniform diplacements distribution
at the loaded edges are compared in the case of axial
compressed clamped plate. To do this two rows of stiff
Q4 plate elements (which have E; values four order of
magnitude stiffer than E; of the plate) are added to
the initial FEM mesh in correspondence of the loading
edges y = 0, b. This FEM model enforces to be constant
the distribution of the displacements along the loaded
edges. To notice that Ny, resultant value is preserved.
Fig.12 shows that the two FEM models have a very
good agreement in the small deflection fields. In fact
the buckling load prediction is quite the same for both
CLT and FSDT cases. But deflections increasing the
differences tragically grow up. Even thought we have
not plotted the deformations modes, we have checked
that they are the same for the two cases. It is not ob-
vious to estabilish which one of the two extreme inves-
tigated simulations is the most realistic, very probabily
the right one is in between. But we can certainly con-
clude that in non linear field much more care must be
given to the manners in which boundary conditions are
simulated.

Change path phenomenon for a rectangular plate
biaxially compressed. Equilibrium related to the rectan-
gular biaxially compressed plate are quoted at Fig.13.
A transverse constant distribution of pressure has been
applied as disturb load. Two value of the ortotropic
ratio are considered. The geometry and boundary con-
ditions are drawn at Fig.14. Two rows and two columns
of Q4 stiff finite elements have been introduced as at
the Fig.12 analysis; these Q4 elements have the aims
to simulate usual stiffners and to impose constant in-
plane displacements at the edges. The plate is simply
supported along the boundaries denoted by a circle at
Fig.14. We notice that because of the stiffners the ro-
tations at the edges are constrained to be very small.
That is the plate in reality is not simply supported.
The two traced equilibrium paths reveal that the plate
center W, changes its sign. That happens in corre-
spondence to very small value of W, and it very much
depends on the ortotropic ratio value. For some equilib-
rium points Fig.15 quotes the deformation modes cor-
respondento to those depected at Fig.13. At low load
level the modes are mainly constrained by the normal
pressure, but load increasing higher modes are stabi-
lyzed. We notice that this phenomen has already been
found and explained by Carrera and Villani [7] and it
is related to the FEM arc-lenth-type method used at
Eqns.(7).
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Figure 12: Comparison of two different manners of
imposing boundary conditions for a square symmetri-
cally laminated plates subjected to axial compression.
Datas: N; =- 13, P’ =-.1; a=b=120, h=12; mesh
12x12, Q4; LAM2, Mech2; CCCC.
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Figure 13: Effect of ortotropic ratio and change path
phenomenon for a rectangular laminated plates biaxi-
ally compressed. Datas: Ny, =-9, N;,=-20, p3f,=-1.E-
5; a=80,b=260, h=10; mesh 8x26, Q4; LAM2, Mech2;
CCCC.
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Figure 14: Description of boundary conditions used for
long plates analysis at Fig.13.

Concluding remarks

The paper has applied a FEM model to analyse the non-
linear response of generally laminated flat panels sub-
jected to several geometrical and mechanical boundary
conditions. This model takes into account the shear
deformation effects and furnishes as a particular case
results related to the Kirchhoff approximations. In or-
der to preserve computation time the numerical inves-
tigations have been carried out by the use a four node
finite element with assumed shear strain fields. From
these analyses we remark what follows:

1. The FEM is a good tool to trace the postbuckling
of anisotropic flat panels. Further in respect to
other approximate methods, its possible applica-
tion does not depend on both boundary conditions
and lamination schemes. It fact it has been applied
to several in-plane loading conditions, different ge-
ometrical boundary conditions, symmetrically and
not symmetrically laminated plates.

2. It is confirmed that the nonlinear effects are very
important in the analysis of multilayered plates
and that the shear deformation effects are very
much subordinate to both multilayered lay-up
and loading configurations, furthermore they are
greater in the large deflections field.

3. Much more care should be taken to impose bound-
ary conditions in the postbuckling range. In fact by
comparing results relate to constant distributions
of the displacements at the edges to those coming
from a constant distribution of the applied loads
at the same edges, we have found that while the
prebuckling and buckling states are quite close in
the two cases, the postbuckling equilibrium state
can be very different.
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4. The changes of buckled paths, typical of experi-
mental tests, have been observed for a long plate
biaxially compressed and in correspondence to low
values of the transverse displacements.

Figure 15: Shapes related to equilibrium paths depicted

Additional investigations need to compare the sev-
eral geometrical and mechanical boundary conditions
as well as plate geometries and lamination schemes.
Particular attention should be given to the manner in
which the loads are applied. Moreover to accurately
predict the stress-strain fields in the nonlinear range
HSDT effects should be included in the formulations.
These could be subjects for future works.
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