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ABSTRACT

The baseline of H-II Orbiting Plane (HOPE) has a large fin
at the tip of its cropped delta wing. During its mission which
begins with vertical launch by H-ll rocket and ends at
horizontal landing, it will encounter severe cicumstances for
the airframe structure. One of the design issues of the
structure is flutter as it has wings like airplanes. To
investigate the fundamental characteristics of flutter for this
configuration, a simple wing model with a vertical fin was
made and tested in a low-speed wind tunnel. Present paper
describes the vibration tests, wind tunnel experiments and
the flutter calculations for this model. A unique tool for
modal survey tests is also described.

Introduction

The unmanned reentry vehicle with wings is now planned as
a space transportation system. The system is supposed to
utilze the H-Il rocket which recorded successfully its first
flight in February 4, 1994. The plan is called HOPE project.
The baseline of the vehicle has large fins at the tips of the
main wings. The tip-fins have partial control surfaces for
lateral control and stability, i.e. rudders. The stiffness of the
main wing will be rigid enough since the wing takes rather
thick structure if you consider the ordinary aircraft structure.
The wing has, however, relatively large fins at the tip where
the deflection of the elastic vibration becomes appreciable in
lower fundamental frequency modes. |t may bring about
adverse unsteady aerodynamic forces for flutter.
Furthermore, the flutter of this type of wings may include
effects of the aerodynamic interference between non-
coplanar lifting surfaces. It is not clear how accurately we
can predict this type of flutter. The accuracy of flutter
prediction can affect the design margin of the winged reentry
vehicle. To investigate these problems, fundamental wind
tunnel tests were conducted on a canti-levered tipfin
configuration wing.  Prior to the wind tunnel tests, modal
survey tests of the elastic model were caried out by using
the newly synthesized measurement system which can
automatically acquire the vibration data,
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Wing Model

A canti-levered wing model with the tip-fin was tested in the

2m x 2m low-speed wind tunnel. The planform is shown in

Figure 1. As can be seen in the figure, the model has a

control surface of 30% partial span of the planform and the
15"

(unit: mm)
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Fig.1 Planforn. of the model

cant angle of 15° at 700mm in spanwise direction. The tip~
fin is connected to the main wing with the attachment which
has a folding angle of 75° . The root chord of the main
wing is 1000mm in length. The model consists of separated
balsawood airfoils and the spars of the aluminum alloy at a
40% chord line. Each airfoil has a 12% thickness ratio with
straight camber. Stiffness distributions of the spars in design
are shown in Figure 2 where the abscissa is a coordinate
along the spar center. The rectilinear spikes at 0.787m in
stiffness correspond to the attachment for the tip-fin. Three
different kinds of supports were prepared for the rudder with
removable mass balance. They were fixed, elastically
supported by a torsion bar, and rotationally free with no
constraint. For an elastically supported rudder, the deflection
angle was monitored by the strain gage attached on the
torsion bar during the wind tunnel tests. A smal
accelerometer was installed near the tip of the main wing to
measure the vertical acceleration of the wing motion. Two
strain gages are also attached on the spar at the wing root
for bending and torsional deformations.
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Modal Survey

Dynamic Displacement Measurement System Modal survey
tests for these models were caried out with a newly
synthesized measurement system in NAL called Dynamic
Displacement Measurement System. The system consists
of a non-contact vibration sensor using laser Doppler effects,
an industrial robot to support the sensor at specified
positions, and the control computer for testing. The block
diagram of the system is shown in Figure 3. Figure 4 shows
a picture of the test setup with the measurement system.
The main computer, which does not appear in the picture,
controls the sequence of tests acquiring transfer functions
between an excitation point and the sensing points on the
structure. The non-contact vibration sensor measures normal
velocities of the vibrating surface. Its operating distance is
100mm to 1000mm from the target. This type of sensor
requires no focus depending on a distance, which is well
matched for positioning by the robot. It can measure
velocities from 20pm/s up to 1m/s at frequencies from OHz

to 20kHz. The sensor covers a wide range of vibrations of
the structure appearing in the aerospace fields. The laser

CONTROL
COMPUTER

LASER SENSOR

POSITIONING ROBOT I

Fig.3 Block diagram of Dynamic Displacement
Measurement Sysytem

beam of the sensor conforms to class |l of BS4803, which is
relevant for visual teaching. It is easy to teach positions of
the sensor manually with a joy stick by adjusting a red spot
of the laser beam on the structure surface. The robot has
its own controller which is connected to the main computer
through the RS232C interface and the discrete signal lines.
The positioning robot has six axes each with a degree of
freedom, enabling robot's motions to set the sensor in three-
dimensional space aligned in an arbitrary direction. The
longest arm of the robot is 2.5m in length. The accuracy of
positioning directly affects the quality of the measurement
data The nominal margin of error was 0.2mm for repeating
positions. A benchmark test performed with this system
showed the standard deviation of the relative difference to be
less than 0.02mm for fifty times repeating motions including
six specified positions. For the data acquisition after the
teaching, all you have to do is push the start key. The
installed software program sequentially executes the position
change of the sensor, generation of the burst random signals
for exciters, acquiring the time history data of vibrations, and
real time application of FFT to the acquired data to obtain
transfer functions by communicating with the operator who
goes through the quality of data to select target modes. For
the model, forty-nine points on the corners of each airfoil
segment were selected as measuring points. The setup

parameters for the FFT were 30 times of averaging, 200Hz
for the frequency range and the burst type of random forces
for excitation. Only normal components of the deflection on
the tipfin portion were measured since they are essential for

Fig.4 Test setup for modal survey tests

the flutter characteristics. With these conditions, it took only
80 minutes for one case of data acquisition, resulting in
considerable time saving. Movements of the sensor to and
from the tip-fin part were very smooth even though it had to
rotate 75° for adjusting the sensor axis.

Dynamic characteristics of models To compare with the

results of the modal survey tests, a mathematical model
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simulating the actual model was formed by the finite element
method with simple beam elements. The model is shown in
Figure 5. Most of the nodal points are corresponding to the
actual structure points of the airoil segments. The
properties of these elements of the spars and of airfoil
segments are shown in Tables 1 and Table 2, respectively.
Before the vibration analysis, the math model was tuned in
accordance with the static load test on the spar. Since the

1~10 spar
11~20 airfolils
21 rudder
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Table 2. Mass and moment
of inertia of the airfoils

Table 1. Mass and moment

of inertia of the spar
stiffness distribution in Figure 2 is a design valug, there
would be some difference with the actual spar which was
milled by the NC machine from the solid material. Static
load tests were cariied out with dead weights at the tip of
the spars and the displacements were measured at several
points. The stiffness of the math spars was corrected by
mutiplying factors determined from the static load test. They
were 1.12 for bending and 1.03 for torsion of the wing spar,
and 1.00 for bending and 0.90 for torsion of the tip-fin spar.
Comparisons of measured displacements with those of the
corrected math model are shown in from Figure 6a to Figure
6d. As can be seen in these figures, the math models of
the spars were well adjusted to the measurements. Natural
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frequencies and cormesponding eigen-modes were calculated
with this math model and compared with the results of the
modal survey tests. The comparisons were made in Figure 7'
s. The figures show four lower fundamental modes for three
different configurations comparing the test results with the
analysis. The difference due to the rudder support is not
much on either natural frequencies or vibration modes except
for the small deflection of the rudder in the second modes.
The natural frequency of the elastically supported rudder
itself was 4.4Hz whereas the fist bending mode of the
whole model was 5.91Hz. The second modes were twisting
modes of the main wing which may play an important role
on flutter. The third and fourth modes are the second
bending and the second torsion, respectively. Agreement
between the math model and the actual model is good.
Differences in natural frequencies for higher modes may
come from the support structure of the rudder.

Wind Tunnel Experiments

Wind tunnel tests for flutter were conducted in Gust Wind
Tunnel in National Aerospace Laboratory. The model was

rudder
accelerometer
4l

p
torsional strain

data rec: Y
order g sirain

wind tunnel

—— wing model

Fig.8 Aschematic diagram of flutter tests

flutter stopper

A
Fig.9 Model installed in the wind tunnel

installed on the side wall of the tunnel. A schematic
diagram of the flutter test is shown in Figure 8 and the
model installed in the tunnel is shown in Figure 9. On the
tunnel floor, a flutter stopper was furnished to prevent the
model from destroying. It was a fence of mesh actuated by
the air cylinder. During the tests, the sensor signals from
the accelerometer and strain gages were analyzed and
recorded with the real time multi-channel FFT analyzer. A
laser sensor for dynamic displacements of the wing was also
equipped on the floor 800mm apart from the wing surface.
A video camera from outside of the wind-tunnel window was
used to visually record the motion of the model. Utilizing the
digital output of Pitot tube, the flow speed was displayed at
the bottom of the tunnel window. It helped much to confirm
the flutter criical speed from the record of VCR after the
flutter tests. In the experiments, the flow speed was
increased stepwise whike watching the responses of the
model to the flow turbulence until the flutter occumed.
Autospectra of these responses with each vibration sensors
were obtained when the flow speed was kept constant. Due
to the good performance of the flutter stopper, the wing was
able to survive violent flutters without any crucial damage for
the structure.

Experimental Results

Flutter speeds could be clearly determined by the occurrence
of flutter on the model. Five configurations were tested.
They are the combinations of with or without mass balance,
and three kind of supports for the rudder. For the fixed
rudder, the case without mass balance was not tested
because the removal of the mass balance was aimed to see
the effect of mass balance only for the mobilk control
surfaces on a tipfin. Flutter speeds and flutter frequencies
obtained in the experiments are given in Table 3. The first

Table 3. Flutter test results

case no. mass balance | rudder support | flutter speed (m/s) frequency (Hz)
i | yes fixed 39.9 6.9
2 yes elastic 41.6 6.6
3 no elastic 11.0" 10.5°
4 yes free from 25.110 28.4" 8.0"
42.0 6.7
5 no free .9 to more than 22° 97"

* mild flutter with limited amplitudes

case gives a result of the wing with the rudder fixed. The
flutter showed typical bending-torsion flutter. The flutter
frequency is 6.9Hz which falls between two natural
frequencies of the fundamental bending and torsion modes.
The second case shows a result of the configuration where
the rudder was elasticity supported. The flutter speed
becomes slightly higher than those in the case with the
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Fig.10 Time histroies of the mild flutter at 25.2nvs in Case 4

rudder fixed. But the difference was not much in speeds
and frequencies between these two cases. The third case
was for the wing with the elasticity supported rudder without
any mass balance. The flutter began at a very low speed
almost the start of the wind tunnel blowing The frequency
of this case was just above the second natural frequency of
torsion. The fourth case was for the rudder without any
constraint and showed somewhat interesting behavior of the
flutter. The rudder had mass balance. At the flow speed of
25.1m/s, the wing suddenly started fluttering. The ampliudes
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Fig.12 Variations of autospectra
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of the oscillation were, however, not large and the oscillation
was in a limit cycle with almost constant amplitudes. The
time histories of this oscillation are shown in Figure 10.
The records are bending strain, torsional strain, acceleration,
vettical displacement of 67% chord at 608mm in the span
coordinate, and the flow speed respectively. Every vibration
sensor showed the oscillation of 8.0Hz which is close to the
second natural frequency of this configuration wing. As can
be seen in the figure, the torsion of the main wing was
dominant in this oscillation, which could be seen also in the
visual observation of the fiutter. The ampliudes of the
rudder deflection seemed to be appreciable in the visual
observation although there was no record of the rudder for
this configuration This mild flutter became attenuated and
completely stopped at the speed of 28.4m/s. The flow
speed continued to increase up to 42.0m/s where the violent
flutter occurred. The last case was with neither constraint
nor mass balance for the rudder. Again the flutter started at
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very low speed of the beginning like in Case 3. Since the
oscillation was limited within a small amplitude, the flow
speed was increased up to 22m/s. Durng that time, no
change could be seen The frequency was similar to that of
Case 3. These two cases without any mass balance clearly
demonstrated the effects of the mass balance for control
surfaces of this type of configuration as well. The time
histories of the signal from the accelerometer are shown in
Figure 11's at the onset of each flutter. These signals have
been fitered by the digital IR fiker to determine the flutter
frequencies of diverging oscillations. They were determined
in the time domain with the VATREM method®. The bar
symbols in those figures distinguish the data portions that
were used for the calculation. The decaying end-parts of the
oscillations correspond to the effects of the flutter stopper.
As can be seen, it worked well The digits shown below the
frequencies in the corner are calculated negative damping
values by the VATREM. Figures from 12a to 12c show the
autospectra of signals from four different sensors varying
with the flow speeds. They are from top to bottom the
acceleration, bending strain, torsional strain, and the
displacement, respectively. In Figure 12b, the bottom one is
the output of torsional strain of the rudder support. The
abscissa is the frequencies from OHz to 100Hz and the
ordinate in a horizontal plane corresponds to the flow speed
which was increased step by step during the wind tunnel
operation. The scale spans from Om/s up to 45m/s. In
Figure 12a, we can see the coalescence of two lower natural
frequencies going into flutter especially in the torsional strain
autospectrum although it is not very clear. So is in Figure
12b. In this figure, it can be seen that the autospectrum of
the rudder output is affected much by the second bending
mode near the flutter speed In Figure 12c, the peak at
8.0Hz which corresponds to the mild flutter clearly appears in
the record of the flow speed of 27.0m/s for each spectrum.
The peak disappears at the next flow speed of 29m/s.

Flutter analysis with math models

Flutter equation The flutter analysis was performed on these
configurations with the math model which has been obtained
fromthe FEM and the static and dynamic tests on the actual
model structure. Five fundamental vibration modes were
selected for the flutter calculation For the -elastically
supported rudder, the rudder mode was included as the
lowest frequency in the math model although the
corresponding mode did not appear in the modal survey
tests. This may be attributed to the ineffective direction of
excitation for this vibration mode. For the rudder free
configuration, an artfficial rudder deflection mode was added
in the analysis. If we denote with the vector q the
ampliudes of the generalized coordinates for each mode by
assuming the simple harmonic motion for the time variable,
then the equilibrium equation at the flutter point becomes

1
~w'Eq+ (1 +ig)g - 5pU"Aq =0 (1)

where
't 0 0 wi 0 0
|0 0 |0 °
o0 .1 0 0 ..
[an1  an M
A= a21 a?z oM
Lam1 G2 amMM

In Eq.(1), the matrices E, ©', and R are the unit, the
normalized stiffness and the aerodynamic matrices,
respectively. = The g assumes the structural damping.
Diagonal elements of the stiffness matrix become equal to
the natural frequencies when each assumed mode was
normalized by the mass matrix. The factors in front of the
aerodynamic matrix is the dynamic pressure of uniform flow.
The aerodynamic matrix is an unsymmetic matrix with each
element in complex values which are calculated by

= ds 2
Cmn, L P Apn ( )

where hn and Aps are the normal displacement of the m-th
mode of the lifting surface S, and the unsteady Iift
distribution due to the n-th mode, respectively. The
unsteady lift distribution is calculated as a function of the
reduced frequency k=bw/U where b is a representative
length of the wing. Since the unsteady aerodynamic force
due to the rudder deflection with interference effects of non-
planar surfaces can be thought to play an important role in
flutter of this model, the extended Doublet-Point Method for
general configurations® was used for the aerodynamic
calculations. Figure 13 shows the aerodynamic elements for
the Doublet-Point Method used in the present calculation.

Rudder

Main wing

Fig.13 Aerodynamic elements of the Doulet-Point Method

Modifying the Eq.(1), we obtain the following complex eigen-
value problem which leads to the conventional flutter
calculation of the V-g method®.

1+ig 21 K\’
g = - - 3
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The case of rudder free If the rudder has no constraint
about its rotation, the stiffness matrix becomes singular with
a zero frequency associated with the rudder deflection mode.
In this case, we cannot obtain the inverse matrix appearing
in Eq.(3). Suppose this mode is the last M-th mode of the
generalized coordinates. Then the aerodynamic matrix term
in Eq.(1) can be rewrtten as

Al AIM ( ql )
Ag =
1 {Am apMM } M (4)

where the primes indicate the quantities with the (M-1)
degrees of freedom.  Eliminating the M-<h generalized
coordinate, we obtain the matrix eigenvalue problem with
the dimension of (M-1) by (M-1), instead of Eq.(3) as

1 ;:9 q/ = 2 [%P A~ %PAIMAIV.):l -
$pama + (;)

2
e

In the aerodynamic calculation for the rudder, the deflection
& should be normalized by

5 = (L)} (6)

where | is the moment of inertia of the rudder about its
hinge. In the actual computation, Eq.(3) can be utilzed by
substituting a very small frequency for the rudder mode.
Example computation showed that the difference between
Egs.(3) and (5) became negligible if we used 1% of the
smallest value of the other components. We used Eq.(3) for
the results of this analysis. It should be noted here that the
rudder frequency is associated with almost constant reduced
trequencies for different U's since its restoring force can be
thought proportional to the dynamic pressure of the uniform
flow

Analytical results

Flutter calculations were cariied out for the three configura-
tions of different rudder supports with the mass balance.
For the stiffness matrix, the results of the modal survey tests
were substituted in lieu of the vibration analysis with the
math models. The structural damping g was set to zero in
the present calculations. The correction factor of 0.85 for
the aerodynamic forces of control surfaces® was introduced
as is known for the lifting surface theory. Figure 14 shows a
result of the U-g plots and frequency changes of the wing
with rudder constraint. As the flow speed U increases, the
second branch goes into the unstable region of positive g.
The frequency change implies that the flutter is caused by
the coupling of the lower two modes which are fundamental
bending and torsion. The calculation gives the flutter speed
as 36.8m/s whereas the experimental flutter boundary was
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Fig.16 U-g plots for Case 4
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39.9 nvs. The difference is 7.8% in the conservative side.
The flutter frequency of this case is 7.3Hz which is 5.8%
higher than that in the experiment. [n this case, the flutter
characteristics seems very typical as was in the experimental
result. Figure 15 shows a calculated result of the wing with
the elastically supported rudder, which corresponds to Case
2 in Table 3. Since this wing has a degree of freedom of
rudder deflection, the rudder branch exists in the frequency
curve. When U=0, the frequency coincides with its natural
frequency. As the flow speed increases, it also increases
almost linearly depending on the flow speed U with some
influence on the other natural frequencies. This branch does
not appear in the U-g plots because of its large negative g
values.  Although the damping of the second branch
becomes worse around the speed of 25m/s, it gains again
more damping until it finally penetrates the boundary at
41.1m/s. In the experiment, flutter occurred at 41.6mvs. As a
result, rudder motion raised the flutter speed about 12%.
This tendency was seen in the experiments, too. It was
observed that the rudder was oscillating as if it would absorb
the flutter occumence of the main wing. The calculated
flutter frequency is 7.0Hz whereas the experimental
frequency was 6.6Hz. The calculated result for the peculiar
flutter case was shown in Figure 16. The configuration
corresponds to Case 4 in Table 3. In this figure,
experimental speeds are aiso shown with arrow symbols.
Similar to Figure 15, the frequency of the rudder mode
increases as the flow speed increases. The second branch
in U-g plots goes into the unstable region in the range from
26.0m/s to 28.4m/s in speeds with almost constant
frequencies from 8.1Hz to 8.2Hz. It becomes stable again for
higher speeds. This branch finally reaches the flutter where
it coalesces with the first bending mode at 41.9m/s with the
frequency of 6.9Hz. The behavior explains well the
experimental results. Although the linear theory is not able
to analyze the limit cycle oscilation, it can be said that the
mild flutter corresponds to the small positive damping in that
region. Further, this mild flutter was induced by the rudder
motion of which frequency becomes very close to the second
natural frequency of the wing. To confirm this, the flutter
modes were calculated at the flutter points of 26.0m/s and
41.9mvs. The results were shown in Figure 17. Each shows
rear views in the steps by 1/8 period. As can be seen in the
figure, the flutter motion of the mild flutter involves much
deflection of the rudder in contrast with the flutter at 41.9m/s.

Table 4. Comparison of the analysis and experiments

flutter speeds flutter frequencies
case no. | analysis (m/s) error  |analysis (Hz)| error
1 36.8 -7.8% 7.3 +5.8%
2 411 -1.2% 7.0 +6.1%
4 26.0~28.7 | +66~3.6%]| 8.1-82 +1.3~2.5%
41.9 -0.2% 6.9 +3.0%

@‘é&
= =
A\ —
&\?&

a) mild flutter at 26.0m/s b) flutter at 41.9mv's

Fig.17 Flutter modes

The results are summarzed in Table 4 comparing the
analysis and the experiments. it shows an excelient
agreement.

Concluding remarks

Fundamental wind tunnel experiments for flutter of a tipfin
configuration wing and the flutter analysis were conducted.
Modal survey tests on the model were successfully caried
out by Dynamic Displacement Measurement System which
enables us to obtain transfer functions in an automated
sequence. In the wind tunnel tests, the mid flutter was
observed in a cenain range of flow speeds when the rudder
was rotationally free with mass balance. ~ The flutter was
caused by the coalescence of rudder motion and torsion of
the main wing. Flutter calculations using the non-plnar
Doublet-Point Method for unsteady aerodynamic forces
clearly demonstrate the phenomena with good accuracy.
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