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Abstract

This paper shows that the aeroelastician's
tools of energy methods and Lagrange's
equations are simple and convenient methods of
developing the scalar equations of motion for the
flight mechanics of flexible aircraft. Illustrations
include (a) the longitudinal motion of a slender,
flexible beam, (b) the general (longitudinal/lateral-
directional) motion of a thin, flexible, plate-like
surface and (c) the divergence and flutter of a
bending - torsion airfoil attached to a rigid fuselage
in the longitudinal plane. The presence of
imposed rigid body rotations is seen to reduce the
effective generalized stiffnesses of the natural
vibration modes, thereby having a second order
effect on aeroelastic stability and response. It also
is pointed out (perhaps rediscovered) that it is not
necessary to develop the tedious expressions for
the kinetic energy and its many partial and time-
derivatives when applying Lagrange's equations.

1. Introductijon

This paper combines the points of view of
aeroelasticity and flight mechanics in treating the
motions of flexible aircraft that can be: (a) in steady
flight or (b) accelerating along and/or rotating about
inertial coordinate axes. The customary
examinations of divergence and flutterl1] either:
(a) assume that an aircraft is in trimmed, balanced
flight or (b) drop the coupling between the
accelerations of the rigid body and the structural
deflectionsl2]. Even in examining the effects of
flexibility on stability and control, a frequent

assumptionm is that the aircraft axis system is an
inertial one, allowing Lagrange's equations for
flexibility effects to be used directly in a body-fixed
axis system.

However there are some examples of aircraft that
have divergence and/or flutter speeds in
maneuvers that differ from those speeds in steady,
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level flight. Usually the first culprits blamed in such
cases are the altered aerodynamic forces.

Of course another possibility is that the structural
dynamic properties are altered by the aircraft
accelerations themselves - that is the natural
vibrations and mode shapes in the accelerating
system are significantly different than their
counterparts in steady, level flight.

The FLEXSTAB program[4] was a careful
examination of the differential equations of motion
for a flexible aircraft from first principles. However,
even there it was necessary to neglect the
interactions of the rotation rates with the
"perturbation displacements". Intuitively one
would expect those effects to be proportional to
the ratio of the rigid-body accelerations (say pitch
rate or acceleration along a significant structural
axis) to the lowest vibration frequencies of the
aircraft in unaccelerated flight.

A related workI5] by Bekir et al uses Likins'[6]
idea of a hybrid coordinate system to describe the
motion of a flexible aircraft. In an earlier work

Roddenl?] showed the care that is necessary to
account for inertia-relief effects in the flexibility
matrix in order to obtain results that are
independent of the the restraining system to
measure (or calculate) structural flexibility.

To the author's knowledge, the first applications of
Lagrange's equations to the flight mechanics of

flexible aircraft was by Waszak and Schmidt[8]-
This paper extends the work of reference [8] and
also reference [9] to apply to the coupled rigid and
flexible motions of a thin, flexible beam. It also also
shows how the same approaches can be used for
the (seemingly daunting) case of a flexible, plate-
like surface in general (longitudinal and
lateral/directional motion). Along the way we (re ?)
discover that there are great simplifications that are
available in the use of Lagrange's equations. The
simplifications are always available, but are most



useful in the cases of nonlinear problems with
complicated geometries.

For the cases considered, the results are not large,
but they are "configuration-dependent" and are
potentially larger for other cases. In Rodden's
terminology [10], at this point they are "secondary
considerations”.

2. The_Slender, Fiexible Beam in
Accelerati l itudinal Mot

As a useful introductory example, consider
the static and dynamic response of a slender,
flexible beam. The degrees of freedom are the
translations along the inertial X and Z directions
(attached to a “flat" earth), the rotation 8 of the
“body-fixed" x,z axis system with respect to the
X axis and the bending of the beam with respect
to the body-fixed system. The beam is “attached"
to the x,z coordinate system in the sense that the
elastic potential energy is given by the form that
follows below, and the bending displacement of
the beam is small enough so that it involves motion
only normal to the x axis.

2.1 Coordinates
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Figure 1. The Idealized Thin, Flexible Beam

In the idealized examples presented here, we use
an orthogonal inertial coordinate system, fixed to a
"flat earth”, with Z pointed "up”.

The coordinates of a point on the body are:
z=2(x,1)
X=Xy+xcos@~—zsinf

Z=2Zy+xsinf+zcos@

2.2 Kinetic Energy
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We choose the first three generalized
coordinates as:

a1 =Xo(t) @2=2Zy(r) q3=6()
and assume that the bending displacement is

given by the series of "assumed modes" with the
generalized coordinates g4, 45, g, --- 9y -

2(x.t)= Y fi(x)gi(t)

i=4

Define:

$3 =singg (3 =cosgs

ﬁzﬁjdm §=J‘xdm i=jx2dm
Fi=ffidm sz‘—‘ffifjdm Gi=f1fidm

The kinetic energy becomes:

n
T=4(4f + 33 )in+(42G3 ‘4133)(43S+2‘?ipi]
i=4

n n n
-33(Cs +6]253)24iFi+%f}32 I1+3 % qiq;M;

i=4 i=4j=4
n 1 n n
+43),4:G; +% X, D 4idjM;
=4 i=4j=4

2.3 Elastic Potential Energy

The elastic potential energy of the beam in
bending is assumed to be the form

non
=1 2 4o=1 1l s
U, = 7—] El(z") dx= —2-2 ZKqulqj
i=4j=4
This requires some restraints on the orientation

and bending displacement of the beam with
respect to the "body-fixed" axis system.

2.4 Gravitational Potential Eneray

The beam begins to accumulate
gravitational potential energy Ug at a position Z‘g

by moving vertically against gravity.



Uy =gJ.(Z-—Zg)dm

n
= g[(‘lz = Zy )i+ S35+ G Y aiF,;
i=4

2.5 Lagrange's Equations of Motion

Lagrange's equation for the ith degree of
freedom is:

U,
ag; Y

d(or)_or U .
dt (aéi) dg; ~ 0g;

The differential equations for i =1, 2, 3 are:

n
Mgy -8 Gy~ 83 Y,4;F;i - C 43
j=4

n
~2G343 Y. 4;Fj =
j=4

n
A ve L . *
My +C g3+ C3 Y §iFj—S a3
j=4

n
~28343 3 4;Fj+gh=0
j=4

n
*.. ®.. 2., .
=S G +C gy +1g3+ Y, 4;G;+8C" = 05
j=4
where:
. R n
S =S3S+C3 ZQij
j=4
. . n
C =C3S'-S3 zq]F]
j=4

The differential equations for i 2 4 are:
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n
(~4183 + G2G3)F; + Y., GiM;; — §3G;
j=4

n n
.2
43 3, q;My + 3, q;K; +8C3F; = Q;
j=4 j=a

We have used the symmetry of the "generalized
mass" and the "generalized stiffness" matrices. We
have dropped products of the "flexible

generalized coordinates” g ;g for J>k 24 inthe

differential equations, but have not assumed
q1, 92, 93 to be small. If we use the actual natural

modes of vibration as our "assumed modes”, some
of the weighted mass integrals turn out to be zero.

These equations are in an unusual form for
flight mechanics or stability and control in that

q1, @2 represent the motion along the inertial
coordinates, X, Z. The usual rotations of

coordinates are needed to replace g, gy witha
set of coordinates g &9 in a body-fixed system,

wind-axis system or any other conveniently rotated
coordinate system.

2.6 The "Flexible Approximation":

The fully coupled solution for arbitrary
motions would require the determination of the
(generalized) aerodynamic and propulsive forces
on the RHS of Lagrange's equations and then the
simultaneous solution of those equations.
However, analegous to the “phugoid
approximation" and the "short period
approximation”, consider the form that the
"flexible" equations would take in the special case
of a "steady maneuver" - the linear accelerations
and the angular velocity assumed to be constant
(but not necessarily zero):

d1, 43, 43 = Constants

n n 2
XMy + X4 (K; - M)
j=4 j=4

=Q; +(G153 - §2G)F; + §3G; — gG3F;

The RHS contains the usual generalized forces,
constants and specified functions of time. So,
considering the eigenvalue problem, an important

effect of "pitch rate" 6 = g3 in this approximation is
to reduce the effective generalized stiffnesses to;



-2
K —q5M;

Of course aircraft pitch rates are usually small with
respect to any of the natural frequencies of
vibration, so the effect normally is what

Roddenl10] has referred to as a second order
effect on aeroelasticity.

3. The_Slender, Flexible Surface in
Accelerating, General Motion

A more challenging case is the
acceleration of a thin flexible surface in general
(longitudinal and lateral-directional) motion.

Figure 2. The Translating,
Rotating Coordinate System

3.1 Coordinates

Again, we use an orthogonal inertial
coordinate system, fixed to a "flat earth", with Z
pointed "up". This not only influences the sense
of our gravitational forces, but also the physical
interpretation we apply to the successive Euler
angles of rotation.

We obtain the orientation of the body-fixed axis
system by thinking of the three successive
translations as our first three generalized
coordinates:

Xo=q
Yo=q
Zy=q3

to obtain coordinate systems (xl, yl,zl),

(xz,yz,ZZ) and (x3,y3,z3). Then the next three
generalized coordinates are three successive

Euler rotations - g4 about z3 = z4 to obtain
coordinate system (x4, y4,24), qs about y4 = ys
to obtain coordinate system (x5, y5,25) and gg
about x5 = xg to obtain the final body-fixed

coordinate system:

X6 =X
Y6 =Y-
6 =2

The inettial X,Y,Z coordinates of a point in the
body-fixed Xx,y,z axis system then are:

{R} ={Ro}+[T4] 75 ][ T6){7}

where:

X qa x
{R}=1¥} {Ro}=1a2p {F}=1»
Z q3 Z

[(Cy -S4 O

[T4]= S4 C4 0

| 0 0 1

[Cs 0 Ss]

[T5]=| 0 1 0

-85 0 Cs]

[1 0 0]

[Te]={0 Cs —S6

10 S Go

We have used the abbreviations:

S; =sing; C; =cosg;

3.2 Flexible Displacements

We assume that the surface is thin, lies
essentially in the x, y plane and that the flexible
displacements are given by the assumed modes

f j (x,y) and generalizeed coordinates g j(t):
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Figure 3. Thin, Plate-like Surface with
Body-fixed Coordinate System

Axy.t)= Y f(xy);(t)
j=T

3.3 Kinetic Energy and Lagrange's
equations:

An expression for the kinetic energy
would require that we obtain expressions for all of
the inertial velocities, square them and integrate
over the body.

-1 dR || dR
=3 | Ja? J{“a?}dm
Body

Then obtaining the necessary expressions for
Lagrange's equations:
aT

d
B;(BQi)

would require tedious expressions for all of the
partial derivatives with respect to the generalized
coordinates and their time derivatives. An attractive
alternative is to retum to the derivation of
Lagrange's equations and note that we can write:

$(Z)-Z-Sq [ fi7)am

J=1  Body

3 S [ R J{Riban

j=1k=1  Body

3% a i

__Ql

Jg;
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where:
a*{#}

dgq;dq ;i

-1 R} -
{R}=2a {Ri}=
Perhaps this is a rediscovery of an old principle,
but it means that we do not need the complete

expressions for the kinetic energy and its
derivatives when we a Lagrange's equations.

We only need to obtain the partial derivatives of
the inertial coordinates with respect to the
generalized coordinates. This is always correct, but
is particularly helpful in nonlinear problems with
complicated geometries.

Breaking the summations into discrete parts,
plugging in the flexible deflections and eliminating
terms that are inherently zero allows us to arrive at
what we call the "acceleration vector” terms in the
kinetic energy and gravitational potential energy:

4 x
{a}={g(+[TL+Tr]y
42 z

0 0

+[T+ TF] 0:+g40

Z 1

where:

[7]=[Ta(aa)]| T5(as)][ 76 (q6)]
[T]=%-(7]  [Ty]=25{7]
(2= [Fmear]= S[5 1

32
dg;9q

j=4
. . 6 6
[TR] = [TRotate] = Z Z[ ]k]‘h‘lk
j=4k=4

|- [Frean]=2 S

The kinetic and gravitational energy terms in the
first three equations of motion (inertial translations)
turn out to be:



qi: _“_1 0 0fa}dm
Body

o [l0 1 0f{aldm
Body

g [0 0 1f{a)dm
Body

and in the next three equations of motion (Euler
angles of rotation):

.
qs: ﬂ_x y ZJ[T4i {a}dm
Body
AT
gs: fo y z_l[TSJ {a}dm
Body
A
g6: ﬂ_x y z_][T6] {a}dm
Body

and for the flexible equations:

AT
‘Iiligf J l_O 0 flJ[T] {a}dm
Body
3.4 The "Flexible Approximation"

Again, the kinetic and gravitational energy
terms contribute the most complicated parts to the
completely coupled equations of motion for the
displacements along the inertial coordinates, the
Euler angles of rotation and the flexible
deflections. We would have to add the potential
energies from stiffness and the generalized forces
from aerodynamics and propulsion.

Since the first three generalized coordinates are
the displacements along the inertial coordinates,
we could introduce appropriate rotations of
coordinates to replace them with motions along

the body axes, wind axes or any other convenient

coordinate system. Similarly, the second three
generalized coordinates are the Euler angles of
rotation in their successive coordinate systems.
We would need appropriate rotations of
coordinates to replace them with other convenient
angles, such as the instantaneous rotations about
the body axes.

To get additional insight into the flexible
equations, abbreviate the matrices:
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[A1=[#]'
[B] = Lf' T[f'L + fR]
[C]=[7] [T+ 7]

The kinetic energy terms in the flexible equations
become:

(A31dy + A3l + A33G3 )F; + By1G; + By H;

n
+Y M;j(Bs3q; + Cy3d;)
j=1
where:
[ sfidm
Body

Now consider the case of a “steady state

maneuver" where §y,47,43; 44,495,496 are
constants, but not necessarily zero. Then
assuming simple harmonic motion for the flexible
degrees of freedom produces:

(A3161 + Aspdp + A33d3 )F; + B31G; + By H;
n
2
+(Br3 - 0?03 Y, Mya;
j=1

In expanding the matrices [ B] and [C] we see:

Byy =-g3(s5 + 53¢} )24445C556Cs
2444655~ 45C4 —
C33=0

Just as in the case of the longitudinal motion of a
bending beam, the above equation reveals that

the effective forms of the generalized
stiffnesses in the ultimate equations of motion
are:

G2 ~246G4Ss + 42 CE
i .. 22 2 ~2
+2459456C6Cs + 44 (55 +855Cs )

If we use the right hand rule to visualize angular
velocity and examine the components of the Euler



angular velocity vectors, the bracketed expression of pressure at the quarter chord. Flutter occurs for

is just the square of magnitude of the total positions of the torsional axis between (about)
angular velocity in the plane of the 0.44 and 0.84.
flexible surface. 50
; : H ! Ll i
400 i i 3 Divergence |
' . \I
4. Some Related Results e

300

As an example, we present the results 250

Vo. Ve

from reference [9]. Consider a two dimensional 200

airfoil, with a mass distribution that is symmetric

50

!
1

(fore and aft) about the midchord. ::: | —
™

Z)

Figure 5. Divergence and Flutter for the Baseline

4.2 Pit Rate Effect ibratio

Figure 6, shows the effects of pitch rate on
the natural frequencies in bending and torsion vs

X X location of the airfoil torsional axis.
o
3.5
Figure 4. Idealized Airfoil on a Rigid Fuselage ! g =07 l !
a oo OO rooooron
The mass levels and bending and torsional
stiffnesses were chosen to give “uncoupled” 25 06
bending and torsion frequencies of 1 and 2 Hz, : 05

respectively, when the torsional axis was located at
the midchord. These also gave divergence and

flutter speeds that were in the range of validity of

Theodorsen's theory for low speed unsteady R LT T s .
aerodynamics. For the baseline case, the torsional | ““““““llllll“:l::::

axis was varied across the chord. For subsequent »8 ““lllnl.—
cases the pitch rate was imposed with values of 0, =t
2 and 4 rad/sec. As shown in the two previous o . ) . . . .

sections, if the pitch rate has been allowed to
approach 1 Hz, the effective bending stiffness
could have been driven to zero.

0 , radfsec

Figure 6. Pitch Rate Effects on Natural Frequencies
In all that follows, "speed" refers to "equivalent
airspeed" in meters/second; frequency is in Hertz

and pitch rate g is in rad/sec. In the axis system 4.3 Pitch Rate Effects on Divergence

chosen the trailing edge of the airfoilisat £ =0, Figure 7 gives the effects of pitch rate on

and the leading edge is at £ =1. torsional divergence. In all cases, increasing pitch
rate decreases the divergence speed slightly for
aft torsional axes and is beneficial for torsional axes

4.1 Nominal Divergence and Flutter ahead of the midchord.. Recall that, in the axis
system chosen, the trailing edge of the airfoil is at
Figure 5 presents the calculated £ =0, andthe leadingedgeisat £ =1.

divergence and flutter speeds vs the location of
the torsional axis for g3 = 0. As expected the

divergence speed is a minimum for slightly aft
locations of the torsional axis and approaches
infinity as the torsional axis approaches the center
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Figure 7. Pitch Rate Effects on Divergence

4.4 Pitch Rate Effects on Flutter

Figure 8 plots flutter speed vs torsional
axis for the pitch rates of 0, 2 and 4 rad/sec. The
effects are slightly beneficial for the flutter mode
that appears at the lowest speeds and even more
beneficial for the second flutter mode that appears
at the higher speeds. This is certainly due to the
insensitivity of the torsional mode to pitch rate and
the fact that increasing pitch rate actually increases
the separation between the bending and torsion
frequencies.
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Torsional Axis

.8 0.7 ¢.8

Figure 8. Pitch Rate Effects on Flutter

5. Conclusions

5.1 The equations of motion were
developed, using energy methods and
Lagrange's equations, for three cases: (a) a thin,
flexible beam in longitudinal motion, (b) a thin,
plate-like surface in general motion and (c) an
idealized aircraft with a flexible wing, attached to a
rigid fuselage in longitudinal motion. The analysis
was limited to solutions of the vibration or
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aeroelastic eigenvalue problems for the flexible
surfaces, with imposed rigid-body accelerations.

5.2 A significant simplification was (re ?)
discovered in the application of Lagrange's
equations. There now is no need to write out the
tedious expressions for the kinetic energy and its
various derivatives with respect to the generalized
coordinates and their time derivatives.

5.3 Imposed pitch rates decreased the
"effective” beam generalized stiffnesses in the
beam bending problem.

5.4 Similarly, for the thin plate-like surface
in general motion, the component of the total
imposed angular velocity in the plane of the
surface decreased the effective plate generalized
stiffnesses.

5.5 For the idealized wing, increasing
values of pitch rate had beneficial effects on
torsional divergence for forward locations of the
wing torsional axis and detrimental effects for aft
locations. Increasing values of pitch rate increased
the separation between the coupled bending and
torsion frequencies, contributing to beneficial
effects on flutter.

5.6 In advance of fully coupled solutions,
the technique used here is an extension of the
usual techniques used for flutter and divergence
calculations and is very simple to incorporate in any
aeroelastic analysis.
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