ICAS-94-9.4.2

'OUTLINE AND APPLICATION OF THE NLR AEROELASTIC SIMULATION METHOD *
M.H.L. Hounjet fand B.J.G. Eussen ?
National Aerospace Laboratory (NLR),.
Anthony Fokkerweg 2,
1059 CM Amsterdam,
The Netherlands

Abstract

The NLR system for the transonic aeroelastic analy-
sis of complete aircraft is presented. The aerodynamic
part of the method which is primarily based on the full
potential equation is described and attention is given
to a consistent start of the applied Newton subitera-
tion process. Methods which take care of the transfer
of aeroelastic data are described, including the exten-
sion of the surface spline method to a volume spline
method. The method is demonstrated by showing re-
sults of unsteady loads and pressure coefficients appli-
cations in 3-D subsonic flow and of aeroelastic applica-
tions to a 3-D AGARD standard aeroelastic case and
a supercritical wing in transonic flow.

Nomenclature

Abbrev. Description

AF approximate factorisation

AESIM aeroelastic simulation method for
transport type aircraft

CAR unsteady full body panel method for ar-
bitrary configurations

FTRAN3 unsteady transonic field panel method
for wings

LMS Leuven measurement systems

GUL unsteady lifting surface method for ar-

bitrary configurations
NASTRAN NASA structural analysis FEM package
PK solution method for aeroelastic eigen-
value problem
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Roman  description

a speed of sound a® = 72

(a,b,¢,d,e) coeflicients of surface and volume spline
method

Cy pressure coefficient

D Damping matrix

d modified mass matrix

dep pressure  difference through lifting
surface

f freestream mass flux correction

F f aerodynamic force vector

g damping ratio (% crit.)

H Jacobian transformation matrix

M denotes imaginary part

J,j Jacobian of H,j = +

h virtual body displacements (vibrations)

k reduced frequency, k = %

Kk stiffness matrix

{ reference length

L linear equations (operators, Jacobians)

M Mach number

M mass matrix

i disturbance normal

N normal vector

P pressure

q dynamic pressure

q velocity

g ith generalized coordinate

Q: it* modified generalized coordinate

g it generalized velocity

Q contravariant velocity

7 position vector

R gas constant, ¢, — ¢y

R compressible position vector

RE denotes real part

Res residual equations

S entropy



time
modified time

U, v, w velocities in x,y and z direction,
respectively

Uuv,w contravariant velocities in &, 7 and ¢ di-
rection, respectively

v control volume in hyperbolic grid
generation

zy symmetry plane z = 0

zz symmetry plane y = 0

z,y, 2 Cartesian coordinates

Subscripts Description

superscripts

a denotes absorbing condition

b denotes body

f denotes far field

m denotes mass flux condition

n last time station, referring to n'* time
step

n+1 next time station, referring to (n+ 1)
time step

s denotes shock wave

T transpose

w wake

© last  updated state (n + 1)
approximation

0 far upstream

* unnormalized normal

* intermediate result, sonic reference
state

Greek Description

and

others

o angle-of-attack

v ratio of specific heats 2 (1.4 for di-
atomic gas)

6 control angle in hyperbolic grid
generation

¢ curvilinear coordinate in axial direction

7 curvilinear coordinate in circumferen-
tial direction

¢ potential

@ control angle in  hyperbolic grid
generation

K lumping parameter

3 curvilinear coordinate in freestream
direction

P density

7 grid displacement

T modified time

T Clebsch potential

A mesh spacing

Ar time step

\% gradient

—

A% upwind gradient

upwind operator, quantity

bl

0 upwind or downwind operator depend-
ing on @

#upper — #Iower at slits or #upwind _
Fdownwind 5t shock waves

variable

3

Introduction

After the successful acceptance by the aircraft industry
of the Doublet Lattice method [1] in the sixties for
lifting surfaces in subsonic flow, followed two decades
later by the Constant Pressure Panel method {2, 3] for
lifting surfaces in supersonic flow, the development of
methods for the transonic flow regime which can be
applied with comparable efficiency, reliability, low cost
and ease of usage are still needed.

Thus far many methods have been introduced by re-
searchers for the transonic flow domain which in one
way or the other will not be readily accepted by air-
craft industry due to shortcomings in modeling, effi-
ciency, cost and/or ease of usage. Examples are restric-
tions to single wings, too advanced modelings (Euler
+ TLNS + unstructured grids), separated pre- and
postprocessings (grid generation and signal analysis)
and no interface with NASTRAN. Another reason for
the hesitation of industry seems to be the difficulties
involved in surface grid generation, flow field grid gen-
eration, time domain analysis and in representing the
elastomechanical data on the aerodynamic surface.

A similar observation concerns unsteady subsonic
and supersonic panel methods modeling complete air-
craft configurations as thick bodies, which introduce
additional work with respect to the lifting surface
methods in panel generation, represention of the vi-
bration modes on the panels and in inspection.

The latter seems to be the primary cause that lim-
ited use has been made by industry. Besides, a very
limited number of panel methods exist that deal with
the unsteady flow about complete aircraft.

At NLR full aircraft modeling panel methods have
reached the status desrcibed in [3], with the CAR and
GUL methods as results. The CAR method is capable
of modeling a complete oscillating aircraft (with thin
and thick wings) in subsonic and supersonic flow and
supports Hounjet’s diverging rate approach [4, 5, 6]
with which generalized forces can be obtained very ef-
ficiently by avoiding complex arithmetics. The GUL
method is the equivalent lifting surface method. Since
then only minor changes have been made to these
methods.

On the basis of direct (simultaneous solution of
the equations of unsteady aerodynamics and elastome-
chanical equations ) simulation of unsteady transonic
flow about a flexible aircraft the development of a
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method has nearly been completed which aims at re-
ducing the aforementioned drawbacks. The method is
called AESIM (aeroelastic simulation). The full poten-
tial model has been adopted as the building stone of
the aerodynamic part of the method, completed with
the Clebsch potential to account for shock-induced en-
tropy and vorticity effects [7]. The feasibility of direct
simulation was demonstrated by a comparable devel-
opment at Rockwell [8] and at NASA-Langley [9].

This approach offers the possibility to predict aeroe-
lastic quantities of interest (flutter boundaries, un-
steady loads, stability derivatives, gust loads and fa-
tigue spectra) within acceptable turn-around times on
current state-of-the-art workstations which allow fast
direct visual monitoring and analysis and which pro-
vide the computer power ( > 100 dMFLOPS) needed
for routine simulation.

In an early stage of the development it was de-
cided to develop and integrate surface grid generation,
grid generation, elastomechanical interpolation, analy-
sis and visualisation methods from requirements within
the aeroelasticity branches at NLR and Fokker Aircraft
B.V. and not from pushing factors from the CFD com-
munity.

At the same time the full aircraft modeling panel
methods, once integrated, will benefit from this devel-
opment due to the especially developed surface grid
generation tools, the elastomechanical interpolation
tools , the visualisation tools and the NASTRAN in-
terface.

This paper presents important aspects of the status
of the aeroelastic simulation environment and discusses
results of applications in unsteady 3-D flow.

Aeroelastic Simulation System

Figure 1 presents the environment which is under de-
velopment at NLR and this section presents briefly the
important components of the target aeroelastic simula-
tion method. It should be noted that some of the parts
mentioned here are in the process of development.

The various elements of this environment will now
be discussed in more detail.

Surface grid generation

With respect to aeroelastic requirements only the sub-
structures of aircraft which are slender and have sur-
faces with low curvature (wing, tail and fin) need to
be modelled quite well in obtaining the aerodynamic
force in normal direction. Therefore the interference
effects of the fuselage and blunt-nosed parts should be
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Figure 1: Aeroelastic Simulation Environment

modelled properly without the need to obtain very ac-
curate results at those relatively small parts, since the
contribution of drag forces to aeroelastic characteris-
tics is generally limited. Consequently the quality and
density of the surface grids can be relaxed in these ar-
eas. While the aeroelastician is not expected to be an
expert surface modeler who creates a surface grid from
scratch, the assumption is made that an initial surface
grid is available which can be tuned to his needs in
routine applications by a geometry preprocessor. The
geometry preprocessor generates a mono-block struc-
tured surface description and/or paneling of the com-
plete aircraft with embedded upwind slits and down-
wind slits (wake surfaces) by assembling separate air-
frame components (provided by the user by means of
other programs). It also constructs the slits, allows
for redistributions, data editing, data smoothing and
stripping and tailors the configuration to aeroelastic
needs. By this, considerable flexibility is offered to the
aeroelastician who is not directed to other programs
when minor changes have to be made for parametric
studies. Also identification tags are generated which
may be required by the interpolation of the elastome-
chanical data to the surface grid.
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Inspection

Attention has been paid to provide the user with 2-D
and 3-D plot facilities to inspect all the data at the
beginning, during and at the end of the simulation.
Again this reduces the workload for the aeroelastician
who is not directed to other programs for visualisation.

Grid generation

The grid generator provides a OH mono-block grid
about the surface description of the complete aircraft
with embedded upwind slits and downwind slits (wake
surfaces). The grids have acceptable quality about
concave areas such as airfoil noses and wing-fuselage
junctions and are easy to be generated by non-grid
expert’ applicators. The consequence of some limi-
tations in accuracy of the mono-block grid approach
to more complex configurations is considered as more
acceptable for aeroelastic applications than for perfor-
mance design. The grid generation is performed by
the hyperbolic grid generation method described in
(10, 11] which introduces control terms derived from
fluid analogies in concave areas where the standard
hyperbolic grid generator fails. The effort to gener-
ate OH grids around transport type aircraft with mild
concavities is low enough to be accepted by ’non-grid
expert applicators’. The mapping from the computa-
tional space to the physical domain is based on the
equations:

FE.F(
T = COS (@, 1
Tre lTme] -~ 5 )
7_",7.77(
—l = = cos#, 2
T T ] @
[Fe.(7y % 7) | = V. 3)

Here (£, 7 and ¢) denote the coordinates of the com-
putational space, § and ¢ are the angle control terms
and V is the volume of the grid cells.

In the solution of the aforementioned equations addi-
tional dissipation terms are applied which are well de-
scribed in [12]. In addition metric regularisation terms
have been developed to guarantee a proper behavior at
multi-valued axis, multi-valued slit tips, strongly swept
surfaces and non-smooth surface grids at wing-body
Jjunctions, tip regions, etc.

With respect to the angle control terms the following
options are provided:

1. They are supposed to be zero. In this case one re-
lies on the dissipation terms for rendering concave
domains.

2. The terms are evaluated by an aerodynamic panel
method.

3. The terms are provided by the curvilinear surface
spline method which is straightforwardly derived
from the planar surface spline method[13]:

M
cos&:a+b§+cn+2dmr21nr2 4)

m=1

where r? = (€~&,,)2+(n—7m)? and m denotes the
points at plane boundaries and at strong concave
and convex areas on which angles are prescibed.
A similar formula is applied to cos ¢.

The prescribed angles and positions are automati-
cally calculated for the few areas which experience
strong concave or convex angles and equation (4)
takes care of a smooth distribution even in very
concave and convex corners where two positions
on each leg of the corner are applied with oppo-
site angles. The coefficients of the latter equation
is solved by equating it for the M points together
with the three constraints:

M
dm = 0,
m=1
M
> dmém =0,
mz=1
and
M
> dmnm = 0.
m=1

In addition to the abovementioned formulations the
computer program has been designed such that it is
possible to start with an orthogonal grid. Post-elliptic
smoothing with control functions [14] is embedded and
an algebraic grid generation scheme method is applied
as soon as the concave zones are largely resolved by
the present method.

The method is later to be extented to a multi-sector
method to aim at configurations for which the current
method fails to produce grids of acceptable quality.

Aerodynamic models

At this time the most practical set of equations to
model transonic flow about general aircraft configura-
tions are no doubt the Thin Layer Navier Stokes equa-
tions followed by the Euler equations. From recent
developments [15, 16] the conclusion might be drawn
that the algorithms which apply subiterations within
each time-step are the most efficient ones and very little
room for improvement is left. However, the simulation
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of unsteady flow about complete aircraft configurations
by solving these equations is about one order slower
as the solution by potential-based solvers on the same
grid. In addition the grid should be about one order
finer (3-D) to obtain reliable data. Yet, these methods
are not suitable in routine sxmulatlons on the current
generation of workstations.

When the unsteady aerodynamic flow is modeled in
the time domain by the unsteady full potential equa-
tion and applied to flows with strong shock waves, re-
sults are obtained where shock waves are too strong
and located too far aft on the airfoil in comparison
with results obtained from Euler methods. This is
mainly due to the neglect of entropy and vorticity.
This modeling defect can be cured by means of the
Clebsch potential [7]. By this shock-generated entropy
as well as shock-generated vorticity are modeled such
that flows with strong shock waves are treated in a
non-approximate exact manner while retaining its cost
efficiency in comparison with the aforementioned equa-
tions.

The modeling by the unsteady transonic small dis-
turbance potential method is less appropriate due to
the occurring oblique shock waves on swept parts of
the configuration which cannot be resolved properly
without additional changes [17].

The potential-based solvers should be completed by
implementation of a correction for viscous effects to
obtain a correct physical model.

The following sections present details of the full po-
tential models which are currently applied and mention
alternative models which are in the process of develop-
ment.

Full potential model

The computational modeling for solving the unsteady
full potential equation is guidelined by the method of
Shankar [8] and is described below.

When applying the body-fitted coordinate system
represented by 7 = t,& = &(=,y,2,t),n1 = n(z,y, z,1)
and { = ((z,y,z,t) where ( = 0 denotes the surface
of the body and slits, and introducing the disturbance
potential ¢ the flow equations take the form:

Velocity tf—‘—‘ é.oo + HT%‘ZS: where 6 = (‘gf g— aa—()T
and
& &y &
H = Nz 77y N2 3 (5)
G G ¢

where
& = (yozc—yem)li
& = (mz¢—zzn))i
& = (zoye — )i
ne = (veze —vezc)/i
ny = (zme—zx0)/i (6)
n. = (zcye —Teye)/i
G = (Yezm—ynze)ld
G = (zexn—2qze)/i
G o= (zeyn—zoye)/i

with

J = 2e(Ynzc—Yc 2n)+¥e (29 xc~zcxn)+ze(%yc—ﬂ(ﬂ_<{§/n)~

Speed of sound
1

az—m+———(1— -§—26,—26}-V4)}, (8)
where
§=(&nQ)7 with &, =—H(z,y,2){ . (9)
Density
. | Y =
p={1+1== SMLA-d §— 26, —26;-V$)} 1.
(10)
Pressure 9
= Y —1). 1
Cy = 37 (" = 1) (1)
Conservation of mass
Py o [P@
£ R A 12
(4),+9(%)-0
where
d=UVv,W) =&+HJ. (13)
Sonic mass flux
st L
pqg = Mo
=\ 3ot
M2 (¢- + 6% - V9)

2+ (y - DMZ -2y -
v+1

(14)

Also a = ¢*.

Mass flux equation

(5),+9(5%)=»



The upwind density ‘5 is defined as:

5 =p— (@-AV)(pg)~

B Qlg (16)
where
and
(p0)~ = pg—p*¢t M>1
()~ = 0 M<1 (18)

while M = £ and (%—(:- denotes upwind differen-
tiation with respect to the direction of the fluid
velocity.

Freestream consistency When no disturbances oc-
cur in the flow (¢ = 0) the equation (15) is in gen-
eral not satisfied due to the formulation in curvi-
linear coordinates and the applied discretisation.

To account for this offset the right-hand side of
equation (15) is modified to:

1= (5),+% (=),

where

Qoo = 71+ Hioo- (20)

Wake boundary conditions and Kutta condition
Through the wake and at the trailing edge the
pressure is supposed to be continuous:

@ C,T0 =0, (21)
or
T pD =0, (22)
or
Cq-§+2¢,+20;- VoD =0. (23)
Also the mass flux is continuous:
CpWIm=0. (29)

The brackets 0= and 1) define the difference of
the bracketed quantity through the wake slit. The
wake geometry is supposed to be explicitly de-
scribed.

Boundary conditions at the body At the body
zero penetration is imposed:

§-Ny =7 W, (25)

- T
where Ny = ﬁ\/(é—:?%‘; denotes the normal at the
body and 7} = (z,y, 2)7 = g is the velocity of the

body. Applying:

& = —H(z,y,2)T, (26)
the equation simplifies to:
W = 0. (27)

Transpiring boundary conditions at the body
When the body-fitted coordinates do not follow
the motion of the body approximate boundary
conditions are applied:

§- Ny = hy, - Ny + (hs, — §) - s, (28)
where . T,
iy = (V)N (29)
VE+GE+D
with . -
it = -‘&- X hb" — F’? X hbg; (30)
or

W

@+

hy denotes the displacement of the body which is
not dealt with in the coordinate system. In case
the normalisation with respect to the normals N,
and 7i; is not made the equation simplifies to:

W= hy,  Nf 4+ (hy, — ) -5, (32)

= hy, - Ny + (hs, — @) - 7. (31)

where 1\7;‘ = ({z, ¢y, ¢:)T and

iy =y [C2+ (G + (2.

Boundary conditions at the far field In the far
field absorbing boundary conditions [18] are ap-
plied: '

(33)

R= 1_’5‘;, + y2 + 22 denotes the compressible

distance to the center of gravity of the body.
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Time integration
A first-order time accurate integration is applied
to the equation in the field and at the boundaries:

Conservation of mass

s+l (5 a\n - DN
(Jp) AT (]P) +v . (j(FQ) +1 — fn+1~ (34)

n denotes the solution at the time interval 7™ and
the time step Ar = 7"+! — 7" Furthermore:

p’Y-'l" - a2n) (35)

with

2" __7_1—71.‘-11 ¢n__ n-1 - —n

a "1 2 (q q +2 AT +2at’v¢ )3
(36)

and
p7“1n+1 - a2n+1, (37)

with

n1
a? =1-

-1 n+l _ 4n .
1_5__(;&1 St 4 Q?L_Z_T_f’s__ +26; - Vgt
(38)

At the wake the mass equation at the upper and
lower side is combined to one equation.

Wake boundary conditions and Kutta condition

o ant1, o (87 —47) =
—(7- "t + 25—+ 26 Vet = 0.
(39)
Boundary conditions at the body
wrtl = 0. (40)

Transpiring boundary conditions at the body

Wt =Ry, N 4 (B, — ) i (4D)
Absorbing conditions at the far field
(¢n+1 - ¢n) = Gn+l
( Ay + -V
-'.HTﬁ n+1 n+1
+(r r¢ >+¢r =0.  (42)

Newton procedure

The solution of the aforementioned equations at
n + 1 is obtained by means of the well-known Newton
(subiteration) procedure [8]. Assuming that a guess
to the solution at n + 1 is available (denoted by ¢%),
the solution is improved by the process given below.
This process is repeated as many times as required
for accuracy. The number of subiterations depends on
the time step. Usually 2 iterations are sufficient when
about 128 time steps are used for a complete period.
About O(10) subiterations are required when a period
is modeled by 16 time steps.

The process is described by:

Conservation of mass

Ln(+1-4) = YU 15 (i55.6) g,
(43)

The Jacobian of equation (34) is approximated as:

VISRV 1 - —
L= 5bs (——+Q"~Vq)

Ara AT
S 09 = Q% /1 so =
+V-{J°p [~HHTV+%(———+Q"-V>]},
a At
(44)
where
by -
V = V |ML1 ,
vV = V | M >1 upwind gradient,
(45)
and
Ve = V |Q@=0, (46)
Vo = V Q>0

At the wake the mass equation at the upper and
lower side is combined to one equation which re-
sults in the Jacobian:

Lo = L¥PPeT 4 Llower, (47)

Wake boundary conditions and Kutta condition

nil_ g0y o a0 a0 o8 = 0")
Lw(¢ ¢ )— —q g +2 Ar
+ 257 - V¢° I, (48)
where
L, = m2G° Vo+- (49)
w CTAr
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Boundary conditions at the body

Ly(¢"t! — 4%y = wnHl =, (50)

where

(51)

The body boundary equation is implicitly applied
by substituting the expression W™+! = 0 in the
mass equation at the surface. The additional lin-
earization step is not necessary, however, it can
be embedded [8] in the mass equation to improve
on the stability of the approximate factorisation
method.

Ly = ~(g13, 923, 933)”7

Transpiring boundary conditions at the body

(hs, ~47) -,
(52)

Ly(¢"t —¢%) = WrH — by, Ny —

where

Ly = —(g13, 923, 933)7 (53)

The body boundary equation is 1mphc1tly applied
by substituting the expression W"+! — Ry, - N —

(hy,—**1)-ii% in the mass equation at the surface.

Absorbing conditions at the far field

G} - <‘7¢°>

= T A0 0
+(z_£f_z¢_)+g¢_,
r r

n+1 Oy (¢O_¢n)
Lo - %) = (o

(54)

where

In the aforementioned equations I denotes the Ja-
cobian of the nonlinear system and the superscript
QO denotes the intermediate solution. At convergence
- ¢¥ = ¢"*1. The Newton iteration procedure is ap-
plied utilizing a consistent guess of the density and
the potential at the start. A proper guess has to be
made for ¢ and, more importantly, for a consistent p®
when the Newton procedure starts. The obvious choice
¢% = ¢" and p¥ = p" is inconsistent with the ap-
plied Jacobian! In that case one should be aware that
the most recent potential time derivative ¢, = o -
should be put to zero (neutralized) at the start of the
process in all variables and equations that employ it at
the state ¥ to achieve consistency.

This is most easily demonstrated for the simple case
of the following equation:

g=¢u=0.
Applying time linearization:

$r = g% = —g L= (90 —4") + (4" — 6" 7).
Next, choosing ¢¥ = ¢", the correct equation to be
solved becomes:

¢n+1 _ ¢n — gn S, — 1 0 + (¢n ¢n-1)’
wheras the inconsistent one:
¢n+1 . ¢n = _(¢n . ¢n—l) + (¢n _ ¢n-—1) =0,

demonstrates what happens when ¢, is extrapolated
from the previous time-step.

The neutralisation is easily accomplished for the
wake and far field boundary equations. With respect to
the mass flux and to avoid the recalculation of nonlin-
ear terms, it is advisable to subtract the time deriva-
tives by linearization. In the literature a lot of atten-
tion is given to the generation of a proper guess using
a so-called time linearization concept, because of often
encountered failures of the method using other (incon-
sistent) guesses.

Also this seems to be a reason for resorts frequently
made to higher-order time integration which is less crit-
ical with respect to the starting procedure. Proper
guesses are depicted in table (1) below.

N. ¢0 po _

[y

4" )
note the sign!

2 | 2" — @ -V + )@ - ¢ 1)

it (1= 3‘21-17

Table 1: Options for starting Newton procedure

In deriving the aforementioned Jacobians the lin-
earization of the speed of sound and density is applied:

A ICAY S TR N )

and

(57)

.~ 8 n
p= p_a2n<Q V+57)(¢_¢)‘
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Approximate factorisation
The Jacobian system matrix (L = Lm, Lmw, Lu
and L,) is inverted by approximate factorisation:

L(¢n+1 _ ¢O) ~ LfLﬂLC(¢n+1 _ ¢O) ~ Reso,n,n—l,
(58)
with Res the residual of the equations. In the flow
the Res and the operators are scaled with (_A%
and have the form:

K]
Le =14+ 207U —
¢ Oy
(An2a” 3 | o5 (UX )0
79 ° o¢ I7P | g T 9|’ (59)
L —1+2A1'V——E?;
" oy
@2 0 [ o5 (v® o
+ j(ppo 877 R a2® g22 677 ’ (60)
L "‘1+2ATW~—5—
¢ w

(anpa®” o | o5 (W2 o
A A o T (61)

In these equations upwinding is applied to the second
term with respect to the contravariant velocity and
also it should be noted that upwinding is applied in
the L¢ operator for improving stability in supersonic
areas which renders the bandwidth to 4. The wake
and Kutta equations are implicitly coupled in the L,
operator.

Discretisation

The discretisation method is related to the finite
volume method described for steady flow in [19]. This
method minimizes the number of density evaluations
with a factor of 4. The odd-even decoupling intro-
duced by this scheme is prevented by a lumping op-
erator which is related to the Jacobian system matrix
and guarantees a solid performance of the approximate
factorisation method. The lumping operator is added
to the RHS of equation (58):

L(¢"t" — ¢%) > LeLyLe(¢™! — ¢°) o Res™ ™"}

+ (L + Ly + L¢) = (Ve + Vo + V)9 = ¢7), (62)

where & is the lumping factor(0 < « < 1), V¢, V},
and V; denote the approximate Jacobian operator of
the applied volume discretisation and the approximate
factorisation operators L¢, L;, and L; are obtained by
lumping of V in £, 755, and ¢ direction, respectively.

Vorticity and entropy corrections

This section presents the changes which apply to the
full potential model when strong shock waves occur
by introducing the Clebsch potential T which has the
following consequences:

Velocity §= g + HT'Vé + ASHTVT .
Speed of sound

a?= — + —

2 _ 1 7—1(
M2 2

1-@-§—26, — 26} -Vé—2ASY, ~2A56;-V7T).
(63)
Density )
p=eF {1+ =ML
1§26, 23 V§—2A ST, 2056, V7)) 757
(64)
Pressure

2
C, = = (e
i %Pooqgo 7Mc?o

(’7—1)%3_3/)’7 - 1). (65)

Entropy equation
D(AS)
—_— = 66
29 _,, (66)
with 2% = & 1 (- V)#.

Entropy rise The entropy rise is generated at shock
waves according to:

2y
AS 1 In (1 + 7+1(M32 - 1)) (67)
R~ y-1 ( (y+1)M?2 )'Y ’
(y—-1)Mz2+2

where M, denotes the Mach number normal to the
shock:
71y — Us

M, =1 (68)

a
U, denotes the shock speed in normal direction:

pq - s D
— o=l i 69
U, p (69)

and the normal to the shock follows from equating
the tangential velocities across the shock surface:

" (gD

= . 70
AT== 70
Clebsch potential equation
2
or_ & (71)
DT YR

1426



Sonic mass flux The sonic mass flux is:

S

* % €

e =
Moo (y + 1)1

@B, (12)
with
#=24 (- 1M

~2(y=1)MZ (¢ + ASTy +6;-Vé+ AST; - VT).
(73)

Wake boundary conditions and Kutta condition
Through the wake and at the trailing edge the
pressure is supposed to be continuous:

T C,D=0. (74)

It should be noted that the density and the speed
of sound are not continuous through the wake:

T p2D # 0, (75)
and
Ca’D = T§- 7+ 26, +26; - V¢
+2A 8T, +2A 86, -VYD #0. (76)

Only the mass flux is required to be continuous:

@ pg-NoD=0. (7

The other equations (12-18) only change by simply
fill in the aforementioned quantities. The embedding
of these corrections in the computational model is de-
scribed in [7].

Time-linearized full potential model

Hounjet’s diverging rate approach introduced in [4] and
applied in [5, 6] offers the possibility for any method
to obtain generalized forces very efficiently. This ap-
proach is based on the following steps:

1. Obtain aerodynamic data for a purely exponen-
tially diverging motion with the time function e*’
where s is positive and real.

2. Make a polynomial fit through those data.

3. Suppose the fit (which is the transfer function) to
be valid throughout the complex s plane, includ-
ing imaginary s which represents harmonic mo-
tions.

The first step involves limited changes to be made
only with respect to the residual part of the equations
and the full reuse of the linear system. The time step
should be interpreted as the diverging rate. The lin-
ear system can be solved with the AF scheme which
involves O(10) iterations. It is foreseen to apply other
sparse matrix solvers. About 10 diverging rates are
necessary to cover the complete frequency range for
one vibration mode. The conclusion might be drawn
that the cost is equivalent to the cost of one steady
application per mode which is very advantageous. By
convolution the transfer function is defined and direct
simulation can be performed.

Panel Methods

The linear panel methods should be applied for about
0O(10) diverging rates. Thereafter a Padé fit is made,
the transfer function is defined and direct simulation
can be performed.

Viscous Methods

Viscous effects will be modeled by an integral bound-
ary layer method. It is expected that this extention
will improve the prediction of shock position and con-
trol surface loads, and will enable the prediction of
aeroelastic characteristics naer the buffet boundary.

Thin Layer NS code

Work has been started on a Thin Layer NS code which
is planned to be integrated in the system [20}. This
adaption of the simulation method makes it applicable
to fighter type configurations in vortex flow.

Simulations

The method enables the following types of simulation
around 2-D and 3-D configurations:

1. Steady aerodynamic simulation at given M, and
angle of attack for rigid configuration;

2. Steady aeroelastic simulation with static deforma-
tions at given M., angle of attack and dynamic
pressure;

3. Unsteady aerodynamic simulation for forced mo-
tion or deformation at given My, , angle of attack,
vibration mode and type of the motion (sinusoidal,
impulse, jump, polynomial, etc. );
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4. Unsteady aeroelastic simulation due to elastome-
chanical motion or deformation at given M,
angle of attack, dynamic pressure and vibration
modes.

Simulations can be performed about symmetric con-
figurations with symmetric and/or anti-symmetric vi-
bration modes with respect to the xy and xz planes.
Also simulations are possible for wing-tail configura-
tions and for complete bodies which require circumfer-
ential periodicity conditions to be applied.

Elastomechanical model

The elastomechanical model is split into a static part
and a dynamic part which are explained in the follow-
ing sections.

A (ero)E(lasto) Transfer

Because the models are based on different grids in-
terpolation procedures are developed which transfer
aerodynamic and elastomechanical data between the
elastomechanical and aerodynamic surface grids. Also
bounding boxes might be specified by the user for each
vibration mode to ease the implementation of control
surface effects, etc. OQutside these boxes zero padding
of the data is applied.

The following models are available to represent the
elastomechanical data adequately on the aerodynamic
surfaces and vice versa:

1. The well-known planar surface spline interpola-
tion of [13]. In order to apply it to non-planar
configurations the elastomechanic grid is simpli-
fied into planar surface grids and the connection
to the aerodynamic surface grid is done on the
basis of the nearest planar surface.

2. Straightforward extension of the planar surface
spline interpolation of [13] in curvilinear coordi-
nates. In this option the elastomechanic grid is
projected on the aerodynamic surface grid. This is
easily accomplished due to the fact that only one
aerodynamic surface grid is involved. Note that
the structural nodes in the configuration should be
projected twice to the aerodynamic surface grid.
The expression of the spline is given by equation

(4).

3. Least Squares Polynomial approximation of the
data. In this option the data is approximated by:

L M N

h = EZZaijkmiijk.

i=0 j=0 k=0

(78)

This option is very useful for smooth data, as en-
countered in dynamic stability applications.

4. Straightforward extension of the surface spline in-
terpolation to volume spline interpolation. In this
option the data which is supposed to approxi-
mately satisfy the 3-D bi-harmonic equation is in-
terpolated by:

M
h:a+bx+cy+dz+z:e,r,

m=1

(79)

where
r=(z-2,)2+@W—u)+(2~2),

and m denotes the points on the structural grid.
The coefficients of the latter equation are solved
by equating them for the M points together with
the four constraints:

M
es =0,
m=1

eszs = 0,

oy

m=

M
Z €sYs = Oa
m=1
and

M
Z eszs = 0.
m=1

The volume spline method is the most promising
one because it does not require any user interac-
tion and can be applied to non-smooth data.

In general it is assumed that the elastomechanic data
are obtained through NASTRAN so that for this case
an interface is created.

Static elastomechanical model

The static deformation of the aircraft configuration is
obtained by means of the ’free-free’ flexibility matrix.

Dynamic elastomechanical model

The dynamic structural behavior of the aircraft is
based on the generalized modal deflection approach.
The dynamic deformations are expressed in general-
ized coordinates ¢; and their associated modal mass
M, damping D, stiffness K and vibration modes h;
which satisfy the equation:
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Mi+D¢+Kq=F (80)
where )
V. -
F= ”°°2 20 /C,,h,- - Nds (81)
Equation (80) is transformed to first order:
dQ+kQ = f (82)

o= (3)= (£)a= (4 )

and

Q+d %kQ=d 'y (83)

The latter is solved by the well-known Newmark
scheme:

Qn+1—Qn+‘A§Id—lk(Qn+l+Qn) - _A_2_7:d—-1(f0+fn).
(84)
atl _ BT o0 n -1 n
Q = d7(f YV +f")+ M2l - c)Q", (85)
where:
c=1I+ %Zd—lk. (86)

At the beginning of the Newton process the assump-
tion is made:

fO — 2fn __fn-—l.

Monitoring and Postprocessing

Direct monitoring and analysis of all aeroelastic quan-
tities of interest are of major importance for the user.
The analysis in the time domain is performed by means
of exponential sine fitting using the well known Prony’s
method for obtaining initial guesses. Also an interface
will be created to apply easily the analysing tools of
LMS (Leuven Measurements Systems).

Others

Besides the vibration modes, two different sets of ge-
ometric disturbance fields may be applied by the user
which are interpolated by the volume spline or polyno-
mial spline method in bounding boxes specified by the
user:

control modes With these modes it is possible to
simulate the effect of inflow, a boundary layer, de-
sign changes, etc. These modes contribute to the
transpiration boundary condition (28).

1
1

[ NWAKE=
EPSW = 0.30

NDIA =
EPSD = 0,28

[t FLo_uen
lsurface gria generation

*FOLDIT*

Figure 2: Surface grid of AGARD wing tail

pseudo vibration modes These modes allow for the
calculation of forces on parts of the configuration
using (81) and have no impact on the solution.

In order to facilitate the comparison with other ref-
erence pressure data during the simulation, the volume
spline method is also used to interpolate arbitrary data
to the aerodynamic surface grid.

Examples

The applicability range of the method is directed to
2-D airfoils, 3-D wings, 3-D wing-bodies, T-tails, etc.
In this paper some applications of the method will be
presented, which were not shown already in [7] and in-
volved applications with and without the Clebsch po-
tential to 2-D airfoils and 3-D wings. The examples
here will focus on aeroelastic applications in 3-D and
demonstrate the status of the aeroelastic environment.

Wing-tail model

In order to demonstrate the ability of the system to
deal with multi-surfaces the unsteady AGARD planar

1429



EPSC = 0.220
EPSP = 0.000)
SEQNRa

ALPHA=  1.330)
EPS4 =  0.044]

Il\ "
5 %)
\\ N/

SEQNR= 1
Dt :30-May-94

EPSC = 0.220
EPSP = 0.000

ALPHA= 1.330)
0. 044

EPSd =

/] "
'.':IIII{’/Q"'I"I:’E“‘ R
[T 'o'h"\\“‘ \\ N
Ay .==-nm"$::=‘=\\\\\¥\ W\
NN
e

RN \\\\\\
NN

Figure 3: Grid around AGARD wing tail

wing-tail configuration with the tail in the plane of the
wing has been considered.

The grid is depicted in figures 2-4 and shows the
abilility of the grid generator to deal with strongly
swept wings and non-uniform distributions. Also the
double valued tip-axis is clearly visible. It should be
noted that the coarse distributions on the surfaces are
chosen in a way which is acceptable for lifting surface
methods. Only 43x20x27 nodes are applied with 10x10
nodes on each side of the surfaces!

Unsteady calculations have been performed at
My, = 0.8 and k=0.5 in wing twisting.

By a parametric study with respect to the time step
and the far field boundaries it was concluded that the
application of 256 time steps with 2 subiterations dur-
ing 3 periods on the current grid results in a 3 digit
accuracy.

The geometry of the wing and tail consists of planar
quadrilaterals with the following corner co-ordinates:

wing x |y |z | tai x |y|z
vertex vertex

1 0 0101 2701010
2 2251010 2 4001010
3 271110143 390 (1 (0
4 37011 (0} 4 4251110

The symmetric displacement modes of the configu-
ration are defined as follows:

Figure 4: Grid around AGARD wing tail (close up)

no | wing h, tail h, mode
1 ly|(—-225]y| |0 wing
—0.85) twisting
2 y? 0 wing
bending
3 0 |y tail
rolling’
4 0 (z —3.35) | tail
pitching

Figure 5 shows the first harmonic pressure distribu-
tions as obtained with the present method and by the
GUL method on the wing and the tail.

The following can be remarked:

e The leading edge of the tail experiences a large
pressure difference with respect to the real part at
the tip.

¢ The real part of the AESIM data is in good agree-
ment with the GUL data at both the wing and the
tail.

e The imaginary part of the AESIM data is in good
agreement on the tail and a large part of the wing.
At the tip the relatively small (Note the difference
in scale between the real and imaginary figure)
imaginary part on the wing is underpredicted by
the AESIM method.
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Figure 5: Pressure distribution on wing and tail of AGARD wing-tail configuration

o The interference effects are correctly modeled.

o The differences are attributed to the coarse grid at
the edges and probably nonlinear effects due to the
full potential modeling and the cross-velocities.

o The results compare reasonably well, keeping in
mind that no effort has been made to adapt (re-
fine) the coarse grid.

The table below shows a comparison of the gener-
alized forces. The 30% discrepancy which shows up is
attributed to the coarse grid at the leading edges which
is not adapted to the square root singular behavior of
the pressure coefficients. Lifting surface methods are
implicitly adapted to this kind of behavior. Without
doubt by refining the grid the discrepancy disappears.
Most probably, by using similar techniques as applied
in lifting surface methods with respect to the evalua-
tion of pressure and boundary conditions it is possible
to obtain results of equal quality on the current grid.

AESIM GUL
1 J RE. Qz] IM. Qij RE. Q,’j IM.Q,'J'
171 -.07 0.08 -.10 0.12
211 0.28 0.15 0.36 0.22
311 -.34 0.13 -0.44 0.15
411 -.19 0.02 -0.25 0.01

Davies T-tail model

In order to demonstrate the ability of the system to
deal with concave surfaces and anti-symmetric modes
the Davies T-tail configuration [21] without any ground
effect has been considered. The grid is depicted in fig-
ures 6-7 and shows the abilility of the grid generator
to deal with strongly swept wings, non-uniform dis-
tributions and the concavity. Also the double valued
tip-axis of the tail and the single valued tip-axis of
the fin are clearly visible. It should be noted that the
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Figure 6: Surface grid of Davies T-tail

coarse distributions on the surfaces are chosen in a way
which is acceptable for lifting surface methods. Only
30x29x27 nodes are applied with 10x29 nodes on each
side of the surfaces!

Unsteady calculations have been performed at
My = 0.8 and k=0.5 in yaw.

Again by a parametric study with respect to the time
step and the far field boundaries it was concluded that
the application of 256 time steps with 2 subiterations
during 3 periods on the current grid results in a 3 digit
accuracy.

The geometry of the wing and tail consists of planar
quadrilaterals with the following corner co-ordinates:

fin tail
no. X y z X .y z
1 0 0 | 1.5041 0 0 1.5041
2 1 0 | 1.5041 1 0 1.5041
3 -1.4034 1 0 0 0.7034 | 1.2952 | 1.5041
4 1007 {0 0 1.3676 | 1.2952 | 1.5041

The anti-symmetric displacement modes of the con-
figuration are defined as follows:

no | fin h, | tail h, | mode
1 1 0 | slip
2 z 0 | yaw
3 z y | roll

Figure 7: Grid around Davies T-tail

Figures 8-9 show the first harmonic pressure distri-
butions as calculated with the present method and the
GUL method.

The following can be remarked:

¢ The real part of the AESIM data is in good agree-
ment with the GUL data at both the fin and the
tail. A difference is noticable at the fin tip.

o The imaginary part of the AESIM data is in good
agreement on the tail and agrees fairly well at the
fin. At the tip of the fin the small (Note the dif-
ference in scale between the real and imaginary
figure) imaginary part on the wing is underpre-
dicted by the AESIM method.

o The interference effects are correctly modeled.

o The differences are attributed to the coarse grid at
the edges and the single valued tip-axis applied to
the fin in the symmetry plane. Probably nonlin-
ear effects due to the full potential modeling and
the cross-velocities may also contribute to the dif-
ferences.

o The results compare reasonably well, keeping in
mind that no effort has been made to adapt (re-
fine) the coarse grid.

The table below shows a comparison of the general-
ized forces. Again the 30% discrepancy which shows
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Figure 8: Pressure distribution on tail of Davies T-tail

up is attributed to the coarse grid at the leading edges
which is not adapted to the square root singular be-
havior of the pressure coefficients. The same remarks
apply as for the AGARD wing tail application.

[ AESIM [ GUL
1 ] RE. Qij IM. Q,’j RE. Qij IM. Qij
112 2.14 0.47 2.64 75
212 -0.56 0.22 -0.76 33
312 1.34 0.46 1.52 .68

Supercritical transport wing model

The applicability of the AESIM method in flutter anal-
ysis is presented for a large aspect ratio supercritical
wing which was extensively wind tunnel tested at NLR
[22] for the verification of transonic calculation meth-
ods. Six conditions were selected for comparing: My, =

0.6,0.7,0.75 and o = —1 deg,2 deg. The planform of
the wing and the two vibration modes ( a fundamental
torsion and bending) are shown in figure 10. A grid
has been applied with 73x24x27 nodes and is shown in
figure 11.

The planform of the wing consists of 2 planar quadri-
laterals with the following corner co-ordinates:

wing vertex X y z
1 0 0 10
2 193 0 |0
3 .0543 | .128 | O
4 1933 ] 128 | 0
5 2003 | 563 | O
6 .2538 | .563 | 0

The displacement modes of the configuration are de-
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Figure 9: Pressure distribution on fin of Davies T-tail

fined by the polynomial:

The remaining model data are:

1 4
he = Z Z vijz'y (87) bending | torsion
1=05=0 Generalized mass | 0.167 kg | 0.615 kg
where the v coefficients are defined in the table be- Natural frequency | 72.15 Hz | 93.17 Hz
low: Damping (g) 0.18 0.28

bending | torsion

v v

-0.067477 | 0.30924
1.3961 -5.0730
-0.26775 | 1.7012
0.479 -0.25867
1.0074 -5.0448
0.87922 9.2499
0.95724 22.225
12.0 -8.884
2.4604 -16.252
-18.664 | -0.23246

DO D D= O
W 0O R B e ke O O

Figure 12 shows the steady pressure distribution at
the Mo, = 0.7, « = 2 deg condition which has a clearly

defined transonic signature (off-design condition).

Experience with AESIM has shown that the best
way to tackle an aeroelastic problem - not thoroughly
investigated and documented by different people before

- is to pass three stages:

1. Use a combination of PK-method and linear (e.g.
This will give a
quick global view of the flutter problem and a
starting value of the reduced frequency range in
which flutter can be expected. An example is

Doublet Lattice (GUL)) aero.
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shown in figure 13. The reduced frequency range
obtained this way will be used in the next stage.

2. Apply the PK-method with harmonic generalized
forces, calculated by AESIM for forced harmonic
motion (pulse response or with the diverging rate
approach, once available) of the different mode-
shapes. Now a more accurate global impression of
the flutter characteristics is obtained. An example
is shown in figure 14.

3. This flutter diagram will act as a guide line
to trace troublesome operational areas and give
starting values for the non-linear direct simula-
tion of the aero-structure coupling in AESIM to
gain detailed insight in the damping, frequency
and amplitude behavior of the construction.

2
\(: ..‘ S 3 $ R
n - ¥

\2 4%%%33%%%%%?5%52 3783

45, 3 A

SR T HWITE | BT

SAESIM*V0.901

Figure 10: Vibration modes of supercritical wing

The flutter boundaries have been obtained from time
response signals of the generalized coordinates, con-
sisting of 2000-2500 time steps. These calculations
which have been performed on a 4 R4400 processor
SGI ONYX workstation take about 2 hours. A typical
example is shown in figure 15. At his request on-line
monitoring options provide the user at any time dur-
ing the simulation process with frequency and damping
information of this time response signal, through data
fit routines. This way the user controls the process
and can stop it at any time to his liking. In order
to obtain the flutter boundary for each Mach number

0.220
- 6.0008
Time :12:06:39

IALPHA= 1.334
EPS4 = 5.044

EPSC =
EPSP

Figure 11: Grid around supercritical wing

an average of 5 dynamic responses needed to be calcu-
lated in the present example. From the stage-2 flutter
diagram a too high and a too low total pressure were
selected. The inbetween flutter boundary was captured
in a three-step iteration. Figure 16 shows a compari-
son of flutter boundaries versus the Mach number. The
flutter boundaries are compared for 7 types of results:

1. Experimental data [22}, o« = —0.64 deg, dotted
line labeled low. It has been concluded [23], that
these data compare best with calculated data at
a=—1.0deg.

2. Experimental data [22], o = 1.78 deg, dotted line
labeled high. It has been concluded [23], that these
data compare best with calculated data at o =
2.0 deg.

3. Linear theory.

4. FTRAN3, a 3-D transonic method for the steady
and unsteady full potential flow about oscillating
wings. a = —1.0 deg, triangle symbol.

5. FTRAN3, o = 2.0 deg, square symbol.

6. Direct simulation data of the current AESIM
method, @ = —1.0 deg, dot symbol.

7. Direct simulation data of the current AESIM
method, o = 2.0 deg, cross symbol.
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Figure 12: Pressure distribution on supercritical wing
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Figure 13: Flutter diagram at My, = 0.6 for supercrit-

ical wing, GUL loads

Figure 14: Flutter diagram at M, = 0.6,a = 2 deg
for supercritical wing, AESIM loads
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The following conclusions are drawn:

1. The AESIM results underestimate the time-
Iinearized FTRANS results.

2. The AESIM results are conservative compared to
the experiment.

3. The minimum values of the double dipped exper-
imental data are fairly well estimated by AESIM.

3-D AGARD standard aeroelastic wing

As a final example results are included of an aeroe-
lastic investigation which was conducted for one of
the 3-D AGARD standard aeroelastic configurations
in subsonic, transonic and supersonic flow. This con-
figuration is described in [24]. The configuration for
dynamic response I wing 445.6 model ” weakened no.
3” was selected. The mode shapes and the planform
are depicted in figure 17. A grid has been applied with
83x24x27 nodes.

Figure 18 shows a comparison of flutter boundaries
versus the Mach number for the test case of several
models which were compiled from the literature. The
flutter boundaries are compared for seven types of re-
sults:

1. Experimental data [24];
Lifting surface data [6];
Diverging rate FTRAN3 data [6];

Ll

Time linearized data of Wong as estimated from

[26];

5. Direct simulation CAP-TSD data as estimated
from [25];

6. Direct simulation data of Knott as estimated from
[27];

7. Direct simulation data of the current AESIM
method.

The following can be remarked:
1. All methods show a strong transonic dip.

2. The lifting surface data overestimate in the whole
Mach range the flutter boundaries as compared to
the experiment.

3. The diverging rate FTRAN3 data agree fairly well.

4. The time linearized Wong data agree at the lower
and at the higher Mach number, not inbetween.

5. The direct simulation data of Knott is a way off.

6. the AESIM data are in fairly good agreement, ex-
cept at the lower Mach number.

7. The CAP-TSD data is in good agreement with the
experiment.

8. At the subsonic Mach number the differences are
larger as compared with the transonic differences.
This is of course surprising.

9. The gap between the experiment and the lifting
surface data has about the same width as the dif-
ference between the transonic methods!

In conclusion:

¢ For this relatively simple test case the differences
between the available results are too large (5%),
especially in the subsonic region.

e A probable cause is the applied gas model of the
wind tunnel which has to be taken into account
when the calculated data do not match the exact
experimental mass ratio condition.

3 3
SEFTSE S I
33§§§?¥%§3?

w 8 9 m
$35385%: 038

]
|
1100

1
5}.0

|
00

]
11&0

?

vt

0129 —p-

0.00¢
0.120 A~

“0.364

SAESIMSV0.901

Figure 15: Typical dynamic response at M, =
0.75, o = —1 deg for supercritical wing, AESIM loads
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Figure 16: Comparison of calculated flutter boundaries supercritical wing

Conclusion

In this paper the status of the NLR system for aeroelas-
tic simulation has been presented and demonstrated.
Attention has been given to an appropriate begin-
ning of the applied Newton subiteration process.
Extensions of the planar surface spline method to
a nonplanar surface spline and volume spline method
have been described.
The applications have led to the following results:

e The system is able to predict aeroelastic quantitics
of interest for non-trivial configurations such as T-
tails and wing-tails.

e Flutter boundaries can be obtained by the system
for supercritical wings in acceptable turn-around
times on current workstations.

e Flutter boundaries compare fairly well with data
provided by other methods.

e Except for the PK and GUL applications, no need
has shown up for using computer tools outside the
current system.
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