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INTRODUCTION

The use of composite laminates has
become increasingly widespread in industry in
recent years. The main reason is the weight
gain that can be expected at constant stiffness.
However, these materials present a relatively
poor resistance to localized impact loading.
Experimental ultrasonic studies ' showed
that one of the main modes of degradation is
composed of multiple delaminations that can
be impossible to detect to the naked eye and
can cause significant reductions in the
stiffness of the material.

Since a detailed three-dimensional finite ele-
ments analysis is difficult to apply without
overcoming locking, we retained a Love-
Kirchhoff plate model. The Mindlin model
also presenting locking problems, we decided
to use a mixed formulation of the Love-
Kirchhoff plate model developed by Des-
tuynder, Nevers © and Salaun . This for-
mulation is based on a decomposition of the
transverse shearing force into the sum of a
gradient and a rotational. It can also be writ-
ten for the thin shell model of W. T. Koiter
©) After having developed the mixed formu-
lation for the shell model of Koiter, we give a
numerical approximation and expose the prob-
lems due to the application to plates and
delamination. We then give the expression of
the energy release rate and finally numerical
examples to validate the model.
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MIXED MODEL OF KOITER

a) Shell model of Koiter

Let us consider a thin elastic shell which
mid-surface is ®. We suppose that the shell
admits a tangent plane and a normal N. The
projection operator 7t on the tangent plane is
defined by :

I =n+NN

where I is the identity in R>.

Let us note u, = w.u and u5 the normal com-
posant of the displacement. The Koiter’s shell
model is then written :

* rotation :

The Kirchhoff-Love hypothesis is made on
the displacements :

_oN . Ous
O =om
* plane strains :
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where G, is the stress tensor projection on the
tangent plane and S, the projection of the



compliance tensor.
The displacement field is then solution of the
following variational system :

auyv)=I(v) ¥vEYV

where /(v) is the loading fonctional,

a(u,v)ijr(n AUD)) +J Tr(im . p(v)

with n = | o,(u) dxs

h~
h*

and m = j x5 0,(u) dx;
h~
and V = { v kinematically admissible }

b) Mixed formulation

In the formulation above, u; must be
C'. To avoid this condition, let us introduce
the shear force O that we split into the sum
of a gradient ¢ and a rotational v :
Q0 =V + roty

The Koiter mixed model is then written :
a(u v)+b(Av)-l(v) VvGV
b (A u)= v A

with A = (¢,y,C;) where C; are constants
(there is one for each non connex free edge),

andb(A,u)=fV¢ ©-9 ,+E)
am dm

-jwcurl (-—-— u, —0)

-ZCJ(G ST

i=1

N, represents the number of connex compo- -

santes of the free edge 7Y, and
curl i = fp | = Py

NUMERICAL APPROXIMATION

a) Resolution

The geometry is approached by trian-
gles. The shape functions are linear for u;, ¢
and vy and linear plus bubble function for u,
and 8 . The bubble function is 27 A; A, A5 if
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A; are the barycentrical coordinates. After
discretization of the bilinear forms a and b
leads to the following linear system :

AX+B o+C' yw+D' K=F
B X =0
CcX =0
D X =0

where the matrix A corresponds to the
discretization of a(.,.) defined above when
B, C and D correspond to the discretization
of the part of the functional b that makes
intervene ¢ for B, y for C and the constants
associated to the free edges for D ( K is the
vector of constants associated to the free
edges). A is symetric when B, C and D are
rectangular. X is the vector of nodal values of
generalized displacements ( # and 6 ). To
solve the linear system, two ways can be
adopted ;

i) the non-zero terms are only stocked for
A,B,C and D and the global system is
solved with a conjugate gradient. That is the
"Morse" stocking.

i) X is eliminated as follow :

X=A"[F-B' ¢-C'y-D'K]
so that we obtain the following system in
o, yand K :

BABYG+BATICHYy+B ATDYK=BA'F
(CATBYG+(CAICYY+(CATDYK=CAT'F
(D ABY ¢+ (D ATICHY+(D AT'DYK =D AT F

This system is solved with a conjugate gra-
dient, possibly preconditioned. Each iteration
only needs one resolution of a system where
intervenes the matrix A that is factorized
under the shape A = L.D.L', where L is an
inferior triangular matrix with a unit diagonal.
B,C and D are always stocked "Morse"
when A is stocked "profile” here.

b) Application to plates

When the model is applied to plates, this
is to say when the shell curvature becomes 0
(or small), A becomes singular. A can be reg-
ularized by adding either :



1) a matrix Kg of transverse shear stiffness
given by the Mindlin model.

i) or a linear arrangement of matrixes B
andC :aB'.B+BC'.C
The first solution has only been tested at the
beginning.

c) Application to delamination

The delamination plate is modelled as an
assembly of sub-plates where continuity of
u, 9 and ¢ is assumed through the delamina-
tion front :

4] =0
Juzl =0
(6] =0
o] =0

where [.] represents the jump of the con-
sidered function.

On the other hand, the bending/membrane
problem must be taken into account.

d) Numerical example for the stocking

Because of the connecting conditions the
stocking becomes expensive when A s
stocked "profile" and it would be good of
having a minimization algorithm for the
profile of the matrix. In order to evaluate the

costs (memory place and time), a square,

clamped plate under a negative force in its
center is calculated. Results are written in
table 1 for two different meshes. The plate is
not delaminated. The renumbering algorithm
used here is the one of Gibbs-Poole-
Stockmeyer.

Table 1
461 d.o.f. 2225 d.o.f.
Stocking mode
place | time place time

P. without r. 85116 | 89s 1785160 | 3252 s
P. with r. 26653 | 35s 263427 139 s

Morse 7695 | 40's 37936 492 s
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where :
P. without r. = Profile without renumbering
P. with r. = Profile with renumbering

With "Morse" stocking, memory place needed
by A is minimum. Nevertheless, the bad con-
ditioning of the matrix has an influence on the
convergence of the method. In order to obtain
a correct precision, the number of iterations of
the conjugate gradient must be forced to
several times the dimension of x. The second
way of penalizing A has then been tested.
Because of B.X =0 and C.X =0, we have
AX=(A +a (B.B+C" C)X and the
system to solve is not changed. This method
leads to better results than the previous one
by decreasing the number of iterations but it
presents the disadvantage of increasing the
memory place. The memory place as a func-
tion of the number of degrees of freedom for
the two different ways of stocking is shown
on figure 1 with :

Profile 1 = Profile with the transverse shear
matrix for penalizing matrix.

Profile 2 = Profile with o. (B*. B + C'. C)
for penalizing matrix.

Morse 1 = Morse with the transverse shear
matrix for penalizing matrix.

Morse 2 = Morse with o (B*. B + C'. C)
for penalizing matrix.

o figure 1
g o Protile |
o e Praide T
x = Morse |
Q © —— Morse 2
8
.
&
<)
E
3
=
9.00 15.00 20.00x16"

5.00 wlm
Number of degrees of freedom

The renumbering algorithm of Gibbs-Poole-
Stockmeyer has also been used to decrease



the memory place when A is stocked
“profile”. However, the continuity conditions
do not allow an as important gain as with
only one plate, especially for coarse meshes.

e) Preconditioning of A

Two kinds of preconditioning have been
tested in order to decrease the number of
iterations when the system is directly solved
by a conjugate gradient. Results presented on
the figure 2 are for a double Cantilever beam.
Different meshes have been calculated. When
there is no preconditioning, computations
have not been done for more than 1700
degrees of freedom because of the time that
becomes very important compared to the one
with preconditioning.

On the figure 2, the different preconditionings
are the following :

preconditioning O : no preconditioning.
preconditioning 1 preconditioning  with
incomplete Crout factorization.
preconditioning 2 : preconditioning with the
diagonale of A.
preconditioning 3
with a unit constant.

preconditioning SSOR
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ENERGY RELEASE RATE

Let us suppose that the delamination
propagates of &/ at the interface of two layers
of the composite plate. The tool used to study
the propagation of this delamination is the
energy release rate. This one epresents the
thermodynamic force G so that G &/ is the
potential energy that is disponible in the struc-
ture in order to have a progression of the
delamination front of a length 8/.

The delamination front is well described by a
velocity field w such that :

w(xy, x2)
w = Wz(xl, Xz)
0

The support of w is confined to a small
neighborhood of ¥, Y, being the delamina-
tion front.

Destuynder © gave the following expression
of the energy release rate if the loading sup-
port does not intersect w support (if the
neighborhood of ¥; is unloaded) :

GE(W) 2—%—- J Gij uj,i diV w
QE

+ I G U Wi
QE

When ¢ vanishes G&(w ) becomes 7 :
aw

Gow) = - 5 !2 Sodn %o s 3
Juig 0
+ !2 %ap aii a::
+ ‘J;O'gﬁ p) (u;? ?)::)
Let us note :

nop = Ripay Yo
J908 = Ragu ha
Pap =~ Rapuu Kap

Mg =~ Rop Koy



with Ky, (u3) = = uqy, the expressions of ¢ and Yy we obtain the

shear force.
and using the mixed formulation of the shell
model, the energy release rate expression
becomes :

3
Gow)=== 3 | { (nop(u) + pap(u3) Yop(t)

N[—-

figure 3
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figure 4

NUMERICAL EXAMPLES

a) First of all, the model has been vali-

T T

dated by comparison with an analytical com-
putation. wer
Let us consider a square plate which side is o |
1m, thickness 10 mm, simply supported on its

sides and under a negative force of - 1000 N o0
in its center. The characteristics of the

material are as follows :

E = 150000 MPa and v = 0.35.

An analytical Kirchhoff-Love computation

gives ‘u3=— 8.15E-04 m. The same plate

calculated with the mixed finite elements

gives the same result whatever the resolution

method used.

;
000 .00 16.00

b) A Cantilever beam has been meshed 150
by introducing first of all one plate and on the
other hand two plates connected together with
the contiiuity conditions. The two meshes
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figure 5

1

It

were exactly the same. Except for y that E om
does not need to be continue at the interface '

of the plates, the two methods give the same

results. e

A

¢) Let us consider a double Cantilever RE v
beam (figure 3). The results obtained after
convergence are presented for u; and ¢ in the
middle of the beam on figures 4 and 5. From
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CONCLUSION

An excellent approximation of the shear

force as well as the generalized plane stress
tensor and the bending moments is obtained
by using the mixed formulation. The model
has been validated by a comparison with an
analytical calculation. The mixed elements
present the advantage of not locking with
bending. Moreover, the model leads to an
expression of the energy release rate as a
function of the only first derivatives of the
unknown values of the problem. Let us finally
note that the determination of the derivatives
is done with the initial mesh and that we do
not need a second mesh of the structure with
a progression of the delamination in order to
compute the energy release rate.
However, the resolution of the system with a
conjugate gradient can be long when using a
factorization of A needs an important memory
place. Three kinds of preconditioning have
been tested to decrease the number of itera-
tions. It would however be interesting to find
a compromise between time and memory
place. A better renumbering algorithm that
takes into account the continuity conditions
between plates would be a good way of
decreasing the memory place when A is fac-
torized.
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