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Abstract i) they do not exploit the largest electromechanic piezo-

electric coupling coefficient, that is in the direction

i i t ility of acti i i . . . T .

An exar,mnatlon On, he ability of ac W.e mafte,nal t(,) tmprove of the poling direction, but the indirect effect in its
the static aeroelastic performance of wings is investigated. A . . L.

orthogonal plane,due to the Poisson ratio, which is

plate model with laminated composite skins is adopted for
about the 30% of the largest one.

the wing box structure.

The box is rinforced with stringers modelled as spanwise it) practical available piezoelectric material are isotropic

laced axial elements that can inco te pie ic ac- . . . .
P o rporate p zoelectric ac in the plane orthogonal to the poling direction,
tuators. The lifting surface formulation is used in order to . . ..
. . so that their authority on the twisting deforma-
evaluate the aerodynamical loads on the wing. ) . . .
. . . tion mode is poor because it comes just from the
The ammount of wing performance improvement is con-

I I d otroD
strained by limited electromechanical coupling coefficients and bending-twisting coupling effect due to the anisotropic

. L . . proprierties of the composite laminate and to the
by the way active material is integrated into the main struc-

. . . sweeep angle of the wing.
ture. These constraints are made less stringent by an active b ang &

wing bay configuration in which axial piezoelectric actuators A different configuration is proposed in this work. The
are discretely attached to the wing box skins. The numeri- structural wing box is modelized as a plate structure
cal results reveal the ability of the adaptive wing to control made of orthotropic cover skins stiffned by spanwise placed
the static aeroelastic response of unswept and swept-forward stringers attached to the skins. The wing is made active
wing. Increase in divergence critical speed is proved and, by replacing the whole or some part of the stringers with
in subcritical range, the power of adaptive control tecnique axial piezoelectric actuators. This configuration over-
is shown in terms of elestic displacements and aerodynamic comes both of the aforementioned limits, since it exploits
loads. the largest piezoelectric electro-mechanical coupling and,

as it will be shown, it can directely induce twisting de-
1 Introduction formation on the wing improving the control authority.

Adaptive wings in which piezoelectric actuator layers
are embedded in a laminated composite structure, show
some limits [1] [2]:
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2 Structural Model

A plate model is used to represent the wing box struc-
ture. The planform geometry of this plate model is as-
sumed to be trapezoidal, with arbitrary sweep angle A
with respect to the wind direction, and a nondimen-
sional coordinate system (u,7n) is adopted, as illustrated
in Fig.(1). The wing box is assumed of uniform cross-
section, altough the model is capable of modelling also
non uniform one. The typical cross-section view of the
analitical model is illustrated in Fig.(2).
The presence of ribs, insuring the transfer of shear stress
between the upper and lower skins, is assumed in order to
neglect the shear deformation of the cross-sections. The
upper and lower skins are made of several layers that
are assumed to have the same mechanical properties but
different orientation. Furthermore the upper and lower
skins and, hence, the corresponding layers are assumed
to be symmetric about the middle plane of the wing. The
anisotropic plate bending stiffness matrix D is evaluated
by means of classical laminated theory. Stringers laying
spanwise on u = const lines and simmetrically placed
with respect to the middle plane of the wing, are repre-
sented as axial elements discretely attached to the skins.
Fach segment between two connection points can be re-
placed with an axial active member as it will be discussed
later.

A modified finite element method is used to obtain an
approximately stationary solution to the variation of the
total energy associated with the analytical model. This

energy has the following expression:
E=U+V-L (1)

where Y is the strain energy of the strucure,V is the elec-
tromechanical coupling energy due to the active elements

and L is the work done by the external loads.

2.1 Modified Finite Element Method

The modified finite element method used in this work [3],
consists in assuming a spanwise finite element discretiza-
tion of the wing elastic displacements, while a power ex-
pansion is assumed chordwise. These assumptions have
the advantage to provide the analyst directly with global

chordwise quantities such as flexural displacements, tor-
sional rotations, mean line curvatures, etc. which are
meaningfull from the aerodynamic standpoint. The gen-
eral expression of the nondimensional flexural elastic dis-
placement of the jth element is:

Wiw o= U 0T wox; (@)
with
—05<u<05 0<(<1 (3)

where (, is the local nondimensional coordinate associ-
ated with each finite element. The function ¥(u,() is the
shape function vector and Xj is the vector of the gener-
alized displacements of the jth element, their expression
are given in Appendix A.

The strain energy of the jth wing plate element has

the following expression:
1 .
U = 5/ k] (u,n)Dk; (u,n)dS (4)
S;

where k(u,7n) is the plate curvature vector, that can be
written in terms of the FEM generalized displacements

in the form:
. 1
kj(u,Q) = ZCT(u,C)Xj (5)

the expression of the vector C(u,() is given in Appendix
A. Substitution of the expression for the elastic displace-

ments into the expression of the strain energy gives:

1 0.5

U = %DUX]-T (ﬂéj / /+ CDCTdudC> X; (6)

0 J-05

where D = Dy;D and 6; = Lj/L. There are N, cou-
ple of stringers simmetrically placed with respect to the
middle plane along constant lines 4 = u, with » = 1, N;.
The stringers are represented as axial elements discretely
attached to the upper and lower skins. The ends of each
stringer finite element are in two adjacent attachment
points. These points can be defined independentely with
respect to the plate finite elements. The assumed nondi-
mensional axial displacement of the kth element of the

rth stringer has the expression:

UL() = w(§)/L=NT (U}, 0<€E<1  (T)
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where £ is the local non dimensional coordinate along
the lenght of the stringers. The expression of the shape
function vector N(€) and of the axial displacement vector
Uy is given in Appendix A, The strain energy of the kth
stringer element is:

1
up = -

[ dBadow ®)
[

where ¢(€) is the axial deformation. By imposing the
condition that the end of the stringer element are con-
strained to the upper or lower skins, the axial displace-
ments of the ends of the kth element U"; can be ex-
pressed in terms of the wing element generalized dis-
placement vectors, as it is discussed in Appendix A, in

Ui =10 [ o } (9)

In terms of the wing generalized displacements the strain

the form:

energy of the rth couple of stringers, of Young modulus
E and cross section area A, symmetrically placed with
respect to the middle plane has the expression:

1
T T r X
U; = Dy [XLXT,] (I‘B&kékT /0 ssng) ", [ x% }

1k
(10)
where :
EAR?
r = QCD“ (11
l
b = 1’2 (12)

Summing up the strain energy of all the plate elements
and the stringer elements, the global strain energy can
be written in the form:

Nr
—- 1 T r
U= Dy [2){ (K,,+Z;:Ks) x] (13)
where N, is the number of the couple of the stringers
symmetrically placed with respect to the middle plane, X
is the vector of the global degree of freedom, K, and K,

are the stiffner matrices of the plate and stringers respec-
tively, assembled accordingly to classical FEM method.

2.2  Actuator Wing Bay

The actuators are symmetrically placed with respect to
the middle plane. When one of the element of a stringer

is replaced by an axial piezoelectric actuator the electro-
mechanical coupling energy should be taken into account.
For such an active element:
1
up+vi =3 / eEA(e — Ap)dl (14)
T

in which A is the actuator strain. For piezoelectric ac-
tuators the constitutive equation gives:

A =dsE3

where the subscript 3 indicate the poling direction, das
is the electro-mechanical coupling coefficent and Ej is
the electric applied field. Each couple of actuators, sym-
metrically placed with respect to the middle plane, are
connected in such a way that they induce an out-of-phase
strain in the upper and lower skins, thus no net in-plane
strain is induced on the wing:

Aupper =A

Aower = ~A

In term of the generalized displacements of the wing,
U7, has the same expression as Eq.(13) while the term V]
can be written:

1
Vi = —Diy [[xgjx{j] (FM«S@ZT /0 Sdﬁ) f\k} (15)

with:
A = A/Amaa: (16)
EAh
Fa = 2——Anmae 17
4 BD1; (17

where A,nqr is the maximum free induced strain and A
is the actuator strain. The wing active bay is obtained
by placing the active elements symmetrically with re-
spect to the wing planform center line, along the constant
lines v = *u,, as it is shown in Fig.(4). For a straight
isotropic wing, when each couple of chordwise symmet-
ric actuators are connected out-of-phase, pure twisting
deformation is induced on the wing, while, when they
are connected in-phase, a deformation of pure bending
arises. Any combination of these two actuation modes
can be obtained by independently driving each actuators.
However, for each active wing bay, the skew-symmetric
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vart of the actuator strain gives a contribution to the
wisting mode, while the symmetric part gives a contri-
»ution to the bending mode. For the sake of clearness,
hese two contribution are evaluated separately. It will
ye referred to as twisting and bending actuator bay when
he skew-symmetric and symmetric actuation are consid-
rred respectively, and the subscripts ¢ and b will be used.
[hus the electromechanical coupling energy of the kth
ictive bay has the expression:

Vi = D11 [X{ (P kAo i + Py Ary)] (18)

vith:
T 1
P, = Tapé(®,7 —o;" )/ Sd¢
0
T T, [
Py, = Tafor(®; +@.7 )/ Sd¢
0
(19)
wnd
App = AZ-*—A;T
A = A —A"

(20)

where the superscript +r are used to indicate quantities
valuated for u = Fu,. The electric connections of the
iezoelectric actuator bay are sketched in Fig.(4).

This expression of Vi can be assembled according to
"EM rule in order to obtain global expression for the
oupling energy in terms of the vector of the wing gen-
ralized displacements:

V= —Dyy [XT(PyA + PiA,)] (21)

Vhere the vectors Ay and A, are the vectors of the sym-
netric and skew-symmetric strain applied to each ac-
ive bay. For wings with anisotropic skins or sweep an-
le bending-twisting coupling arises, however actuation
f the active wing can be tuned in order to obtain the
fesidered actuation mode. From Eqgs.(13) and (18), the
tationary solution of the variation of the total energy
ives the governing equation of the active wing:

KnoX = PyAy + P:A; + For (22)

where:

Nr
Koo = Kp + ) _K] (23)
s=1

is the non-active stiffness matrix.

2.3 Adaptive Wing

The wing is now active but not adaptive. The adaptive
nature of the wing is introduced by requiring the piezo-
electric applied strain to be related to the actual defor-
mation of the wing. Based on the converse piezoelectric
effect, a sensor bay with the same configuration as the
active bay is placed close to the wing root in order to pick
up the twisting and bending deformation. For static ap-
plication the charge ¢, caused by the wing deformation,
is collected on the electrodes placed on the basis of the
piesoelectric material and measured by a charge ampli-
fier. The sensing equation of an axial piezoelctric sensor

of lenght [ is:

Twisting and bending sensor bays are obtained by con-
necting the piezoelectric elements in the same manner as
for the actuator bays . In terms of the generalized dis-
placements the charge measured on the electrodes of the
sensor bay and due to the bending and twisting defor-

mations are respectively:

dzz 7 | Xos
= P,
qb Amaml b,s Xls (25)
daz 1 [ Xos ]
= P,
qf Amarl 1,8 Xls (26)

where the subscript s indicates the sensor bay.

The adaptive nature of the wing is introduced by re-
quiring that the actuator strain of the kth actuator bay
be proportional to the deformation measured by the sen-
sor bay. The result is:

1Y3

Ay = gbpf,[ 0 ] (27)
1‘13
Xos

Ay = gsz,[ ° ] (28)
Xl.s
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Substituting Eqgs.(27) and (28) in Eq.(22) and assem-
bling, we obtain the matrix form of the governing equa-

tion of the adaptive wing:
(Kna + 0Ky + gth) X=F.: (29)

where K and K; are the feed-back matrix of the flexural
and twisting control respectively and g5 and g; are the

relevant gains.

3 Aerodynamic Model

For the present research, it is necessary to have an aero-
dynamic tool that can adequately describe the aerody-
namic steady load acting on the wing, in subsonic un-
compressible flow. One of the most popular method,
that can be used to determine aerodynamic forces, is
the Kernel-Function-Method. Which is able to charac-
terize the aerodynamic pressure in some wing colocated
points. One of the major advantages of the KFM is that
few colocated points are able to well describe the pres-
sure distribution on the wing, so that few aerodynamic
degrees of freedom are needed [4] [5] [6].

3.1 Review of Kernel-Function-Method

The fundamental equation of KFM is an integral one.
This equation relates load distribution to normalwash.
In steady flow we have the following expression:

U)(z)y) / oy o
= — 1ﬁ g ]
Uco 87 qayn J s p(Z,9)G(x,y,7,9)dzdy (30)

where (z,y) and (%, §) are control point and doublet sin-
gularity point respectively, 3€5 signifies the treatment of
improper integral according Hadamard rule,G(z, y, z, §)
is the kernel of the integral equation (App.B) and qayn
is the dynamic pressure.

The idea of KFM is to approximate the unknowm
pressure distribution Ap(2, g) in chordwise and spanwise
directions by prescribed functions with unknown coeffi-
cients g,,. In order to obtain a most accurate solution,
these funtions must take into account the Kutta condi-
tions of zero pressure at the trailing edge and square root
singularity at the leading edge of the wing, while along

spanwise they can be selected according the well known

Multhopp rule. In nondimensional variables we have:

APE) = Y3 qup @b/ (3D)

where:

77 —_

i(ry) = 22U (32)

with L the lenght of wing semispan, ¢ the abscissa along
chord direction, #’(y) the leading edge equation and ¢(y)
the chord lenght at the coordinate y. The function ¢, (u)
represent the Lagrange polynomial of unity strenght at
the p-th control point along chord direction:

M-1
eu(i) = Y Cpurl’ (33)
r=0

Where the coefficents C),, can be determined solving the
following alebraic system:

cv=1 (34)

with V Vandermonde matrix, written for all the con-
trol points and I is the unit matrix. The expression of
Multhopp function v, (%) is:

N

Yu(f]) = _2"

sin(sf, ) sin(sh) (35)
N+1 s=1

with:

# = arccos(7) 0<f<7 (36)

and 6, the control point coordinate according the well
known Multhopp rule:

s

6, =
YT N+1

v v=1,...,N (37

By solving the singular integral equation (30) we obtain
an algebraic equation in terms of unknown nondiomen-

sional pressure vector q:

Aq=a,+a. (38)

where o, and a,. are the vectors of the geometric and

elastic incidence in the aerodynamic control points.
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4 Static Aeroelasticity

In order to valuate the static divergence of the wing it is
necessary to relate external aerodynamic loads to elas-
tic displacements. Starting from the work performed
by aerodynamic forces, it is possible to find the rela-
tionship between aerodynamic and structure. The work
performed by the generalized aerodynamic forces on the

generalized displacements of the jth wing element is:
Lj= /s w; (2, y)Fj(x, y)dedy (39)
S;
Taking into account the following relationship between

the structural and aerodynamic coordinate of the jth
element:

= u+0.5;
= 1n;+(6;

~1/2<u<1/2
0<¢<l

the aerodynamic load on the jih element is:

Fj(u,¢) = QdynQT(u1<)q (40)

where Q(u, () is the aerodynamic shape function vector,
whose expression is given in Appendix B.

By putting Eq.(2) and Eq.(40) into Eq.(39) and using
nondimensional variables we obtain for the work of the
Jjth element:

L; = oD;X] R;q (41)

with;
1 0.5
m=mﬁ/‘wwowwmma (42)
—-0.5

and o is the nondimensional dynamic pressure:

el?
7= D v (43)

Finally the aerodynamic force on the wing finite ele-
ment is:

Fj = Dllo'qu (44)

which, assembled for the whole wing, gives us the global
force vector:
Fert = DijoRq (45)
The ith element of the vector of the elastic incidence
is:

10
@i = e, ) = S W)

by performing simple algebra this vector can be expressed
in terms of generalized displacement of the FEM as:

a. = TX (46)

Combining Eqgs.(17,38,45,46) we obtain the final aeroe-
lastic equation which allows to determine the unknown
vector q:

(A—o¢TK 'R)q=q, (47)

where K is the global stiffness matrix of the adaptive
wing:
K=K, + @K + ¢: K, (48)

From this equation the vector of the aerodynamic load
on the wing q can be evaluated as a function of the geo-
metric incidence a4, taking into account the elastic dis-
placements. The divergence non dimensional dynamic
pressure o is given by the lowest eigenvalue of the fol-
lowing algebraic equation:

det(A —cTK™'R) =0 (49)

5 Numerical Results

For the purpouse of the numerical verification, a wing
with the geometric and mechanic properties of Table 1 is
considered. Four stringer are symmetrically placed with
respect to the center line of the wing along the constant
lines u = +0.25, on the upper and lower skins. Three
terms are used in the chordwise power expansion of the
wing displacement shape functions and 15 spanwise el-
ements are used to represent the FEM discretization.
Each actuator bay is assumed coincident with a finite
element, while the sensor bay is placed in the element
closest to the wing root.

As a first step the actuation capabilities of the active
wing are investigated. The unswept and forward-swept
wings with sweep angles of 0°,—30° and —60° are con-
sidered. All the bays are actuated by inducing the the
maximum actuator strain. The effects of the deformation
due to the bending and twisting mode actuation are con-
sidered separately. Figs.(5),(6) and (7) show the effect
of twisting actuator bays on the wing. For the unswept
wing, Fig.(5), pure twisting deformation arises, while the
bending-twisting coupled deformation increases with the
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sweep angle. Figs.(6) and (7) show a progressive decrease
of the authority of twisting mode actuation in control-
ling the twisting deformation of the wing. The effect of
the bending actuator bay is showed for the sweep angles
0°,—30° and —60° in Figs.(8),(9) and (10). Conversly
with respect to the twisting actuator bay, pure bending
deformation arises on the unswept wing, while progres-
sively larger twisting deformations appear increasing the
sweep angle.

Figs.(11) and (12} show the variation of the diver-
gence critical speed of the adaptive wing versus the feed-
back gain of bending and twisting actuator bays respec-
tively. The critical speed contour is shown for two dif-
fernt sweep angles that are —30° and —60°.

In Figs.(13) and (14) is displaied a paramaetric study
on the best placement of one bending and one twisting
actuator bay bay, in order to accomplish the largest di-
vergence speed. For the sweep angle of —30°, Fig.(13),
the higest divergence speed is obtained when the twist-
ing and bending mode actuator bays are placed in the
elements 5 and 6 of FEM modellization, while it occurs
when they move through the wing tip, in the element 7
for both bending and twisting actuator bay, for the sweep
angle —60°, Fig.(14).

Figs.(15),(16),(21),(22) display the response and the
aerodynamic loads of the non-adaptive wing of sweep an-
gles —30° and —60°, corresponding to a dynamic pres-
sure ¢qyn = 0.8¢p, where ¢p is divergence dynamic pres-
sure. The same quantities are displaied in Figs. (17),
(18), (19), (20), (23), (24), (25), (26) for the adaptive
wing for which one twisting and one bending active bays
are placed according to the best locations given by the
parametric study of Figs. (13) and (14).

Figs.(11) and (12) show a significative increase in the
divergence speed that can be accomplished by such an
adaptive wing. From the aeroelastic stand point high
autority on twisting deformation is desired, while atten-
uation of bending deformation are requested by material
strenght.

Comparison between Figs.(10) and (11) shows that
the divergence speed is governed mainly by twisting de-
formation, as a consequence, due to the geometrical cou-

pling, the autority of bending actuator bay on the critical

speed increase with the sweep angle, while the twisting
actuator bay is more effective for small sweep angle. A
combination of this two deformation modes is not inves-
tigated, however it is reasonable to expect that it would
be lead to better performances and allow the designer to
tune more adequately the control system.

Below the critical speed the power of the adaptive
wing is revealed by the positive effect of the attenuation
of the elastic deformation on the aerodynamic load dis-
tribution.

It should be noted that in this study the issue asso-
ciated with power consumption and actuator saturation
has not be addressed.

6 Conclusion

A laminated composite plate reinforced with stringers,
part of which are made of piezoelectric material, has been
used to model wing box structure of an adaptive wing.
The study of the aeroelstic behaviour of the wing has
been accomplished.

Piezoelectric axial actuators are used to exploit the
largest electromechanical coupling coeflicient and to make
possible pure twisting deformation. A configuration of
the wing active bay needed in order to induce bending
and twisting mode deformation on the wing is proposed.

The effects of bending and twisting mode attenuation
are examinated separately in terms of divergence speed
increase and, in the subcritical range, in terms of wing
deformation and aerodynamic load distribution.

The obtained results reveal the great potential of such
an adaptive wing to increase the divergence critical speed
and they show the high control autority of twisting active
bay for low wing seep angle, while bending active bay are
more efficient, due to geometrical coupling, for high wing
seep angle.

A parametric study for the best placement of twist-
ing and bending active bay of swept-forward wing is ac-
complished and the results applied to the adaptive wing.
They reveal the ability of the adaptive wing to control
lift distribution by attenuating elastic displacements.
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A Appendix

A local coordinate is introduced for each spanwise ele-
ment of the wing of lenght L;:
(=11 0<c<t (50)
8

where 7; is the initial coordinate of the finite element in
the wing global coordinate system and 6; = L;/L the
nondimensional lenght of the finite element.

The elastic flexural displacement of the wing element
is:
wj(w,¢)

L

for shape function vector W7 (u,() the following expres-
sion has been used:

w;(4,¢) = =97 (u,()X; (51)

V(u,¢) = [¥1, 2, By, Busy, . ..

U3, ¥4, Buths, Buts, ...

L (Bu)N "y, (Bu)N e, |

where 3 = ¢/L and the functions 1; = ¢;() are the
classical FEM shape functions for a beam:

n¢) = 1-3¢2+92
¥2(¢) = C(1-2+¢M)L;
¥a(¢) = =3¢ —2¢3
Ya(Q) = (=¢*+ PV

(53)

As a consequence the genaralized displacement vector of
the jth finite element is:

XT = [(WoWWi W], ...
(WoWo W1 W], ...

JWraWho1)o

»WN—-IWI,»'_1)1] (54)

where the subscripts 0 and 1 are used for the genarilezed
displacemets defined on the left and right side of the
finite element respectively. In the numerical examples

presented in this paper it has been set N = 3.

(Be)V s, (Bu)Y 4] (52)

In terms of the FEM generalized displacements de-
fined above, the curvature vector k;(u,() of the jth ele-

ment has the expression:

(56)

1
kj(u,¢) = 7CT(u,O)X; (55)
where
. -1 7 ) 0
¢ = | -9 | Tuwd+g| -1 | T+

29 | J 0

1 0 ]
T

in which J = tan A.

Concerning the discretely attached stringer placed
spanwise along the constant line u = u,, each element
of the stringer is defined between two adjacent attach-

" ment points. The local coordinate along each element of

lenght I, is defined as:

0<é<t (57)

where s is the initial coordinate of the finite element in
the stringer global coordinate systems and 6 is the finite
element lenght. The kth elastic extensional displacement
of the rth stringer element is

) NT ( €)Ur

Ur(§) = (58)

where the shape function vector has the following expres-
sion:

NT(&) = [(1-€),¢]

and U}, are the extensional displacements of the ends of

(59)

the elements. As a consequence the extensional strain is:

€ = g—;ﬁ = ST(f)U’,; (60)

with ]
5(6) = g;N'(E )

The constrain that the ends of the elements are attached
to the wing box skins, are imposed by expressing the
stringer displacement vector U} = {U[;,U 41} in term
of the wing generalized displacements. By using the sub-
script 0 and 1 for the wing elements where the two ends
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of the stringer element are attached respectively, we have

the the following constrain:

h Xok
U, = ——&} 61
= —por| 3 o)
where
Yo fuzu, c=co 0 cos A
o] = 'C‘O“ . } = (62)
& u=u, =, K

and h is the height of the stringer from the middle plane.

B Appendix

Kernel of steady aerodynamic:

r—Z 1
Ve —22+ 2 y—9?+:2] (y—9)?
(63)
where 8 = /1 - M2 and M,, is Mach number; while
the coordinates (&, y) and (z, y) represent the location

G= |1+

of singularity point and the colocation point respectively.
The aerodynamic shape function has the following

expression in nondimensional coordinate:

QT(a,n) = Wy, vips,..
UM P UM, P2,

ax '/’1<PN,. I
t ’l/)Ma ¢Na}(64)

where N, M, is the number of the aerodynamic degree of
freedom and the expression of the functions ¢; = ¢;(2)
and ¥; = ¥;(7) are given in Sec. 3.1 of the main text.
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Figure 1: Non dimensional coordinates and reference
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Figure 2: Wing box section

Figure 3: Axial Piezoelectric Actuator
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Figure 4: Actuator Bay Configuration
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Figure 5: Center Line and Rotation Response to Tor-
sional Activated Actuators A =0
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Figure 6: Center Line and Rotation Response to Tor-
sional Activated Actuators A = —30
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Figure 7: Center Line and Rotation Response to Tor-
sional Activated Actuators A = —60
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Figure 8: Center Line and Rotation Response to Flexural
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Figure 9: Center Line and Rotation Response to Flexural
Activated Actuators A = —30
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Figure 10: Center Line and Rotation Response to Flex-
ural Activated Actuators A = —60
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Figure 11: Divergence speed vs feed-back gain of bending
actuator bays g for two sweep angle wing configurations
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Figure 12: Divergence speed vs feed-back gain of twisting
actuator bays g, for two sweep angle wing configurations
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Figure 16: Spanwise Aerodynamic Load Distribution
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Figure 17: Center Line and Rotation Elastic Response Figure 19: Center Line and Rotation Elastic Response
to the Aerodynamic Load with g; = 0.5 and g; = 0.5 for to the Aerodynamic Load with g5 = 1. and g, = 1. for
A = -30°. A = —300.
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Figure 18: Spanwise Aerodynamic Load Distribution Figure 20: Spanwise Aerodynamic Load Distribution
with gy = 0.5 and g, = 0.5 for A = -30° with gy = 1. and ¢ = 1. for A = -30°
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Figure 21: Center Line and Rotation Elastic Response Figure 23: Center Line and Rotation Elastic Response
to the Aerodynamic Load with g; = 0. and g, = 0. for to the Aerodynamic Load with g5 = 0.5 and g, = 0.5 for
A=—30°. A:"'60°.
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Figure 22: Spanwise Aerodynamic Load Distribution Figure 24: Spanwise Aerodynamic Load Distribution

with gy = 0. and g, = 0. for A = —-60° with g5 = 0.5 and g, = 0.5 for A = —60°
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Figure 25: Center Line and Rotation Elastic Response to
the Aerodynamic Load with g; = 1. and g, = 1. for
A = —-60°.
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Figure 26: Spanwise Aerodynamic Load Distribution with
gr=1land gy = 1. for A = —60°.
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