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SUMMARY

A finite element method to simulate buckling driven
delamination growth in general circumstances is pre-
sented. Crack grow is assumed to be governed by a crit-
ical value of the energy release rate or a mixed fracture
mode criterion. The FE-method is extended with a
method for automatic remeshing to account for a contin-
uously changing front. The method is first exemplified
by computing the shape of the delamination front and
the associated load required to sustain growth for an iso-
tropic material subjected to uniaxial compression but
governed by different mixed mode criteria.

To assess the validity and applicability of the proposed
method an embedded delamination in a carbon epoxy
laminate loaded in compression is analysed in a com-
bined numerical/experimental study. Predicted and
observed results are compared as regards the postbuck-
ling behaviour and in particular the shape of the delami-
nation front and the load needed to drive the growth.

INTRODUCTION

The use of layered materials in various structures has
in the past decade received increasing attention. Fibre-
reinforced composites, frequently used in acrospace
applications, is perhaps the most obvious example. Lay-
ered materials are, however, used in other applications
of technical significance as well such as ceramic surface
coatings or protective coatings on electronical devices.
Common to all layered materials is that individual lay-
ers might separate from each other, a phenomenon
called delamination. One of the most treacherous fea-
tures of delaminations is that although very hard to
detect by visual inspection, they might still very well
impair the structural integrity or functioning. It is there-
fore imminent that theoretical and numerical methods in
conjunction with decisive experiments to assess the crit-
icality of delaminations in various situations are devel-
oped. Overviews on the issue can be found in Garg?,
Storékers?, Abrate) and Hutchinson and Suo®.

The sequence of events for a layered material with a
single delamination and loaded in compression such that
the delamination starts to spread is illustrated in Fig. 1.

The problem in general situations is very complex:
delaminations might have arbitrary shapes; nonlinear
kinematics have to be considered; the material is often
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anisotropic and inhomogeneous; contact between dela-
minated members rather seems to be the rule; last but
not the least the criterion for crack growth may be very
complex.

1a) 1b) ic)

Fig. 1 Sequence of events at delamination buckling and
growth. a) Unloaded cracked panel. b) Buckling and
postbuckling of delaminated member. c) Delamination
growth.

Referring to Fig. 1, it seems logical to deal with the
delamination problem by a combination of structural
analysis and fracture mechanics. The earliest attempts in
this spirit by Kachanov™), Chai and Babcock® and Yin")
were based on a one-dimensional or axi-symmetrical
analysis, i.e. the shape of the delamination could be
described by one parameter prior to, as well as after,
growth and with the total energy release rate as the crack
driving force. These models have the virtue that the
problem may be solved by analytical means or by rela-
tively simple numerical methods which allows us to
establish a basic understanding of the phenomenon. A
somewhat more general approach is to consider two-
parameter delamination shapes, such as ellipses, ¢.g.
Chai® and Yin and Jane®. It is obvious though that
delaminations might have arbitrary shape and any
assumption regarding the shape of the delamination
might lead to misleading conclusions.

The earliest computational result for the energy
release rate in more general situations are due to Whit-
comb!®, who computed the energy release rate for an
embedded circular delamination loaded in uniaxial com-
pression by aid of a three-dimensional finite element
formulation and the crack closure method. Storfkers and
Andersson!!) pursued a different approach and devel-
oped a method to compute the energy release rate at
local crack growth within von Karman’s nonlinear plate
theory. Their resulting expression was a simple alge-
braic one involving only plate resultants along the crack
front. Nilsson and Giannakopoulosm implemented this
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method into a FE-code and extended it with a method to
automatically update the FE-mesh. This allowed them to
simulate delamination growth without any bias regarding
the shape of the delamination. This method was later
extended to include the effect of friction-free contact
between delaminated members at buckling as well as at
postbuckling, Giannakopoulos et al.'®, In order 10 assess
the applicability of their model a combined theoretical/
numerical and experimental analysis was undertaken for
initially circular and embedded delaminations in layered
carbon-reinforced epoxy materials and loaded in uniaxial
compression by Nilsson et al., Excellent agreement
between measurements and computed results was
observed for the shape of the delamination after growth
as well as the load required to sustain crack growth.

Cracks in homogeneous and brittle materials tend to
propagate such that a pure opening mode (Mode I) is sus-
tained at the crack tip. In layered materials, cracks tend to
propagate along the weaker interfaces where a mixed
mode crack tip loading is generally expected. Experi-
ments have shown that the fracture resistance in shearing
and sliding (Mode II and IIT) might be substantially larger
than in opening e.g. Sela and Ishai!> for composites and
4 for coating materials used in electronic industry. This
elucidates the importance of separating the crack drivin
force into fracture modes in the analysis. Whitcomb!
realized the significance of separating the fracture modes
already in his earliest works and where the energy release
rate was decomposed into the three fundamental fracture
modes. It should be emphasized that the fracture mode
decomposition depends on the local crack tip loading and
attempts to separate the fracture modes based on simple
beam or plate theories such as suggested in'® will in
most cases not give even qualitatively acceptable results.
Suo and Hutchinson!”) were able to decompose the frac-
ture modes as function of the load resultants for an iso-
tropic split beam eclement by an integral equation
formulation. Nilsson and Stordkers!® later showed in
general circumstances that the nonlinear plate problem
locally can be reduced to an equivalent 2-D split beam
problem. By this procedure the mode decomposition may
be achieved by identification with the split beam prob-
lem.

This paper gives an overview on a method to compute
the stress intensity factors and the energy release rate at
local crack growth for quite general crack. fronts and
loadings. The technique is then used in conjunction with
a moving boundary technique to simulate delamination
growth and where no biassed assumptions are made
regarding the shape of the delamination front. The tech-
nique will be illustrated with several examples and com-
parison with experiments are also given.

THEORY AND NUMERICAL PROCEDURE

To model the structure depicted in Fig. 1 a non-linear
Mindlin plate theory seems appropriate to account for the
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deflection of thin bodies at small strains but at moderate
rotations. The displacement field is then given by
U (x;) = Ug (xg) +x30, (xp)

where Greek and Roman indices run from 1 to 2 and 1 to
3 respectively. 0, denotes the rotation of a transverse
material fibre and barred displacements refer to the mid-
plane. Indices 1 and 2 refer to in-plane quantities and 3 to
the normal direction. The small strain tensor components
become

_,0

M
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3= (U3 +6,) /2

where the stretching of the middle surface, egﬂ, is
(g, p+ipg o+ Uy qp) /2, the curvature, Kg, is
(8,5+0p )72, and e, = €43 is the transverse
shear. The material is assumed to be linearly elastic and
the conjugate forces generated by the strain energy func-
tion W are
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Fig.2 Multilayered composite plate with a plane crack
parallel to an interface

The resulting governing equations and dynamic boundary
equations are readily derived by the principle of virtual
work

Nop, g+ Pa= 0
Mypp~Qq=0 C))
Qa, ot Naﬁ”aﬁs, B
and
NaBnB = T;
Mogng=M :lsaﬂ %)

Qung+ Naﬁnai‘-l 8= Q,
with notations shown in Fig. 2, and €qp being the two-
dimensional permutation tensor. These equations consti-
tute a standard boundary value problem to be solved by
the finite element code ADINA.



It has been observed that delaminated members, as at
issue here, often tend to interpenetrate each other if
unconstrained. Such interpenetration is physically unac-
ceptable, instead the members will be in contact. The
contact area is, however, not equal to the penetration area
and moreover it also changes with the load. A contact
finite element procedure consistent with the present non-
linear plate theory was therefore developed and used in
conjunction with the finite element code!?). A predictor-
corrector procedure is used to compute the contact area.
The procedure is straight-forward and based on control-
ling the transverse displacements and reaction forces in
the contact area, Q_., as illustrated in Fig. 3.

E3 (xl, xz) = 0, 173' a (xl, xz) = 0

©

Ry (x;,x5) >0

Fig. 3 One-dimensional illustration of contact at delami-
nation

The contact region is assumed to be computed with suffi-
cient accuracy when

[t (xy, 7)) d2
Q

- <¢ U
[ 183 (5, xy) | a2
0
where € is a convergence norm. When contact occurs
already at buckling, the iterative procedure to compute
the contact area requires particular providence as detailed
in ¥ and 14),

Storakers and Andersson!!) showed that the energy
release rate at local crack extension within von Karman’s
nonlinear formulation can be expressed as the discontinu-
ity across the crack front of an energy momentum tensor
expressed in the plate variables,

G = [Pl ®)

where the double brackets denotes the “jump”. The

equivalent expression within the present shear deforma-

ble theory for the energy momentum tensor, Py, is!®)
WSaB —Nopity g~ Qqils, p=My\8, p- ¢

The algebraic expression defined by Eqns (8) and (9) is

readily implemented into any standard nonlinear finite

element code. In the von Karman formulation the contri-
bution to the energy release from the transverse shear
component vanishes and 0, g is replaced by —ils, B

M =M-N(h+H) /2
Fig. 4 Loaded split beam element after superposition.

The significance of decomposing the crack driving
force into the fundamental fracture modes was mentioned
in the introduction. For an isotropic split beam with load-
ing as shown in Fig. 4, Suo and Hutchinson 17) Geter-
mined the stress intensity factors as

K= -—1— (~Ncos®m - Jﬁ—M; sin)

NoT,

K, = % (—Nsinw + fﬁ%lcosm)
t
where ® = 52.1° for an isotropic and homogenous
material. The energy release rate is uniquely associated
with the stress intensity factors and in particular for an
isotropic material
(1-v}

(10)

(K2 K> Kin ) 11

TR iy (1
Suo!® has given expressions corresponding to (10) for
some anisotropic materials. For bimaterials, the singular
stress field at the crack tip has an oscillatory behaviour
and the conventional stress intensity cannot be defined.
The nonlinear von Karman plate problem can locally at
the crack tip be reduced to a split beam problem with an
additional shear force as proved in'®), For isotropic mate-
rials it also follows that the shear force component, Ny,
only gives rise to the shearing mode (mode III)

G =

Ky = N/t (12)

It follows immediately that Eq (11) with (10) and (12)
is identical to Eq. (8) evaluated within the von Karman
plate theory.

A crack growth criterion for brittle materials loaded
in mixed mode can be defined in a general form

f(Kp K”9 K”]) =0 (13)

to be given for a specific material.

One particular two parameter form of (13) suggested
by Hutchinson and Suo® and which has proved to fit
experimental data successfully is
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G = G¢l1+ (1an (1-2) )% (14)
where y = atan (K,;/K;) , the phase angle, is a measure
of the mode mixity and A is a measure of the mode
dependence in the crack growth criterion. The material
parameters G, and A are determined by experiments. In
the limit A = 1 and 0, (14) corresponds to the mode insen-
sitive criterion,G = G and a criterion based on a criti-
cal value of K respectively. Experiments on epoxy/steel
and epoxy/glass interface toughness show that for these
materials the fracture toughness can be reasonably well
characterized by (14) using A = 0.39,
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Fig. 5. The finite element mesh used in the numerical sim-
ulation together with boundary conditions.

A thin circular delamination embedded in an isotropic
material and subjected to a uniaxial compression is per-
haps the simplest example for which self-similar crack
growth is not expected. The so called “thin film assump-

KI’ Kﬂ
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tion”, i.e. only the delaminated member will undergo
bending, has proved to be very accurate for thickness
ratio less than one tenth?® (WH < 0.1 in Fig. 4) and it
simplifies the finite element procedure considerably.
Many relevant technical problems such as coatings can
essentially be regarded as thin film problems. The thin-
film assumption will be adopted in the examples given in
this paper.

A typical finite element mesh used in the computation

is showed in Fig. 5. The elements are four-noded shell
elements allowing for transverse shear and large rotations
as assumed in the derivation of the equations in the previ-
ous section. The delamination front was clamped with
hard conditions, i.e. giving the constraint &, (x,) = 0,
6,=0forxes (0<5<1)
'We begin by analysing an isotropic material with Young’s
modulus, E, and Poisson’s number, v, equal to 70GPa
and 0.33 respectively and with the thickness to the radius
ratio (R/f) of the delamination equal to 20.

The delamination buckles, as depicted in Fig. 1b,
without being in contact with the substrate for this partic-
ular configuration at the strain load ¢, = €,,_,, equal to
2.52(t/a)?. The delaminated plate will be in contact
with the substrate when the compressive load exceeds
1.6, ... The contact is limited to a relatively small area
along the crack front normal to the loading direction.

The stress intensity factors as function of the loading
along the crack front in the post-buckled state are com-
puted by first superposing a homogenous strain field
locally at the crack tip which results in a loading situation
as depicted in Fig. 4 and by subsequently applying Eq.
(10) and (12) on these resultants.
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Fig. 6: Dimensionless stress intensity factors, K; and Ky
defined by Ky ;1 = (1-V?) / (EJt) (R/)*K,, K}, nor-
mal (s=0) and transverse (s=1) to the loading direction
as function of the normalized load €/ € ek
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. Fig. 6 depicts the normalized stress intensity factors,
K and K;;, normal and transverse to the loading and as
function of the compressive load, €9/ €, 1t is apparent
from Fig. 6 that the stress intensity factors are considera-
bly larger in the direction transverse to the load. Another
interesting feature is that the mode I stress intensity fac-
tor normal to the loading reaches a maximum at Lleg
and then decreases such that it becomes negative for
loads exceeding 1.2&7" . This indicates a local contact at
the crack tip which precedes the global contact defined
by Eq. (6). Local contact cannot be accepted on physical
grounds. This implies that K| is zero when the mode sep-
aration (10) results in a negative opening mode. Conser-
vation of energy then states that the associated energy
instead should be attributed to the shearing mode!®), such
that

Contact __ 2 2
.97, = JKj + K]

where K, and X, are evaluated in accordance with Eq.
(10). The contact adjusted stress intensity factor,

ontact

1 , is displayed in Fig. 6 along with the stress
intensity factors evaluated according to (10). The proce-
dure embodied in (14) will be ‘retained in remaining of
this paper.

3.0 T ! T ! T ! T ! T
2.0
1.0
0.0

-1.0

when K,<0(14).
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Fig. 7: Dimensionless stress intensity factors, K 1 and K 1
along the crack front for the load levels
2/ €5 = 1.05,1.22,1.47,1.76. 2.11and 2.45.

Fig. 7 shows the stress intensity factors along the
delamination front for the compressive load levels
€ /& = 1.02 to 2.45 respectively. Both stress intensity
factors attain their maximum transverse to the loading
direction and crack growth is expected in this to be initi-
ated in this direction.

The mode III stress intensity factor was found to be

substantially smaller than the load resultants and stress
intensity factors for mode I and II and is therefore not
shown. The energy release rate associated with the trans-
verse shear in (8) was limited to a couple percent of the
total energy release rate.

If we employ a crack growth criterion of the type
(13), it is obvious from the stress intensity distribution
displayed in Figures 6 and 7 that incipient crack growth
will be in the direction transverse to the loading. The
change in the delamination front will induce a redistribu-
tion of the crack growth parameters at subsequent
growth, Continued growth can be analysed by the finite
element method if we continuously updates the mesh as
the delamination front progresses. A method to automati-
cally update the FE-mesh and with the accuracy of the
numerical results retained is therefore an essential ingre-
dient in a growth simulation. Such a method, based on
minimizing the total change in element angles for a pre-
scribed change of boundaries is described in!? and is
adopted in the examples below.

The simulation for quasi-static buckling-driven dela-
mination growth with a growth criterion of the type (13)
can be summarized as follows: i) the buckling load for
the present load and configuration is computed,; ii) this is
followed by a postbuckling analysis where the crack
growth parameters are computed as function of the load
along the crack front. The load increments are chosen
such that the crack growth criterion is attained at some
part along the crack front in relatively few postbuckling
steps. Load increments should not jeopardize the numeri-
cal stability and the crack growth criterion should not be
to much exceeded: iii) nodes along the crack front that
have attained the crack growth criterion are being propa-
gated in the direction normal to the present crack front by
a used-defined crack increment, Aa; iv) the automatic
mesh generator mentioned above then updates the mesh
in accordance with the new front.

A simulation of quasi-static delamination growth with
a continuously modified delamination front can then be
simulated by repeating the steps i-iv an many times as
needed. The relevant results as the crack advances are:
the delamination front; the load required to sustain
growth; and the distribution of crack growth parameters
at growth,

Choosing the user defined crack increment, Aa, too
small will make the growth process slow, on the other
hand a large value will induce oscillations in the distribu-
tion of the crack growth parameter along the propagating
part of the front which will retard the process. Numerical
experiments indicate that choosing Aa to be approxi-
mately 0.5 to 1% of a typical length of the delamination
is a reasonable compromise.
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Fig 8: Normalized G-distributions at crack growth initia-
tion for the five combinations,_ .
(A=1,G.=1), (7»=0.3,Gc=3),(7~=0.2,6c= 1),
(A=1,G, = 10), (A=03,G.=10),  where
G. = (R/0*(1-v?)/ (E1)

Fig.8 shows the G-distribution at the applied growth
loads given in Table 1. Each curve represents a particular
combination of A and G. of the mixed mode criterion
(14) as detailed in the Figure text and in Table 1. The
energy release rates are normalized with the crack growth
criterion. We note that the peak in the distribution at s =
1, i.e transverse to the loading direction, tends to be more
pronounced as the mode II toughness increases.,

Table 1: The normalized load, € /¢, , required to ini-
tiate crack growth for a circular delamination loaded in
uniaxial compression. €, , = 2.52 (t/R)?

A=1 A=03 A=02
Ge=1 1.221 1.286 1311
Ge=10 | 2.137 2427 | e

Fig. 9 a-e display the evolution of the crack fronts for the
five parameter combinations. The shape of the crack front
depends clearly on the adopted crack growth criterion. As
already pointed out for the distribution of the crack
growth parameter, increasing mode dependence and
increasing fracture toughness increase the localization of
the growth. The shapes illustrated in 9a-d seem to be
almost elliptical. The last case, A = 0.3 and G, = 10,
clearly deviates from the elliptical shape after growth.
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Fig. 9: Successive crack fronts

(@) A=1,G.=1)(b) (A=03,G.=1)
(c) A=02,G.=1)(d) (A=1,G,=10)
(e) (A=03,G.=10)

The number of crack increments employed to compute
the final shape in 9a-e ranged from 100 to 250.

The phase angle, vy, transverse to load varied from 45.3
to 48.7 for the five cases at initial growth, and hence the
Ky/Ky ratio was close to unity. Although the shapes differ
from each other this ratio was also approximately
retained as the delamination was spreading. The phase
angle at s=1 for the last front depicted in Fig. 9a-¢ was
within 47.0- 48.1 degrees.
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Fig. 10: Compressive normalized strain required to sus-
tain growth as function of growth in the transverse direc-
tion for the shapes in Fig. 9a - 9e.

From a structural point of view, the stability of the
growth is far more relevant than the shape. The curves in
Fig. 10 show the load required to sustain growth, €_, for
the five crack growth parameter combinations given
Table 1. An increasing load as the crack advances implies
stable growth whereas a decreasing load implies unstable
growth.

By comparing the stability feature in Fig, 10 with the nor-
malized G-distribution we note a correlation between
more pronounced localization in the distribution of the
crack growth parameters and an increased tendency for
stable growth. This observation suggests that it might be
sufficient, at least for a qualitative assessment of the
crack growth stability of incipient growth, to study the
initial crack growth distribution.

A__combin meri ical and _experimental
investigation of interface ¢crack growth,

A combined experimental and numerical/theoretical
investigation was carried out to assess the applicability of
the proposed method for analysis of delamination
growth!®, It was decided that the specimen should be
designed so that the expected delamination growth
should be stable and localized. In addition to these crite-
ria, the specimen should fit into an existing anti-buckling
frame which preserves the global stability of the plate
specimen.

Experimen
The material used in the experiments was Ciba-Geigy
epoxy carbon prepeg 6376/HTA7 of nominal ply thick-
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ness of 0.127 mm and with the elastic ply properties
E”=I45.6GPG, Ezz=10.5GPa, G}z=5.25GPﬂ, V12=0.3.
The complete three-dimensional properties were deter-
mined under the following common assumptions:
G13=Gy2, v23=0.51 and Gy3=E3,/[2(1+V;3)]. The spe-
cific Mode I and Mode II data for the energy release rate
were 196 and 596 Jm'? respectively as shown in Fig. 11

500 t o
400 F v

2
G.Jim' 30 £ -

0 i " s A
0.0 0.2 04 0.6 08 - 1.0
G,/G+G,)

Fig. 11: Measured fracture toughness as a function of the
mode mixity for a unidirectional layup of carbonlepoxy
6376CIHTA7 (From ')

A cross-ply layup (90/0/90);¢ was chosen for the
experimental setup with the ply orientation measured
from the loading direction. A circular delamination was
introduced between the third and fourth plies. The 90-
plies served to preserve maximum stiffness in the trans-
verse load direction, which according to preliminary
computations would result in stable and localized growth.
The cross-ply of the lay-up needed to prevent the crack
from kinking out-of-plane and the prerequisite that the
delamination should propagate between equally orien-
tated plies required three layers above the delamination.
The thickness ratio between the delaminated plies and the
total specimen (1/16) was assumed sufficient to motivate
the thin-film assumption.

’
150 mm

- 300 mm i’

Fig. 12 Specimen geometry for plates and strain gauge
layout used in the experiments. Gauges on front face %
and ¥

(f) -

Fig. 13: Successive delamination shapes at six strain
load levels as given by the C-scan technique. (From l"))
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Five strain gauges were attached to the specimen in
order to measure the in-plane strain field and an addi-
tional one to verify that global bending of the panel was
small. The geometry of the specimen together with the
approximate positioning of the strain gauges is shown in
Fig. 12. Acoustic emission technique was employed to
determine the buckling load. The initiation of each crack
increment and ultrasonic C-scan and occasionally X-ray
technique was adopted to map the crack fronts. Three
nominally identical specimens were tested. The in-plane
strain field was continuously measured and the compres-
sive load was slowly increased until the delaminated
plate buckled. The load was further increased until crack
growth was recorded. At this point the test was arrested.
The specimen was dismounted and the extent of delami-
nation growth was mapped. The specimen was then re-
mounted and the procedure repeated.

Growth was stable and in the transverse load direc-
tion. The measured buckling strain was 2.2 X 1073,
2.2x 1073, 2.1 x 107> and the load at initial delamina-
tion growth was 33 %1073, 34%x 1073, 32x 1072,
The successive shapes for one of the specimens is shown
in Fig. 13. The growth pattern was similar for the other
specimens. A more detailed descriPtion on the experi-
mental procedure is given in 14 or 21)

Numerical Simulati

The numerical procedure described earlier was

employed to simulate the experiments. Standard laminate

theory was used to determine the membrane and bending
stiffness with the particular layup taken into account.
Shear factors in the spirit of Reissner were adopted in the
constitutive law to compensate for the additional stiffness
resulting from constant transverse shear strain, The mesh
was similar to the one depicted in Fig. 5, except that the
meshing was slightly denser in the transverse load direc-
tion.

The experiments showed that crack growth was initi-
ated at €, = 3.3 X 1073, The computed G-distribution at
this load is depicted in Fig. 14, and as expected the larg-
est value appears transversely to the loading (s=1). The
computed energy release rate at this specific load level
was 217 Jm2, which can be compared with the mode
dependant cnueal values plotted in Fig. 11, The energy
release rate associated with transverse shear accounts for
approximately 10% of the total energy release rate. The
fracture mode decomposition defined by Eq. (10) and
(14) does not apply strictly for this material combination.
An ad hoc decomposition could be adopted, however, its
validity can be questioned. We note from Fig, 11 that the
mode dependence is relatively weak when
G/ (G;+ Gp) <0.5. It was mentioned for the isotropic
cases above that the mixed mode ratio was very close to
unity at the point transverse to the load direction. It is
also worth pointing out that the critical crack growth
parameters were only known for crack fronts orthogonal

spond well with the measured fronts in Fig. 13.
» L5 :

to fibres. Due to these uncertainties it was found advisa-
ble to adopt the growth criterion G=G,, with G.=217 Jm’
2 at initiation as well as continued growth.

250 T T —

200

150 +
G (¥mh)

at 32.6 % growth
50

| = initiation

0 ] . ;
0.0 0.2 04 0.6 0.8 1o
s

Fig. 14: The energy release rate distribution for the ini-
tially circular ‘gront and for the front after 32.6%
growth. (From

Contact occurred already at buckling for this conﬁgu—
ration. The buckling load without contact was 1.9 X 1073
whereas the buckling analys1s with contact gave a buck-
ling strain of 2.12 X 102 which is in excellent agreement
with the measured values given above.

Fig. 15 shows five crack fronts with associated com-
pressive loads and we note that the fronts seem to corre-

g,10° =40

05

0'Oo.o 0.5 1.0 L5

x,/a
Fig. 15: Successive crack fronts with associated com-
pressive load.(From 14))

The close agreement between computed and meas-
ured fronts become even more striking when they are
shown together as in Fig. 16.

330



Fig. 16: The delamination front as given by X-radiogra-
phy with C-scan and the corresponding FE-mesh with
nodes in contact depicted. (From 1¥)

The G-distribution for this front is shown in Fig. 14
along with the initial one. The computed compressive
load required to sustain growth as function of the growth
in the transverse direction is shown in Fig. 17 together
with the measured values for each of the two advancing
fronts. It is remarkable how well the computed and
experimental growth resistance correspond for this con-
figuration. The mesh for the initially circular and the final
shape corresponding to 32.6% growth are shown with
nodes in contact in Fig. 18. The quality of the mesh has
been relatively well retained by the successive updating
of the mesh. We also note that the contact region has
shifted slightly during growth.
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Fig: 17 Compressive load required to sustain growth.
(From %)

Fig. 18: The FE-Mesh with nodes ir contact at initial
growth and at 32.6% growth.(From “)J

CONCLUDING REMARKS

A theoretical/numerical model to analyse buckling-
driven delamination growth has been presented. Expres-
sions for the energy release rate and stress intensity fac-
tors at local crack growth within kinematically nonlinear
plate theories are given. In conjunction with an automatic
mesh generator it was then possible to analyse delamina-
tion growth at arbitrary crack shapes. Predicted results
were compared with observed ones in a combined
numerical/experimental investigation of a single embed-
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ded delamination in a carbon epoxy laminate loaded in
uniaxial compression. The predicted results captured the
observed shapes of the delamination after growth as well
as the load needed to sustain growth. In order to assess
the general applicability other material combinations and
loadings should be analysed in combined experimental/
numerical studies similar to the one described here.
Based on the excellent reproducibility of the test results,
it is believed that the proposed method will be a useful
tool to analyse interface crack growth in a variety of situ-
ations.
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