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Abstract

This paper describes an application of the bound-
ary element method to the analysis of fatigue crack
growth and damage tolerance in linear elastic frac-
ture mechanics.

Fatigue crack growth is simulated with an in-
cremental analysis of the crack extension, based
on the maximum principal stress criterion; for
each increment of the crack extension, the bound-
ary element method is applied to perform a stress
analysis of the cracked structure and the J-integral
technique is used to compute the stress intensity
factors.

Since the crack extension is modelled with new
boundary elements, remeshing is not required in
the analysis. This represents a practical advantage
of the present formulation over the finite element
method, which needs a continuous remeshing to
follow the crack extension.

Damage tolerance analysis is carried out as a
post-processing procedure on results of the crack
extension. Results of this strategy of analysis are
presented for several cracked structures.

Introduction

Cracks, present to some extent in all engineer-
ing structures, either as a result of manufacturing
fabrication defects or localized damage in service,
may grow slowly during normal service conditions
by fatigue due to cyclic loading. The crack growth
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leads to a decrease in the structural strength. As a
consequence, when the service loading cannot be
sustained by the current residual strength, frac-
ture occurs leading to the failure of the structure.
In this context, damage tolerance defines whether
a crack can be sustained safely during the pro-
jected service life of the structure, generating the
following information, upon which fracture control
decisions can be made:

o The effect of a crack on the structural resid-
ual strength, leading to the evaluation of its
maximum permissible size.

o The crack growth as a function of time, lead-
ing to the evaluation of the time that the
crack spends to reach its maximum permis-
sible size, from which the safe operational life
of the structure is defined.

Linear elastic fracture mechanics can be used in
the analysis of damage tolerance to describe the
behaviour of cracks, which is determined solely by
the values of the stress intensity factors.

Fatigue crack growth is simulated with an in-
cremental crack-extension analysis, in which the
crack path is computed by a criterion defined in
terms of the stress intensity factors. For each in-
crement of the crack extension, a stress analysis
is carried out and the stress intensity factors are
evaluated.

Numerical methods must be used for the eval-
uation of the stress intensity factors in engineer-
ing structures. The finite element method, with a
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long and well documented history in fracture me-
chanics applications (see Gallagher [1] and Rice et
al. [2]), has been applied to study crack-growth
processes, see [3] to [7]. An intrinsic feature of the
finite element method is the need for continuous

remeshing to follow the crack extension; this is a

practical disadvantage of the method.

The boundary element method, well established
in fracture mechanics, has also been applied in
an incremental analysis of crack extension prob-
lems by Ingraffea et al. [8]. However, the solu-
tion of general crack problems cannot be achieved
with the direct application of the method, in a
single-region analysis, because the coincidence of
the crack surfaces gives rise to a singular system of
algebraic equations. The equations for a point lo-
cated at one of the surfaces of the crack are identi-
cal to those equations for the point on the opposite
surface, with the same coordinates, because the
same integral equation is applied with the same
integration path, at both coincident points.

Among the techniques devised to overcome this
difficulty, the most general are the subregions
method, Blandford et al. [9] and the dual bound-
ary element method, introduced by Portela et
al. [10]. The subregions method introduces arti-
ficial boundaries into the structure, which connect
the cracks to the boundary in such a way that the
domain is divided into subregions without cracks.
The main drawback of this method is that, in an
incremental crack extension analysis, these artifi-
cial boundaries must be repeatedly introduced for
each increment of the crack extension. In addition,
the method generates a larger system of algebraic
equations than is strictly required.

The boundary element method proposed by
Portela et al. [10] (BEM) incorporates two inde-
pendent boundary integral equations, with the dis-
placement equation applied for collocation on one
of the crack surfaces and the traction equation on
the other. Although in a single-region analysis the
integration path is still the same for coincident
points on the crack surfaces, the respective bound-
ary integral equations are now distinct. Further-
more, this formulation can eliminate the need for
remeshing in crack-extension problems that is typ-
ical of the finite element and multi-region bound-
ary element methods.

This paper is concerned with the application of
the BEM to the analysis of fatigue crack growth

and damage tolerance in linear elastic fracture me-
chanics. The boundary integral equations are pre-
sented, the crack modelling strategy defined and
the evaluation of the stress intensity factors ex-
plained. An incremental crack-extension analysis
is performed to determine the crack path. For each
increment of the analysis, in which the crack ex-
tension is modelled with new boundary elements,
the BEM is applied for the stress analysis and the
J-integral technique is used for the stress inten-
sity factors evaluation. The incremental analy-
sis is based on a prediction-correction technique
to define the direction of the crack-extension in-
crement. The maximum principal stress criterion
is applied to predict the tangent direction of the
crack path and then a correction is introduced to
determine the actual direction of the increment of
crack-extension. Fatigue crack growth is caused
by cyclic loading; in the simplest case, the loading
cycle has a constant amplitude and is described
by a static load level with a stress amplitnde ra-
tio. Results of a fatigue crack-growth analysis,
the residual-strength and fatigue-life diagrams, are
also presented for a simple problem.

The Boundary Integral Equa-
tions

The boundary integral equations, on which the
BEM is based, are the displacement and the trac-
tion boundary integral equations. The displace-
ment boundary integral equation can be derived
with the classical work theorem, Portela [11]. In
the absence of body forces and assuming continu-
ity of the displacements at a boundary point x,
the boundary integral representation of the dis-
placement components u; is given by

e () + £ T ) () dDx) =

= AU{j(X’,X) tj(x) dr(x)7 (1)

where ¢ and j denote cartesian components;
Ti;(x',x) and U;;(x’,x) represent the Kelvin trac-
tion and displacement fundamental solutions, re-
spectively, at a boundary point x. The distance
between the points x and x is denoted by .
The integrals in equation (1) are regular, provided
r # 0. As the distance r tends to zero, the fun-
damental solutions exhibit singularities; they are a

312



strong singularity of order —} in T;; and a weak sin-
gularity of order In 2 in U;;. The symbol f stands
for the Cauchy principal-value integral, and the
coefficient ¢;;(x) is given by 6;;/2 for a smooth
boundary at the point x' in which d;; is the Kro-
necker delta.

In the absence of body forces and assuming con-
tinuity of both strains and tractions at x on a
smooth boundary, the stress components o;; are
given by

%Uij(x,) + ,7%- Size(x, %) ug(x) dT(x) =
= frDijk(X', X) tk(x) dI'(x). (2)

In this equation, .S',-jk(x',x) and D;;x(x',x) con-
tain derivatives of T};(x', x) and Uj;(x’,x), respec-
tively. The integrals in equation (2) are regular,
provided 7 # 0. As the distance 7 tends to zero,
Sijk exhibits a hypersingularity of the order ;12-,
while D;;; exhibits a strong singularity of the or-
der L. The symbol £ stands for the Hadamard
principal-value integral. On a smooth boundary,
the traction components t; are given by

%tj(xl) + ni(x') %FS,-jk(x', x)ug(x)dl(x) =
= ni(xl)ﬁD,‘jk(xl,x)tk(x)dF(x), (3)

where n; denotes the i¢th component of the unit
outward normal to the boundary, at the point x'.
Equations (1) and (3) constitute the basis of the
BEM, as presented by Portela et al. [10].

Crack-Modelling Strategy

The general crack-modelling strategy, devel-
oped by Portela et al. [10], can be summarized
as follows:

o the crack boundaries are modelled with dis-
continuous quadratic elements, as shown in
Figure 1;

e continuous quadratic elements are used along
remaining boundaries of the structure, ex-
cept at an intersection between a crack
and an edge, where discontinuous or semi-
discontinuous elements are required on the

edge in order to avoid a common node at the
intersection, as shown in Figure 1.

e the displacement equation (1) is applied for
collocation on one of the crack surfaces;

e the traction equation (3) is applied for collo-
cation on the other crack surface;

e the displacement equation (1) is applied for
collocation on all non-crack boundaries.

b A A Tip

7>¢

o- Element node
x-Element end point

A-Displacement equation
B- Traction equation

Figure 1: Crack modelling with discontinuous
quadratic boundary elements.

This simple strategy is robust and allows the BEM
to effectively model general edge or embedded
crack problems.

In general, cracking processes can extend the
cracks along curved paths. However, in practice,
curved paths are usually modelled with flat incre-
ments which lead to piece-wise flat crack paths.
For such cracks, all the integrals in equations (1)
and (3) are most effectively carried out by di-
rect analytic integration, as shown by Portela et
al. [10].

When the present modelling strategy is applied
in an incremental crack-extension analysis, such
that each new crack-extension increment is mod-
elled with new boundary elements, it becomes ob-
vious that remeshing is not required, because the
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new boundary elements will generate new equa-
tions and up-date the ones already existing with
new unknowns. In other words, the introduction
of new boundary elements along a crack-extension
increment will generate new rows and new columns
in the matrix of the final system of equations. As-
suming that the crack extension is traction-free,
the right hand side of the system of equations is
only extended for the positions corresponding to
the new unknowns introduced. This procedure is
illustrated schematically in Figure 2. If the LU

_

Initial geometry
ist crack extension

2nd crack extension

3rd crack extension

Figure 2: Schematic representation of the genera-
tion of the final system of equations.

decomposition method is adopted for the solution
of the system of equations, a very efficient incre-
mental analysis can be carried out. For each in-
crement of the analysis, only the new rows and
new columns need to be LU-decomposed. The ex-
isting rows and columns, already decomposed, are
brought from the previous iteration into the cur-
Tent one.

Computation of Stress Intensity
Factors

The J-integral method was chosen to obtain the
stress intensity factors in this paper, because it re-
lies on the values of the elastic field evaluated at
a set of internal points. These values are provided
accurately by the BEM, since the exact variation

of the interior elastic field is built into the funda-
mental solution.

Consider a cartesian reference system with the
origin at the tip of a traction-free crack, as shown
in Figure 3. Rice [12] introduced the path-

@ -~ Internal points

Circular contour path

Figure 3: Coordinate reference system and con-
tour path for J-integral.

independent J-integral which in the absence of
body forces is given by

J= /S(Wn1 — t;u5,) dS, 4)

where § represents an arbitrary contour surround-
ing the crack tip; W represents the strain en-
ergy density; ¢; represent the traction components,
given by o;;n;, where n; represent the components
of the unit outward normal to the contour path.
The relationship between the J-integral and the
stress intensity factors is given by

g Ki+ Ky

LE, %)
where the constant E' is the elasticity modu-
lus equal to F for plane stress conditions and
E' = E/(1 — v?) for plane strain conditions. A
simple procedure, based on the decomposition of
the elastic field into symmetric and antisymmet-
ric mode components, can be used to decouple the
stress intensity factors of a mixed-mode problem,
as presented by Portela et al. [10] for a circular
contour path. The integral J is represented by
the sum of two integrals as follows:
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J=J+J0, (6)

where the superscripts indicate the pertinent de-
formation mode, given by

M = /F (WMny — M) ar,  (7)
for M = I or M = II. This decomposition allows
the following relationships:

2 2
A O
The implementation of this procedure into the
boundary element method is straightforward. A
circular contour path, around the crack tip, is de-
fined with a set of internal points, located at sym-
metrical positions relative to the crack plane of
the last increment, as shown in Figure 3. The two
contour points on the crack surfaces are the first
and the last points of the path respectively. At
these points, it is always verified that ny = —1 and
ny = 0 and thus, for a traction-free crack t; = 0.
The integration along the contour path can be ac-
complished with the trapezoidal rule. For the sake
of simplicity, only circular paths containing crack
nodes, were considered in this paper. The accu-
racy of this technique was already demonstrated
with several benchmark problems by Portela et
al. [10].

JI =

Crack-Extension Direction

The maximum principal stress criterion, which
postulates that the growth of the crack will oc-
cur in a direction perpendicular to the maximum
principal stress, was chosen to describe the local
direction of mixed-mode crack growth. Thus, the
local crack-growth direction 6; is determined by
the condition that the local shear stress is zero,
that is

Krsin6; + Kr7(3cos, — 1) = 0, 9)

where 6; is an angular coordinate centered at the
crack tip and measured from the crack axis ahead
of the tip. As a continuous criterion, the maxi-
mum principal stress does not take account of the
discreteness of the crack extension modelling pro-
cedure. Therefore, in an incremental analysis, the
tangent direction of the crack-path, predicted by

equation (9), must be corrected to give the direc-
tion of the actual crack-extension increment.

The procedure applied to define the direction of
the n-th crack-extension increment introduces a
correction angle # to the tangent direction 0]
predicted by the maximum principal stress cri-
terion, as shown in Figure 4. Using geomet-
ric relationships, this correction angle is given by
B = by(nt1)/2, in which 8;(n41) is the direction of
the next crack-extension increment, also computed
with the maximum principal stress criterion. For
the current nth crack-extension increment, the ith
iteration of this predictor-corrector procedure can
be summarized as follows:

o for the first iteration only, evaluate the crack-
path tangent direction 9;(7‘) with the maxi-
mum principal stress criterion, equation (9);

e along the direction computed in the previous
step, extend the crack one increment Aa to P*
and evaluate the new stress intensity factors;

e with the new stress intensity factors and the
maximum principal stress criterion, equation
(9), evaluate the next crack-path direction
0;(n+1);

o define the correction angle §* = Bi(n +1)/2,
measured from the increment defined in the
second step;

o correct the crack-extension increment, de-
fined in the second step, to its new direction

given by a;'(t}) = 0}, + 65

e starting from the second step, repeat the
above steps sequentially while |3'*t1] < |5*].

When the size of the crack-extension increment,
Aa tends to zero, the angle 6;(,,1) also tends to
zero and so does the correction angle, 8. This
means that in the limit, the direction of the incre-
mental crack-extension tends to the direction of
the tangent of the continuous crack path.

Incremental Analysis

The incremental analysis of crack extension
assumes a piece-wise linear discretization of the
unknown crack path. For each increment of the
crack extension, the BEM is applied to carry out a
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n — current crack-extension increment
Aa - increment size

1 — iteration number

0; — increment direction computed with the tangent criterion
B - correction angle (8 = 0y(n41)/2)

P — crack tip location

Figure 4: Incremental crack-extension direction.

stress analysis of the structure and the J-integral
is used for the evaluation of the stress-intensity
factors. The steps of this basic computational cy-
cle, repeatedly executed for any number of crack-
extension increments, are summarized as follows:

o carry out a BEM stress analysis of the struc-
ture;

e at the crack tip compute the stress intensity
factors with the J-integral technique;

o compute the direction of the crack-extension
increment;

o extend the crack one increment along the di-
rection computed in the previous step;

¢ repeat all the above steps sequentially until
a specified number of crack-extension incre-
ments is reached.

For the sake of simplicity, the increment of the
crack extension is discretized with a fixed number
of new boundary elements. The length of the crack
extension increment may be defined as the result
of a compromise between accuracy and computa-
tional cost; the smaller the crack increment the
more accurate and expensive is the analysis.

The results obtained from an incremental anal-
ysis of crack-extension are a crack-path diagram
and diagrams of the stress intensity factor varia-
tion along the crack path.
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Figure 5: Crack growing from a hole in a rectangular plate.

Crack Extension Applications

A single application of the crack-extension in-
cremental analysis will be presented in this sec-
tion. Consider a crack growing from a fastener
hole in a three-hole rectangular plate with the
characteristic dimensions w = 1.5 m, h = 1
mb = 0.6 m and d = 0.5 m, schematically rep-
resented in Figure 5. The initial crack was con-
sidered with the length a = 0.1 m and the holes
with radius 7 = 0.2 m. A uniform normal trac-
tion t = 10 M N/m? is applied at the ends of the
plate in the direction perpendicular to the axis
of the initial crack. The plate was assumed with
the elastic constants E = 200000 M N/m? and
v = 0.25. An incremental analysis of the crack
extension was carried out. Results, obtained with
the maximum principal stress criterion and a crack
increment equal to three times the length of the
initial crack-tip element, are presented in Figures 6
and 7, in terms of stress intensity factors and crack
path, respectively.

Fatigue Crack Growth and Dam-
age Tolerance

In general, fatigue crack-growth is driven by
variable amplitude loading. In the simplest case,

2.5

ryr+r ¢ o1 8

ss-eos Mode I

°.6- »ssss Mode II 4

Normalized Stress Intensity Factors

®
N
FAN
ol
-

Crack—-Extension Increment

Figure 6: Stress intensity factors for the cracked
plate problem.
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Figure 7: Crack path for the cracked plate problem.

the one considered here, the loading cycles have
a constant amplitude and may be described by
a constant amplitude load with a constant am-
plitude stress ratio. The aim of the damage tol-
erance analysis is to obtain the residual-strength
and fatigue-life diagrams associated with the fa-
tigue crack growth. From these diagrams, both the
maximum permissible size of each crack and the
safe operational life of the structure can be evalu-
ated. In this paper, the analysis of fatigue crack
growth is introduced as a post-processing proce-
dure on the results of the crack-extension analysis.

The residual-strength diagram shows the varia-
tion in the maximum load that the cracked struc-
ture can sustain, that is, the load that causes frac-
ture instability, as the crack length varies. Thus,
for a given crack length a, the residual strength,
o. is given by the critical load which is defined as

0. = KIc
°7 Y+/rad’

where Y is the geometry factor. For the same
crack length, the geometry factor is constant and
hence, can be defined in terms of the applied ref-
erence stress, o, and the corresponding mode I
equivalent stress intemsity factor, K, as

(10)

Kre Kieg

Y = = .
o./ma  o./Ta

(11)

In a mixed-mode analysis the equivalent mode I
stress intensity factor can be defined, for the max-
imum principal stress criterion, as

) [/ )

3 Yt 272t in 2

Kieq = Kycos 3 3Kz cos 2 sin %" (12)
From equation 11, the following relationship be-
tween the residual strength and the applied refer-
ence stress holds:

(13)

At each step of an incremental analysis, the resid-
ual strength is represented conveniently in a nor-
malized form, derived from equation (13) as

L I{qu*
Ocx K Ieq

(14)

where 0. and Kpeg« represent the residual
strength and the corresponding mode I equivalent
stress intensity factor, respectively, computed at
the initial crack length.

The fatigue-life diagram shows the variation in
the number of loading cycles, required to extend
the crack, as a function of the crack length. It
was computed from the generalized Paris model
defined as

da m
— = C(AK5)™,

N (15)
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where a is the crack length, N is the number of
load cycles, C and m are material dependent con-
stants and AK ¢y = AKje, is the range of the
effective stress intensity factor. The stress inten-
sity factor range of the individual modes is given
by AK = Kmaz — Kmin = Kmaz(1 — R), in which
R = Kpin/Kmaz = Omin/Omaz is the stress am-
plitude ratio of the loading cycle. The number of
loading cycles required to extend the crack a given
increment is evaluated by integration of equation
(15) with the trapezoidal rule, applied for each in-
crement of the analysis.

For the plate with a cracked fastener hole repre-
sented in Figure 5, a fatigue cracking process was
generated by a constant amplitude cyclic loading
with a stress ratio R = 2/3. The constants used
in Paris law were defined as C = 4.624F — 12 and
m = 3.3. Results of fatigue crack growth and dam-
age tolerance analysis were obtained for this prob-
lem. The residual strength diagram is presented
in Figure 8. The fatigue-life diagram, obtained

it
.
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Figure 8: Residual-strength diagram for the
cracked plate problem.

for the case in which the stress ratio=0.66666,
C =4.624E-12 and m =3.3, is presented in Fig-
ure 9. With these diagrams and a knowledge of
the fracture toughness of the material, a complete
damage tolerance analysis can be carried out.
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Figure 9: Fatigue-life diagram for the cracked
plate problem.

Conclusions

In this paper, the boundary element method
is applied to the incremental analysis of fatigue
crack growth and damage tolerance using linear
elastic fracture mechanics. For each increment of
the crack extension, a stress analysis of the struc-
ture is carried out and the stress intensity factors
are evaluated with the J-integral technique. This
basic computational cycle is repeated for an arbi-
trary number of crack extension increments.

The boundary element method incorporates two
independent equations: one is the displacement
boundary integral equation and the other is the
traction boundary integral equation. When the
displacement equation is applied for collocation on
one of the crack surfaces and the traction equa-
tion is applied for collocation on the other, gen-
eral mixed-mode crack problems can be solved in
a single-region formulation. This feature consti-
tutes a practical advantage of the dual bound-
ary element method over the finite element and
multi-region boundary element methods, because
remeshing, extensively used in these methods, is
no longer required when the crack extension in-
crement is modelled with new elements.

The new boundary elements, introduced for the
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discretization of each crack extension increment,
generate new algebraic equations and introduce
new unknowns in the equations already existing.
An LU decomposition method is used to solve the
system of algebraic equations. The LU decomposi-
tion is carried out incrementally over the new rows
and new columns of the system matrix. The re-
maining part of the system matrix is carried over,
already decomposed, from the previous iteration
of the analysis.

The reliability of the whole incremental analysis
process lies in the accuracy of the stress intensity
factors evaluation, as well as on the accuracy of the
prediction of the crack-extension increment direc-
tion. In this paper, the stress intensity factors are
evaluated by the J-integral technique, applied with
a circular contour around each crack tip. Since the
exact variation of the interior elastic field is built
into the fundamental solution of the boundary ele-
ment method, this technique is very effective. In
contrast, in the finite element method, the field is
approximated by a polynomial variation in each
element.

A simple prediction-correction procedure was
adopted for the definition of the direction of each
crack-extension increment. It predicts the tangent
direction of the crack path using the maximum
principal stress criterion and then introduces a
correction to this direction with information de-
rived from one step ahead of the current crack-
extension increment.

Results of an incremental crack-extension anal-
ysis are presented. A fatigue crack-growth and
damage tolerance analysis is also presented for the
simplest case of constant amplitude loading cycles.
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