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ABSTRACT

The worldwide aircraft/airspace system (AAS) is
faced with a large increase in air traffic in the coming
decades, yet many flights already experience delays. The
AAS is comprised of many different agents, such as
aircraft, airlines, and traffic control units. Technology
development will make all the agents in the AAS more
intelligent; hence, there will be an increasing overlap of
the declarative functions of the agents. This paper
describes the basis for an Intelligent Aircraft/Airspace
System (IAAS) that provides improved system
performance, redundancy, and safety by utilizing the
overlapping capabilities of the agents. Principled
Negotiation between agents allows all the agents in the
system to benefit from multiple independent declarative
analyses of the same situation. Multi-attribute utility
theory and decision trees are used as the basis for
analyzing the behavior of different types of agents.
Intelligent agents are modeled as rule-based expert
systems whose side-effects are the procedural and
reflexive functions of the agent. Principled negotiation
also is a side-effect of the expert system’s declarative
functions. A hierarchical organization of agents in the
TAAS is proposed to facilitate negotiation and to maintain
clear lines of authority.

INTRODUCTION

Demand for air transport will continue to grow
well into the next century. The annual revenue passenger
miles (RPM) flown worldwide is predicted to double by
2005, an annual growth rate of over 5% [1]. By the year
2025, the RPMs flown could be triple today’s levels. This
will place large demands on the aircraft/airspace system
(AAS) which in much of the world is experiencing
congestion, delays, and operating restrictions [2,3,4].

An AAS is composed of agents, such as aircraft,
airlines, airport operators, and various types of air traffic
management units (Fig. 1). An agent is an entity that can
make decisions based on the data it has available, and
whose actions affect the system. Each Air Route Traffic
Control Center (ARTCC), Terminal Radar Approach
Control (TRACON) facility, or airport tower is
responsible for flights within a volume of airspace. The
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airspace of a facility is subdivided into sectors. Teams of
controllers communicate instructions and information to
the aircraft in their sectors to ensure flight safety. The
actions of the different controller teams are coordinated
by handover procedures, which prescribe the transfer of
aircraft between sectors in a control facility, and Letters of
Agreement, which cover the transfer of aircraft from the
airspace of one facility to the next [5].
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To prevent excessive controller workload when
there is heavy traffic or severe weather, the flow
management organization, consisting of the Air Traffic
Control System Command Center (ATCSCC) and the
traffic management units (TMUs) in each ARTCC, can
impose operating restrictions. These are implemented by
the controllers in the sectors, TRACONS, and airport
towers. Ground Delay Programs and en-route metering
are two examples of the operating restrictions imposed.
Aircraft experience delays departing and en-route as a
result of these restrictions [6].

By the year 2025, advances in communication,
computation, data gathering, and forecasting will make all
the agents of the AAS far more capable than they are
today, even though aircraft performance envelopes and
airport design are likely to remain broadly unchanged.
Aircraft will have access to large amounts of traffic and
weather data, and their on-board systems will be able to
analyze the overall traffic situation, something that only
air traffic management units can do now. Improved and
overlapping capabilities offer the potential for vastly
improved system performance, dissimilar redundancy,
and graceful degradation of system performance when
failures occur, improving operational efficiency and
safety. Automatic Dependent Surveillance (ADS) is an
example of improved aircraft equipment providing
benefits for traffic management units [7,8,9].
Overlapping capabilities also can cause conflicts.
Problems of this type have been encountered with the
Traffic Alert and Collision Avoidance System (TCAS),
such as pilots responding to alerts when controllers have
already issued corrective actions [10].

The aim of this research is to define an
Intelligent Aircraft/Airspace System (IAAS) that makes
use of these enhanced agent capabilities to ensure that the
demand for air traffic is met, with fewer restrictions,
fewer delays, and improved safety compared to today.
Without cooperation between agents, overlapping
capabilities cannot be utilized. A framework for
examining how collections of intelligent agents will
cooperate is needed.

BEHAVIOR OF AN INTELLIGENT AGENT

To model the behavior of a collection of
Intelligent Agents, we need to understand the decision-
making and control processes of each agent. A cognitive
model of decision-making and control in an Intelligent
Agent is proposed in [11]. A human’s actions are the
result of a hierarchy of thought processes. Conscious
thought is the Declarative processing of knowledge or
beliefs, exhibited as awareness and focus. Pre-conscious
thought is pre-attentive Declarative processing. Subjects
are pre-consciously selected for conscious processing, and
concepts and frameworks for investigation are developed,
guided by intuition. Sub-conscious thought is Procedural
processing of knowledge and beliefs not dependent on
conscious focus. Examples are communication, skill
learning, and knowledge acquisition. Reflexive behavior

is an instantaneous response to stimuli; no conscious or
unconscious thought is involved. Reflexive actions are
forceful, elementary, and directed toward simple goals.
Many of a human’s reflexive actions are responses to
stimuli threatening health (batting an eyelid when
something contacts an eyelash) or balance (constant
contraction and relaxation of muscles to maintain
posture).

We can use Declarative, Procedural, and
Reflexive functions to describe the behavior of any
Intelligent Agent operating within the AAS. Traffic
Management Agents (TtMAs) and Aircraft are two types
of AAS agent (Fig. 2). (The term Traffic Management
Agent describes all ground-based agents with
responsibility for aircraft operations safety and supporting
systems.) There is great similarity between the
Declarative functions of these two agents and of all agents
in the IAAS. All agents identify scenarios, assess the
situation, and then make decisions based on that
assessment. All the agents operate in the same en-
vironment, but they have different interests and priorities
when choosing how to respond to particular situations.
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Figure 2. Function hierarchy for two agents.

Definitions and Assumptions

The following definitions and assumptions are
used in the discussion of agent interaction in the IAAS.

 Assumption 1: An IAAS is a non-deterministic, mixed-
event, dynamic system, with N agents. It follows that no
agent can have perfect knowledge of the system.
Equation 1 gives a general expression for the dynamics of
the system:
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x(t) = F(x(1), u(t), w(t),1) ¢))

The state, x(¢), and control, u(#), include continuous,
discrete, binary, and mixed variables. The disturbance
inputs, w(¢), are the environmental variables (wind speeds,
visibility, etc.). x(f) describes the state of all N agents in
the set of all airborne and ground-based agents, A:

A={a;i=1,... N} @)

« Definition 1. A plan is a sequence of actions that an M-
member subset of the set of agents A takes over a given
time interval:

Uy, (tl,tz)= {“am (11,12)1m=1,...,M}
Ay CA 3

« Definition 2: An action plan is the sequence of actions
that a single agent will perform as part of the overall
plan:

“ai (tl,lz)EﬂAM @

Any plan is a collection of individual action plans. An
aircraft’s action plan may be entirely defined by mapping
a trajectory into control inputs. Other agents’ action plans
may consist of discrete events. For example, an airport
tower may choose to change runway configuration at a
particular time.

* Definition 3: An option is a proposed alternative to an
existing plan:

ﬁAK (hLty) = {ﬁak (Il,tz)Zk =1,...,K}
AK cA (5)

Options are indicated with tildes. An option put forward
by one agent may suggest actions to be taken by other
agents.

+ Assumption 2: An agent has interests that can be
translated into constraints on its action plan. It tries to
satisfy constraints while maximizing utility functions
through its choice of actions:

I, & maxU,, (%,i,w,1)

©)

subjectto ¢, (X,@,w,1)<0

In the IAAS there are N sets of interesis /,.. X are the

predicted trajectories resulting from u control inputs. A
constraint vector €y results from bounds imposed by a

superior agent, the expected behavior of other agents, and
the performance limits of the agent. The size of ¢, is

different for each agent. An example of an imposed
constraint would be an airline informing an aircraft of a
change of destination due to a decision to relocate a bank

of flights. Minimum separation criteria are constraints re-
sulting from the behavior of other agents. Physical limits
would result from an aircraft’s performance envelope. A
typical utility function would be the profit generated by a
flight.

« Assumption 3: Agents only propose options that satisfy
their constraints and have increased utility. That is, we
assume that agents behave rationally and with self-
interests in mind.

Principled Negotiation

The agents in an IAAS do not act alone, so their
action plans may conflict. Two airlines may want flights
to depart from the same runway at the same time, or the
trajectories of two aircraft may cause them to pass too
closely. However, each agent is intelligent: given relevant
data, an agent can reason about both the probable
decisions and possible interests of other agents in the
system. Not only does this allow each agent to change its
own action plan to avoid conflicts, but it also can examine
whether there are changes to the action plans of other
agents that might benefit one or more other agents as well
as itself. The system must solve N problems of the form
of (6) without any single agent having complete
knowledge of Ay < A. Agents must have procedures to
communicate and discuss these plans in order to
effectively coordinate actions.

Principled Negotiation [12] was developed as a
method that negotiators could use to reach better
agreements than could be obtained using traditional
confrontational tactics. The underlying idea is that in
most situations there are options that will benefit all the
parties in negotiation. A favorable agreement is more
likely to be reached if a negotiator proposes options for
mutual gain and if all the parties assess the options using
objective criteria (Fig. 3).

The overlapping of declarative functions of
agents in an JAAS gives rise to many situations where
negotiation could occur. Every part of an aircraft’s flight
from gate to gate would be negotiable. Traffic man-
agement agents would be able to approve many of the
proposals, as the proposing agent would try to ensure that
the options provided mutual gain. An airline might
suggest that a lightly loaded aircraft take-off from a stub
runway or carry out an intersection departure rather than
use the main runway, reducing the delay to the flight and
increasing the airport’s throughput. Aircraft would
propose modified trajectories that improved the overall
traffic situation or increased safety margins, as well as
reducing fuel usage.

Limited negotiations already occur in today’s
AAS. Pilots can propose course and altitude changes to
controllers. When ground delay programs are run, airlines
can propose flight cancellations to the flow management
authority, allowing substitution of flights into the newly
available slots, reducing total delays. The IAAS concept
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Figure 3. The Principled Negotiation process.

encourages widespread negotiations. If more agents are
applying their data, processing power, and analytical
approaches to any particular situation, the chances of
improving the system’s performance in the view of most
agents will be increased. At the same time, the chance of
contention between agents also rises.

It is important to agree on objective criteria for
assessing options [12]. If agreement can be reached about
the criteria, then it is much more likely that the
assessment of any particular option will be rational, so
overall agreement is easier. However, agents are
concerned with different subsets of all the flights that
make up the dynamics of an IAAS. An airline is
concerned mainly about the flights of its own aircraft,
while a traffic management agent must be concerned
about all the flights in its area. Hence, the criteria for
assessing an option will not be shared, even if both agents
use identical measures.

Agents need knowledge of other agents’ criteria
to propose options for mutual gain that have a high
probability of acceptance. Use of objective criteria makes
an agent’s negotiating behavior more predictable, helping
other agents to propose mutually beneficial options.
Subordinate agents are more likely to regard imposed
decisions as fair if superior agents use objective criteria
that can be inspected.

Agents use different methods for assessing
options, and they display different negotiating behavior.

Some agents display maximizing behavior in negotiating
situations, while others display satisficing behavior. A
maximizer tries to ensure that any agreed-upon option
provides increased utility compared to the existing plan;
when given a choice, it chooses the option with the
maximum utility. A satisficer is an agent that assessies
options presented to it by subordinate agents; it accepts an
option if certain criteria are satisfied. A TrMA examines
a proposed trajectory change to check that no separation
criteria are violated and that no hazards are encountered,
but it does not try to maximize a quantity like throughput
unless traffic is particularly heavy. As the situation is
dynamic, both the utility functions of maximizers and the
satisfactory sets of satisficers change over time.

Representation of Negotiation Situations

Visualization of the possibilities arising from a
negotiation situation is aided by diagrammatic
representation of the constraints and the utility function of
each agent. Each point represents an action plan. The
constraints ¢, on the action plans for a single

maximizing agent a; define a feasible set (Fig. 4). The
utility U,, of the options within the feasible set is

represented by contours of equal utility.

Feasible Set ﬁ
Uty ‘
Contours /

Present )
action-plan v

Figure 4. Representation of the constraints and utility
function of a maximizing agent.

The feasible set, utility contours, and action plan
are dynamic. The action plan represents the intended
actions of the agent at a point in time. Deviations can be
caused by changes in environmental conditions or by
performance limitations of the agent. The feasible set and
utility contours vary as the agent’s state changes or as the
agent receives new data.

A typical negotiation situation in the JAAS
involves a maximizing agent proposing an option to a
superior satisficing agent. The proposing agent has to
ensure that any proposed option lies in the satisfactory set
of the satisficer; otherwise it will not be approved (Fig. 5).
The boundary of the satisfactory set of the satisficer also
is dynamic. The satisfactory set of a TTMA depends on
the prevailing and predicted traffic and weather
conditions. Other factors, such as the equipment fit of the
aircraft and the runway configuration, also affect the
bounds.
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The maximizing agent usually does not know the
satisfactory set bounds of the superior agent. Negotiation
allows the maximizer to obtain information about the
satisfactory set. If the satisficer rejects a proposal, the
maximizer gains information about a portion of the
boundary of the satisfactory set. The maximizer gains
more information if the superior agent supplies reasons
for the rejection. For the TrMA-aircraft example, this
reason could be a conflicting aircraft. The two aircraft
could negotiate with each other to search for options that
have higher utility for both agents and that are acceptable
to the TTMA (Fig. 6).

Aircraft must ensure adequate separation from
other traffic. Separation may be specified in terms of time
or distance. Different separation criteria are represented
by the shaded circles in Fig. 6. In case (a) it is possible
for both aircraft to fly optimal action plans and meet those
separation standards. Although this is not possible in case
(b), aircraft A can still propose an option to aircraft B that
would improve its utility and allow aircraft A to fly closer
to its optimal action plan. Negotiation allows agents to
infer information about other agents’ utility functions. In
some cases agents could provide information that affects

Minimum Separation

Optimal
Criteria

trajectory

NG

a) Both aircraft can fy ~ b) Separation criteria wi
their optimal trajectories Violated if both aircraft fly
without violating their optim<: trajectories

separation criteria

Figure 6. Feasible sets and separation criteria for two
aircraft.

the utility function contours of another aircraft. In case
(b) aircraft B may receive improved weather data from
aircraft A, leading to a different optimal action plan for
aircraft B.

Inventing Options for Mutual Gain

The aircraft/airspace system is characterized by a
large number of feasible options available to all agents at
all times. In some cases the option space is discrete (e.g.,
flight arrival and departure order for a specific runway).
In other cases, it is continuous (e.g., the possible
trajectories for an aircraft). Today it is the human
controllers and pilots, aided by computer systems, who
invent options. A pilot can use the flight management
system to calculate the cost of various routings. The
Automated En-Route Air Traffic Control system (AERA)
will allow sector controllers to see the effects of strategies
they might use before they issue instructions to pilots
[13].

A* search finds the optimal path through a
network of decision nodes [14]. Itis a branch-and-bound
search that minimizes a lower-bound estimate of the cost
of the remaining path. At each node the algorithm
expands the path that has the lowest total of cost-so-far
and estimated cost-to-go. All paths that reach a particular
node except the lowest cost path to that node are pruned.

A network representation of the choices is
straightforward if the option space is discrete. If the
option-space is continuous, heuristic rules can be applied
to generate a network. To illustrate this technique,
consider an aircraft flying on a busy jet route (Fig. 7).
Aircraft A has just entered the sector and is cleared to fly
at FL310 to the end of the jet route (400km). It has
received information on the wind-profile for the jet route.
The aircraft would like to find trajectories that allow it to
reach the end of the jet route with reduced fuel
consumption in the planned time of 30 minutes.

[fi70 E%Ss i |

S, FL330
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o . FL3] 9.l
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B Feso!
765 kph 80 0 80
| | | | Wind Profile
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100 200 300 400
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Figure 7. An example traffic scenario.
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There are an infinite of number of trajectories
that the aircraft could fly, bounded only by its
performance envelope, but we can apply several rules.
Aircraft must fly at the flight levels indicated unless they
are climbing or descending. Paths that involve both
descents and ascents also are pruned for reasons of pilot
workload and passenger comfort. Only altitude changes
that occur within 10 minutes are considered, as options
will be re-examined at that time. The option space can be
discretized further by setting climb rates at 1000ft/min,
assuming constant air velocity, and initiating climbs only
at 2 minute intervals. The network generated applying
these rules to the scenario contains 48 possible
trajectories. The heuristic rules can be adapted to
generate more or fewer options in accordance with the
computational capacity of the system used. The network
can be reduced further if the aircraft has knowledge of the
surrounding situation. Figure 8 shows the remaining
network if the aircraft is aware of the two closest aircraft
(B and C)and has to satisfy a 5 n.m, separation criteria.

The A* algorithm searches the network for the
optimal path, which the aircraft can then propose to the
TrMA. In this case a number of the paths would be
rejected by the TrMA because of the traffic at FL350. If
the aircraft had this information the network could have
been pruned further. The utility function of the aircraft
could be defined as the fuel saved compared to the
existing trajectory. The aircraft also might include the
deviation from the planned 30 minutes for the traversal of
the sector,
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Figure 8. Path network accounting for aircraft B and C.

Techniques for Assessing Options

Once options have been generated, the agents in
the negotiation must assess them A maximizer checks to
see if a proposed option has an increased utility compared
to the present plan. The utility of an option may be
difficult to quantify, as the agent may be interested in
many different attributes of the option. An aircraft agent
assessing a trajectory change considers the effect on

360

340

arrival time, fuel consumption, safety (separation from
other aircraft and other hazards), direct operating costs,
and passenger comfort. The relative weight that the
maximizer attaches to these attributes also can change.
An aircraft that is part of a bank of arrivals puts a higher
weight on deviation from planned arrival time than a
flight that is not part of the bank. A flight that has
suffered a major system failure is far more concerned
about safe arrival of the flight than fuel usage.

Multi-Attribute Utility Theory (MAUT) [15]
provides a way to assess options within complex sets of
alternatives. The weight of each attribute changes with
the agent’s scenario [16]. The utility of the option is
given by:

v, (ﬁ ay ): W, ().a(xi,, ) @

where U o (ﬁ AM) is the utility of option @ Ay to agent

a;, and a(i,ﬁ Ay ,w,t) is the vector of attribute values

for that option. Wai (x,t) is the weighting vector for the
agent, and it is a function of the agent’s state. Many of
the attribute values in a(i,ﬁ Ay W t) may be uncertain or

may rely on estimated data. The agent may choose to
reduce the weighting of uncertain attributes.
Aliernatively, Monte Carlo evaluation could be used to
probabilistically assess the utility of the option [17,18].

Satisficers and maximizers assesses options
differently. A satisficer has to decide whether an option is
acceptable rather than quantify the option’s utility.
Satisficers have to handle multiple proposals, so the
method of assessment must be quick and accurate, The
method also must deal with the uncertainties inherent in
the TAAS. '

Decision trees classify situations by testing the
attributes of the situation in a particular sequence. At
each node of the tree a different attribute, or combination
of attributes, is tested. The result of the test determines
the next node reached. When a leaf node is reached, the
classification (or decision) is returned. The trees are
created by inducing rules from a large number of training
examples using a suitable algorithm, such as /D3 [19] or
OCI {20]. Pruning strategies can be employed to prevent
the tree from over-fitting noisy data. Uncertainty in the
attribute values is handled implicitly during creation of
the tree; tests on uncertain attributes are less useful for
establishing the class of a situation. If an estimate of the
uncertainty (or accuracy) of an attribute measurement is
available, then this can be added to the list of attributes
and used by the decision tree.

Satisficers may have to make decisions based on
their assessment of how accurately agents will follow a
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particular plan. The control system for a hybrid aircraft
navigation system has a similar problem: to decide what
combination of navigation aids should be used when each
navigation system will provide imperfect position
estimates. The errors obtained are dependent on many
factors. An expert system that uses a decision tree has
been developed for hybrid navigation systems {21]. The
configuration of aircraft navigation sensors was chosen by
classifying the probable position accuracy obtained from
the various possible sensor combinations. The decision
tree examined attributes such as the number of available
navigation stations and the trajectory geometry to choose
the sensor configuration. The training set for the decision
tree was constructed by running a large number of Monte
Carlo evaluations of the navigation system performance
for many different scenarios. The important factors
affecting the performance were identified using analysis
of variance (ANOVA), and the ID3 algorithm was then
used to construct a decision tree, based on these factors.

MODEL OF A NEGOTIATING INTELLIGENT
AGENT

The declarative functions of intelligent agents
(IAs) are well modeled by expert systems [11, 22-24].
Goal planning, scenario identification, and operating
mode selection require reasoning. Alternatives must be
evaluated, and decisions must be made through a process
of deduction, that is, by inferring answers from general or

domain-specific principles. A rule-based expert system
uses an inference engine to process the knowledge and
beliefs contained in its rule base and data base. The
procedural and reflexive functions of the agent, such as
communication and estimation, are side effects of a rule
being queried by the expert system (Fig. 9). As well as
providing a model for analysis of collective IA behavior,
this structure could be used as the basis for systems that
provide intelligent assistance to humans (pilots, con-
trollers, schedulers) or for systems that operate
autonomously under human supervision.

The negotiation functions are carried out as side
effects of the expert system. The expert system deduces
the weighting function, constraints, and heuristics that are
used by the systems that generate and assess options.

The functions of an IA can be divided into four
task groups: emergency tasks, mode specific tasks,
negotiation tasks, and routine tasks. The top-level struc-
ture of the rule base controlling these task groups is
shown in Fig. 10. Rectangular boxes represent
parameters, and ovals represent rules. Parameters contain
raw data and other factual information about the domain.
The possible values of the parameter are shown in the
slots. Rules describe the relationship between parameters.
The form of the rule is shown by the lines linking the
parameters and the rule. AND relationships are indicated
by arcs between the lines.
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Base Base Base
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Situation § Side Effects Options i | Proposals
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\ o e
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Figure 9. Structure of an Intelligent Agent.
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The inference engine traverses the rule base
using backward and forward chaining. If the value of an
unknown parameter is desired a goal-directed search
(backward chaining) is used. The logical outcome of new
data, or a set of premises, is found by a data-driven search
(forward chaining). The control cycle is driven by back-
ward chaining to establish the value of a top-level
parameter (TOP-LEVEL SEARCH COMPLETED in Fig.
10). This “fires” Rule 1, which is read:

IF the value of parameter EMERGENCY
TASKS COMPLETED has been determined

AND  the value of parameter MODE SPECIFIC
TASKS COMPLETED is TRUE

AND the value of parameter NEGOTIATION
TASKS COMPLETED has been determined

AND  the value of parameter ROUTINE TASKS
COMPLETED is TRUE

THEN set the value of parameter TOP-LEVEL
SEARCH COMPLETED to TRUE

EMERGENCY TASKS COMPLETED will be
set to TRUE only if the actions that are required in an
emergency situation have been executed. The value of
this parameter may be TRUE or FALSE; the agent is not
in an emergency situation at all times. The use of the

shaded box indicates that the search should continue (i.e.,
the control cycle continues) once the value of
EMERGENCY TASKS COMPLETED has been
determined, whether this is TRUE or FALSE.

Mode specific tasks are the functions that are
executed only if the agent is in a particular state. For
example, an action such as TAXI INSTRUCTIONS
LOADED would be required only when an aircraft was
on the ground or on approach; it would not be executed
during departure or en-route phases.

The routine tasks are undertaken whatever the
mode of an agent. A TrMA will update radar displays,
fuse raw data, and update data bases on each control
cycle.

The skeletal rule base for an expert system that
would handle negotiations autonomously is shown in Fig.
11. It is applicable to any IAAS agent. Subroutines for
generating and assessing options, described earlier, are
executed when rules N4, N12, and N13 are fired. The
rule base is separated into two sections; the rules for
assessing options received by the agent, and rules for the
agent to generate options.

9 | 8| Top-level search
= || completed
Rule1
o | o] Routine
o Mode Negotiation 2|8 tasks
‘_u‘g peciﬁci tasks = completed
comp eted .
' L]
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A AND /\ OR
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Figure 10. Top level rule-base for an Intelligent Agent.

2204



True

Negotiation Tasks
Completed

AAN:

o | Assessed ol o] Agent o Options for

£ | Received 2 | £ | Database g 2 mutual gain

Y- | Options ™ Updated = | w| exhausted
RuleN15

Option
Implemented

)' \
RuleN2 Response || 8} & Proposal
( E & |implemented
RuIeN16 RuIeN17 RuleN18
‘ / ’
o Proposed
= s option 8| § |Approval
[ | pccepted| | |[]E |obtained
o[ e Be;t % o Apprpv:l
o [Supervisor | |- & |~ |require
2| Agent
Approved
L) ol o
Decision |21 3|Approval
Tree v | ™| Required

|
A= Proposal
- {FReceived| ( RuleN5
& | $ [Constraints| | & 3 |utility Function
ElF Determined u“: - Determined
LEGEND

Parameter value
determined by
subroutine call

Options satisfying

Constraints
generated

U(best option)
>

U(current plan)

False

True /

Utility
of options
Calculated

Figure 11. Rule base for a negotiation expert system.
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ORGANIZATION OF AGENTS IN AN
INTELLIGENT AIRCRAFT/AIRSPACE SYSTEM

The lines of communication in the Intelligent
Aircraft/Airspace System must facilitate effective
negotiations and provide clear lines of authority. This can
be provided by a hierarchical arrangement of traffic
management agents (Fig. 12).

An agent initiating negotiations with the TrMA
system will communicate initially with a sector, airport, or
TRACON TrMA. An aircraft negotiating a trajectory
change contacts the TrMA in whose airspace the
trajectory first differs from the existing plan. This often
will not be the TrMA for the airspace in which the aircraft
is currently located. A trajectory change usually will
affect all the downstream TrMAs, too. In this case, once
the initial TrMA has approved the trajectory change in its
airspace, it must pass the negotiations to the superior
agent (Area TrMA) in the hierarchy. A long-haul flight
may be passed up to regional level or higher. All TrMAs
access the same central flight data base (CFDB), so an
Area agent has access to the same information as do all its
Sectors TrMAs, and it has a wider perspective. The
superior agent will then communicate directly with the
aircraft, accepting or rejecting the proposal, providing
data, or supplying alternative options. Similarly, an Area
TrMA that detects a possible conflict between aircraft in
two different sectors would handle negotiations with those
aircraft. If the conflict involved two aircraft in the same
sector, the sector TTMA would handle negotiations.

The main difference between this structure and
today’s AAS is the combination of flow management and
aircraft separation functions in a single hierarchy. The

aim of flow management is to prevent the number of
flights from exceeding the safe throughput capacity of any
airport or volume of airspace at any point in time. The
IAAS achieves this by requiring the departure airport,
arrival airport, and the higher TrMA (the TrMA that
contains all the sectors through which the aircraft will fly)
to “sign-off” on the planned trajectory at the time of flight
plan filing, The trajectory is specified in more detail than
in today’s flight plans. The IAAS flight plan contains
Out-Off-On-In (OOQI) times for the aircraft and a four-
dimensional specification of the flight path.

From the moment an airline starts planning a
flight, it provides data on the flight to the CFDB. As the
day of the flight nears, the airline can provide increasingly
accurate projections of OOOI times, aircraft type (and its
equipment), and preferred trajectory. At the same time,
TrMAs can make increasingly accurate predictions of the
weather and traffic situations, probable runway
configurations, throughput given the weather conditions,
etc. If any TrMA predicts excessive traffic, it initiates
negotiation with the airlines to reduce or reschedule
movements to achievable levels. The early provision of
accurate data and accurate forecasting should allow
negotiated agreements to be reached well before flight
time. Compared to today’s flow management techniques,
airlines should be able to plan for reduced capacity days,
rather than hours, in advance.

The TAAS allows negotiation between agents
other than TrMAs; airlines can negotiate on flight
cancellations to match runway throughput, and aircraft
can negotiate solutions to conflicts. However, if no
negotiated solution is reached sufficiently quickly, the
TrMA imposes solutions on the other agents.

Hierarchical Traffic Management Agent system
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Figure 12. The structure of the IAAS.
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Flights are subject to many causes of variability,
such as slow passenger loading or changing wind speeds.
No aircraft will ever precisely follow the trajectory filed
in the flight plan, though advanced estimation and control
techniques can minimize this error. To prevent the need
for renegotiation at any deviation from flight plan, the
TrMAs specify trajectory bounds when approving a flight
plan. The aircraft needs to renegotiate its trajectory only
if it is not able to stay within the bounds, or if it wants to
fly outside those bounds. The bounds are changed by the
TrMAs as the weather and traffic situation develops.
Bounds on flights through heavily used airspace and into
busy airports will be tighter. The uncertainty of a flight’s
position at any future time increases with the look-ahead
time. TrMAs use probabilistic reasoning when assigning
bounds. There always is a possibility that conflict
sitnations ‘will arise given uncertain trajectories.
Excessively tight bounds would, however, restrict
airspace capacity. The TrMAs therefore set bounds
aiming to keep the probability of conflict arising below an
acceptable level. As a flight progresses, the uncertainty in
the TrMAs’ predictions of the weather and traffic around
the flight will reduce. In most cases, the TrMAs will be
able to ease the bounds on a flight. Tightening will be
required only in those cases where conflict situations are
predicted given the present bounds on the aircraft.

CONCLUSIONS

The operation of an Intelligent Aircraft/Airspace
System has been described. An IAAS would use prin-
cipled negotiation as the basic form of interaction between
agents, allowing them to make best use of all their capa-
bilities, particularly their declarative functions. An expert
system framework has been presented that captures the
declarative, procedural, and reflexive functions of intel-
ligent agents. Subroutines for inventing and assessing
options, outlined in this paper, are called as side effects of
declarative decision-making functions. The framework
can be used as a model for analysis of the behavior of
groups of interacting intelligent agents. It provides a basis
for designing intelligent systems that provide assistance to
humans or that operate autonomously.
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