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Abstract

This paper adresses the problem of online
fault detection. A statistical test, the Sequen-
tial Probability Ratio Test (SPRT) is extended
to determine between several hypotheses. This
test is used to investigate the innovations of
a bank of Kalman filters. Each filter is de-
signed to cope with a dedicated sensor fault.
By evaluating the innovations the extended
SPRT algorithm decides, which Kalman filter
fits best to the measured data.

This method is applied to fault detection of
sensors measuring the vertical motion of an
aircraft. A changing number of sensor signals
has to be considered. This is done by use of a
time variant structure of the output equations.
Simulated and measured data of test flights
with simulated faults show the performance of
this test.

Introduction

In the last years large efforts were made par-
ticularly in the field of aeronautics to improve
sensor fault detection algorithms. A fault can
either be detected by use of hardware or soft-
ware redundancy. Hardware redundancy uses
identical instruments which are monitored by
a comparison scheme. In opposite, software
redundancy uses the inherent redundancy of
different sensors in an aircraft. These sensors
measure different states that are related to
each other by a mathematical model. One
powerful approach is the so called multiple-
hypothesis detection scheme(®,

This approach uses a bank of Kalman filters.
Each of them is designed to describe the
plant with one specific fault. A test algorithm
is used to decide, which of the filters fits
best to the measured data. This is seen from
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the Kalman filter innovations, e.g. the diffe-
rence between predicted and measured values.

The algorithm investigates a time window of
the innovations to decide, which of the Kal-
man filters fits best. The window size has a
strong influence on the test performance. On
one hand, a small window size results in fast
fault detection and a high probability of false
decision. On the other hand, a large window
size increases detection time, but decreases
the probability of false decision.

The disadvantages of a test with fixed win-
dow size are avoided by a test that increases
the time window until it could decide with a
given probability of false decision. This test is
known as Sequential Probability Ratio Test
(SPRT)®. It was extended by P. Armitage to
the case of multiple hypothesis testing®.

In this paper, the SPRT is presented first.
Then, the SPRT is extended to multiple hypo-
thesis testing and a simple formulation is pre-
sented. This test is applied to the detection of
sensor faults in the vertical motion of an
aircraft. One of the sensors signals is not
available at each sample step. It is shown
how these informations could be integrated
into the algorithm by just changing the output
equations of the state space formulation. At
last, the performance of this test is shown
with simulated and with real flight test data
that are falsified by simulated faults.

Sequential Probability Ratio Test

The Sequential Probability Ratio Test is a
statistical test that investigates a given time
series of data and chooses between two alter-
native hypotheses(3). In contrary to a test
with fixed sample size the SPRT examines
one observation at a time. The test stops if a
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hypothesis is selected, otherwise the test is
continued by examining the next observation.
This test is optimal in the sense that the de-
cision is made in minimum time with respect
to given error probabilities.

Suppose there are two hypotheses H; and HJ..
At sample step k, the probabilities P,(k) and
P j(k) are calculated. They are the probabilities
to obtain the measured data of sample steps 1
to k under hypothesis i and j.

Now, the log-likelihood ratio
P.(k)
A.(k) = log —1— 1
09 = log S M
is calculated. The decision algorithm is:
A;i(k) < log B
)\ji(k) 2 log A; : accept H;

log B < kji(k) < log Aji :
take next sample k+1. (2)

: accept H,

1

The logarithm is introduced here for ease of
computation because Gauss distributions will
be treated. The error probability B,. is intro-
duced to calculate the acceptance thresholds
AJ.i and Bji. Bij is the probability that hypo-
thesis H, 1s accepted though hypothesis Hj is
correct. The thresholds are

_1-8y B

A " .
n Bji R B..

(3.4

Assume H; to be the fault-free hypothesis and
H. to be the hypothesis with a fault. Then the
error probability B.; corresponds to the proba-
bility a of a falsé alarm and B;; corresponds
to the probability B of a missed ajlarm.

Extension to multiple hypothesis test

Assume there are N hypotheses H;,H,...Hy.
To achieve a global decision for one hypothe-
sis H_,, every hygothesis has to be compared
to all the others{”. So there are a total of
N(N-1)/2 likelihood ratios that are to be test-
ed by SPRTs. The global test should terminate
and accept hypothesis H_ if every SPRT con-
cerning H_ decides for this hypothesis.
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The algorithm mentioned above could be for-
mulated in a manner that only one of the two
thresholds is used:

Hypothesis H  (j,m = 1.N) is accepted, if
kjm(k) < log Bjm holds for all j ¥+ m. The
next observation at sample step k+1 is ta-
ken into consideration if none of the hy-
potheses H_ is accepted. (5)

Only thresholds B are used here. It could be
shown that this algorithm is equivalent to
using the thresholds A:

Hypothesis H_ (i,m = 1..N) is accepted, if
Ami®) 2 log A . holds for all i # m. The
next observation at sample step k+1 is ta-
ken into consideration if none of the hy-
potheses H_| is accepted. 6

Properties of the Kalman filter

The state space description of a linear sto-
chastic dynamic system is:

x;(k+D) = A; x,(K)+B; uk) + w;(k) + g;(k)

1—1
v =Ck x,Kk +v,k) +f;k) . (78
u(k) is the system input vector, x,(k) is the
state vector and y;(k) is the output vector of
model i. The state vector could be of diffe-
rent dimensions for different models i. Also
the dimension of the output vector yi(k) could
change in relation to the number of output si-
gnals measured at sampling step k. This is al-
so taken into consideration by the time vary-
ing dimensions of matrix C.(k). g;(k) and f,(k)
are deterministic functions that are introduced
to represent faults like bias. Faults affecting
the dynamic behaviour of the plant are consi-
dered by individually choosing the differential
equations for each model i.

Process noise w,(k) and sensor noise v;(k) are
assumed to be Gaussian white noise with

Ew,0} = 0  E{w,0 w07} = Q, 8,
E(v 0} =0 E{y,0 v;0} =R, 3,

(9-12)



The Kalman filter algorithm consists of the
following equations:

10 =y - Oy xy(kk-1) - £(K)
ViR = CyR) Pykk-1) C,T(K) + R, (K)
K& =Pk C, 0V, (k)
x;0c0) = x;0kk-D) + K () 1, (0)
Pikk) =[I-K,(k C,(k)]P,(kk-1)

x;(k+ 1K) = A x,(0ck) + B, uk) + g, ()

Pi(k+1k) = A, P,(kK) AT+ Q, . (13-19)
The innovation x,(k) is the difference between
the measured output and the predicted output
of the Kalman filter corresponding to model i.
The innovation is normally distributed with
zero mean und covariance V;(k), if the diffe-
rential equations implemented in Kalman filter
i correspond to the plant. The probability den-
sity of an innovation vector y,(k) of time step
k is:

1
P72 VW72 '

Py, (k) =

1
- exp(- > 1T VK 5K)
with n : dimension of x;(k) . 20)
The probability density of the time series of

the innovation T;(k) = Ly;(D...x;(k)] is obtai-
ned by:

Pw) = 1 P 2
I

So the log- likelihood ratio (1) of the actual
step k could be calculated recursively:

- . P.(y,(k))
X5i(k) = Xy;(k-1) + log —1—)-:&-:&)—)- . (22)

Application: Measurement
of the vertical motion

The plant

The extended SPRT is used to detect faults in
the measurement of the vertical motion of an
airplane. Generally, the three-dimensional mo-
tion is described by kinematic differential
equations of motion, which include the three-

dimensional vectors of acceleration, velocity
and position(z). Here, these equations are re-
duced to the one-dimensional vertical motion.

It is assumed that there are several sensors
that could be used to determine the vertical
motion: an Inertial Navigation System (INS)
that is used here for measuring the accelera-
tions, a barometric altimeter and a satellite
navigation system (GPS).

The INS measures the turn-rates and the ac-
celeration in body-fixed coordinates. With
these data, the Euler angles and the vertical
acceleration a,, g can be determined.

According to (4 the dynamic behaviour of the
barometric altimeter used here is approxima-
ted by a low pass of first order:

H,y(8) = H(s) . 23)

1+ Tys

GPS is a navigation system that uses runtime
differences of signals from several satellites
to calculate the position of the receiver every
0.6 sec. It is assumed that the GPS is used in
differential mode for high accuracy. The cal-
culated position refers to WGS84 (World Geo-
detic System 84), whereas the barometric al-
titude refers to sea level. It is assumed that
the offset of the measured altitude between
sea level and WGS84 is known. Then, one
could compensate for the offset, so that these
two altitudes coincide.

The structure of the plant is shown in Fig. 1.

every 0.6 sec.

a H l H
zg : DGPS
vertical L
* motion - -
H
altimeter |— 2%,

Fig. 1 : Block diagram of the plant

Modelling of sensor faults

Assuming a flat non-rotating earth, the verti-
cal movement is described by the relation
between the altitude H and the acceleration
in vertical direction a,.°

H = -a, (24)

e
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Now the state space equations are introduced
that are used in the four Kalman filters. The
state vectors x; (i=1..4) all consist of the alti-
tude H, the vertical velocity H and the baro-
metric altitude H_,,.

The state space equations of the vertical mo-
tion without sensor fault (hypothesis H,) are
given by (7,8) with i=1:

A [3 0 0 :IB | g = 0
U lvmgo -, ]t Lo B T Lo
00 1

0
Cl_[l 0 0] fl(k)z[o]

The state space equations of the vertical mo-
tion with a bias fault in the measurement of
the barometric altitude (hypotheses H, and
H,) are the same as those of hypothesis H;:

Ay =Az=A;, B,=B;=B
Cp = Cy=Cy, gk = gak) = g;(®) .

(25)

(26)

The output equations differ due to the sensor
faults. A bias of plus and minus 1 m is assu-
med:

£,(k) = [ ;} £4(k) = [é} :

The state space equations of the vertical mo-
tion with additional noise in the measurement
of the barometric altitude (hypothesis H,) are
the same as those of hypothesis H;:

A Al s B4 = Bl B g4(k) = gl(k) s

4 =
Cq=Cy, fa00 = £1() . (28)

@7

The covariance matrix R, is changed due to
the increased measurement noise.

Time variant structure of the output equations

The barometric altitude is measured every
0.02 sec., but the GPS position informations
are only valid every 0.6 sec. This is conside-
red in the Kalman filter algorithm as follows.
Only the first line of the output equations is
used, if only the barometric altitude is measu-
red. Both lines are used if barometric and
GPS altitude are available. The size of the in-
novation vector xi(k) and the dimension of the
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covariance matrix V,(k) change according to
the number of measured sensor signals. But
this is already taken into account in (20), so
that the probability density could be calcula-
ted and there is no change in the extended
SPRT algorithm.

Adaption of the Kalman filters after a decision

Consider hypothesis H_ to be true. Kalmanfil-
ter A copes very well with the measured data,
but the other filters might diverge because
the differential equations of plant and filter
do not conincide. Now, a fault occurs that
corresponds to Kalman filter B. Because of
the diverged states, filter B needs a lot of
time to adapt to the new situation. A long de-
tection time would be the result. So an adap-
tion algorithm is used to speed up the detec-
tion. Every time the extended SPRT has deci-
ded for a hypothesis, all the other Kalman fil-
ters are initialized with the states of the cho-
sen Kalman filter.

Fig. 2 shows the structure of the fault detec-
tion algorithm, that consists of a bank of Kal-
man filters (KF) and the extended SPRT.

adaption

[ KF Hy

h 4

JKF Hy | | M

L

plant

extended | Hm
S

Xm (kgk)
SPRT

h 4

3 KF H3

Y4

A 4

3 KF H,

Fig. 2 : Structure of the detection algorithm

Simulation results

The performance of the proposed test is
shown with simulated data. The matrices of
hypothesis H; (without fault,(25)) are used to
describe the plant.



The sensor noise standard deviations are assu-
med to be: o,,.= 0.05 ™/ 2, Oy = 0.5 m,
opgps> 0.2 m, Ty= 0.3 sec. and the error
probability is assumed to be B;; = 1074 with
i,j=1..4, i#j.

At t = 10 sec., a bias fault of +1 m in the me-
asurement of the baromatric altitude is intro-
duced. The extended SPRT detects this fault
very quickly (Fig.3a). At t = 20 sec., the bias
fault is removed and the algorithm decides for
hypothesis H; again. The peaks at the bottom
of the diagrams show the time instants when
the decision algorithm decides for one of the
hypotheses.

The extended SPRT is used now to detect a
bias of +0.65 m (Fig. 3b). The fault is detec-
ted correctly, but the algorithm needs more
time for detection and to switch back to hy-
pothesis H; compared to the bias fault of Im.

chosen hypothesis chosen hypothesis

i

0 10 20 30 0 10 20 30

time (sec.)

time (sec.)

Fig. 3 : Detection of a bias of 1 m (a) and
detection of a bias of 0.65 m (b)

A bias of -1 m in the measurement of the ba-
rometric altitude is introduced at t = 10 sec.
and removed at t = 20 sec. As expected, the
bias fault is easily detected (Fig. 4a).

Now, increased noise in the measurement of
the barometric altitude is to be detected (hy-
pothesis H4). The faulty sensor noise has got
a standard deviation of Opa1e= 1M, and the
Kalman filter covariance matrix R, is set ac-
cordingly. As before, the fault is introduced at
t = 10 sec. and removed at t = 20 sec. The
detection results could be seen in Fig. 4b.

chosen hypothesis chosen hypothesis

4 4
3 3

2 2

1 1

MMUHWWWLUMHI i JJJ_LULLUJJUJJHMMMIUMMMM
C; 10 20 300 10 20 30

time (sec.) time (sec)

Fig4 : Detection of a bias of -1 m (a) and

detection of increased noise (b)

Flight test data

The extended SPRT is now applied to real
flight test data, obtained during flights of the
research aircraft of the Institute of Flight Gu-
idance and Control, a twin-engine Dornier DO
128. The offset between sea level and WGS84
is known for Braunschweig airport, where the
trials took place. The DGPS positions are cor-
rected so that they refer to sea level.

The rotating earth is taken into consideration
in the matrices A; with:

0 1 0
A=l k 0 0
/T, 0 -1/T,
with k = 3.092 - 1076 (29)

Fig. 5 shows the measured altitudes with a
fault of 2 m in H,, introduced at S sec and
removed at 10 sec. The measured altitude
HD.GPS i.s shown as single points, when a new
position is calculated.

(m)
1630

chosen hypothesis

I

0 s 10 15 20 ¢ s 10 15 20
time (sec.) time (sec)

measured altitudes

1620

1610

1600+ 7

1590

Fig. 5 :measured altitudes Hpg and H,;, (a)
and chosen hypotheses (b)

Due to the simple model of the barometric al-
timeter and the resulting model uncertainties
the noise covariances are increased. The ex-
tended SPRT chooses between three Kalman
filters that are designed as follows: no fault
(H,), a bias of 2 m (H,) or -2 m (Hy).

The fault is correctly detected, but due to the
reasons mentioned above, the decision algo-
rithm needs about 2.5 sec. to decide for hypo-
thesis H, at t = 10 sec.

Conclusions

In this paper a fault detection algorithm is
proposed that consists of a bank of Kalman
filters and an extended SPRT, that evaluates
the innovations. The changing number of sen-
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sor signals is taken into consideration in the
Kalman filters by the use of time variant out-
put equations.

The extended SPRT has been used to detect
faults in the measurement of the vertical mo-
tion of an aircraft. Simulated and measured
data show the performance of the test.
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