THE DESIGN OF AN EFIS ATTITUDE INDICATOR FOR A FLIGHT SIMULATOR

ICAS-94-8.1.4

S J Handley and D J Allerton
Department of Avionics
College of Aeronautics
Cranfield University, UK

Abstract

A significant proportion of the work load of the
symbol generator in an aircraft electronic flight instrument
system (EFIS) is in maintaining the display of aircraft
attitude. Substantial processing is required to compute the
filled sky and ground regions within the attitude indicator
and typically, for EFIS displays, the filling of these
regions is achieved by special-purpose hardware within
the symbol generator dedicated to this function. This
paper presents an algorithm which minimises the
computations  inherent in this problem and which
simplifies the hardware required to maintain the real-time
indication of aircraft attitude in an EFIS display.

The characteristics of the spatial adjustment resulting
from changes in pitch and roll are analyzed and classified
into twelve readily detectable categories. The analysis
indicates that there are six primary cases to consider, for
which the ordering of the intersection points of the old
and new horizon lines with the instrument boundary is
used to determine the appropriate filling strategy. The
remaining six cases cover large excursions in aircraft
pitch where the horizon line is outside the instrument
boundary. For all cases, the incremental adjustment from
the previous frame can be made by filling at most two
polygons selected from just three distinct types. A further
efficiency of the method derives from filling the polygons
using only vectors drawn between points on the
instrument boundary.

The performance of the algorithm is presented in the
form of results obtained from emulation of the display on
a PC which confirm its efficiency. The algorithm has
been implemented on a flight simulator at Cranfield
University, where the anticipated improvement in the real-
time display performance has been demonstrated.

Introduction

In recent years, the electro-mechanical instruments in
many aircraft cockpits have been replaced by electronic
flight instrument system (EFIS) displays in the form of
colour CRT monitors."” These displays operate on a
similar principle to the graphic displays used in personal
computers and workstations; images are formed with
raster scan lines of the CRT; the intensity or colour of
points (pixels) along the lines is controlled by the binary
contents of a video memory or frame store. The bit
patterns are written by a graphics processor; the frame

Copyright © 1994 by ICAS and AIAA. All rights reserved.

store is continuously accessed to convert the bit patterns
to a video signal; no further action is necessary to refresh
the image.

The visual animation of the display is achieved by
altering the contents of the frame store at a frequency
which is compatible with the required image refresh rate.
In practice, to avoid noticeable flicker, aircraft displays
need to be refreshed at least 50 times per second which
implies that all graphical changes to the bit image in the
frame store must be completed within a 20 ms frame
time.

Under visual flying rules (VFR), a pilot uses the
horizon as a reference for the attitude of the aircraft.
Under instrument flying rules (IFR), an attitude indicator,
provides a pilot with a synthetic display of the horizon to
indicate the aircraft attitude in pitch and roll. The
electro-mechanical version of this instrument, also known
descriptively as an artificial horizon, comprises a small
gyro-stabilised sphere marked with an equatorial horizon
and lines to indicate angles of roll and pitch. The
hemispheres above and below the horizon line are
coloured to represent sky and ground. In EFIS displays,
the pitch and roll angles are derived from aircraft sensors
and a computer-generated two-dimensional image of the
electro-mechanical instrument is displayed. (Fig. 1)

e |
L=
HAY SRR W A W

o

hwii
1!‘
L
L

Fig. 1. A typical EFIS attitude indicator. (Courtesy of
Smiths Industries, Civil Systems, Cheltenham, UK)

282



In aircraft, as in other real-time systems, it is essential
that changes to displays are implemented at sufficient
rates to avoid the introduction of any perceived latency
which a pilot might interpret incorrectly as an actual
system response. For the majority of aircraft instruments,
this requirement does not pose a significant problem; a
processor can derive the changes to the instrument and, in
conjunction with a graphics processor, perform the
graphical operations to re-draw the display in its updated
form. For many instruments, the only graphical operation
is the simple rotation of a line or narrow pointer to a new
position. However, changes to an attitude indicator can
require substantial computational and graphical operations.
This paper discusses an algorithm to minimise the
computation inherent in the presentation of an attitude
indicator in a real-time EFIS display.

The Graphical Display of Aircraft Instruments

There are principally two approaches to implementing
graphical changes in real-time. Firstly the display could
be completely redrawn. This option is very demanding,
not only in terms of the two-dimensional geometric
processing inherent in aircraft displays but also in the
number of pixels to be written to the framestore within
the refresh period. A 1000 by 1000 pixel display
refreshed at 50 Hz implies a frame store update rate of
the order 50 million bits per second. This is clearly
inefficient when the changes only affect a small part of
the display. The alternative approach is to modify the
contents of just those parts of the framestore
corresponding to the elements of the image that have
changed. While this method is appealing, there are
several disadvantages.

It is essential to maintain an accurate record of the
graphical state of the display - this ensures that graphical
changes are only implemented for objects which have
altered since the previous frame, but necessitates the
provision of complicated and possibly large data structures
to provide a consistent record of all objects within a
display. A display object is moved by erasing it at its
previous position and then re-drawing it at ifs new
position. In effect, this doubles the number of graphical
operations. Where objects overlap, it may be difficult to
avoid erasing parts of other objects when a particular
object is moved. While this deficiency can be overcome
by the provision of prioritised colour planes which
facilitate the allocation of objects to planes, this form of
hardware solution is not always available and its software
counterpart may require complex data structures in order
to minimise the total amount of re-drawing. In order to
maintain a real-time display, the software must cater for
worst-case situations even though typical changes may
only necessitate redrawing a few objects. The worst-case
situation may be no different from totally redrawing the

display.

A simple resolution of the screen management
problem is available in many graphic processors where
the bits written to the framestore can be combined with
the existing contents for the pixel using the logical
exclusive-or operation. This mitigates the need to retain
a record of pixel contents when moving some graphical
object. This approach may be suitable for monochrome
or vector-based displays, but the large areas of spurious
colour, which would occur with two-dimensional filled
objects, render this approach unacceptable for the attitude
indicator.

An attitude indicator comprises both static and
dynamic graphical items. Of the dynamic objects, whose
position may change from frame to frame, bank lines
move with displacement in roll angle, pitch lines move
with displacements in pitch and roll. Although there are
relatively few graphical objects to be re-drawn on an
attitude indicator, a change in pitch and roll can
necessitate large areas of the ground and sky regions
being refilled.

With the exception of the solid colour-filled regions,
the objects are represented as lines or vectors which
undergo translation and rotation from frame to frame.
The graphical operations on these vectors are
straightforward in two senses. Firstly, the two-
dimensional computations of rotation and translation are
simple and secondly, the number of pixels erased and
written is relatively small. Currently, drawing rates of
1us per pixel are achievable and moreover, rendering the
vector (writing the pixels to the framestore) may be
accomplished independently of the processing of the
vector coordinates. In some systems, graphical objects are
entered into a display list and rendered autonomously. In
other systems, knowing the rendering speed and the
processor performance, it is possible to interleave the
periods of rendering with vector processing in an
intelligent manner.

The rendering of the sky and ground regions poses a
much more profound problem for two conflicting reasons.
In order to minimise the latency associated with
framestore access, the number of pixels written to the
frame store should be minimised, and yet computing the
precise geometrical changes to the two areas is
demanding.

Objectives

This paper addresses the problem of drawing the filled
regions of an attitude indicator, and moving the boundary
between them, in real-time. Although EFIS attitude
indicators are often rounded in appearance, it is
straightforward to exclude the writing of pixels outside a
predefined boundary either by hardware of software
clipping. The problem can be simplified, therefore, by
considering the problem of adjusting the two trapezoidal

283



regions of sky and ground within a square. The boundary
between these two regions is the actual artificial horizon
(or zero-degree pitch line), often overlaid as a white line.

The objectives are three-fold: The first objective is to
attempt to adjust the position of the artificial horizon by
filling regions of the attitude indicator in a minimal
number of graphic operations. For most graphic
processors, the basic operation is to draw a vector
between the coordinates (x,, y,) and (x,, y,). The graphic
processor generates the line of pixels from (x;, y,) to (x,,
y,) and sets the corresponding locations within the
framestore to the appropriate colour. The processing task
is then restricted to defining line end point coordinates in
such a way as to move the horizon with a minimum
number of line draw operations, but without incurring an
excessive amount of geometrical computation.

Secondly, the method must be simple. The algorithm
should minimise the computational overhead inherent in
the geometrical computation of vector coordinates. Any
reduction in graphical operations must not be at the
expense of excessive time spent in computation. A
satisfactory algorithm will be a careful balance of
computational simplicity with a minimal number of
graphical operations.

Further, the method must be robust. It must cater for
worst-case situations; for a potentially safety-critical
application, it must ensure that no pixels are coloured
incorrectly and that the algorithm operates in all regimes
without terminating in some undesirable manner. It
should cope with interruption of data from the attitude
sensors and restore to the correct attitude indication within
one frame period.

The efficiency of the method therefore focuses on the
strategy used to fill various regions or polygons within a
square bounded by the motion of the horizon line. There
are well known methods for filling polygons, but the real-
time constraints restrict the applicability of specific
methods. :

Graphical Fill Methods

The boundary of a polygon can be represented by
straight lines joining its vertices. Lines that are vertical
or horizontal with reference to the display screen are
represented as an actual line of thickness one pixel.
Diagonal lines are approximated by a sequence of adjacent
pixels. Clearly, pixels on an integer grid cannot exactly
match the fractional pixels’ that are needed to replicate
an arbitrary line. These limitations are well understood;
line drawing algorithms based on Bresenham’s algorithm
are widely adopted, including incorporation in graphics
processors.”? The polygon is filled by setting pixels,
within the boundary defined by the edge lines, to the
appropriate colour. Therefore edge coordinates must be
computed.

Various methods of filling a polygon can be

considered.®? One method commonly adopted for non
real-time applications is ’flood filling’. An internal pixel
is selected from which to start the fill operation. Its
neighbouring pixels are filled unless they are already set
to the fill colour. Variations on this technique employ
different methods for selection and ordering of
neighbouring pixels, some of which may be applied
recursively. There are two common problems with this
method. Firstly, it is necessary to select an (albeit
arbitrary) internal pixel; this can lead to considerable
computations for complex shapes. More importantly, the
filling proceeds one pixel at a time and each pixel written
has resulted from several framestore accesses.

An alternative method commonly adopted for real-
time applications is the scan-line method in which the
polygon is traversed vertically, one pixel line at a time.
For each horizontal line, a left-edge coordinate and a
right-edge coordinate is computed, and the intermediate
points written to the framestore. If the framestore is
organised for *horizontal” addressing; multiple pixels can
be written as bytes, words or mulitiple words, with a
significant gain in speed. The primary disadvantage with
this method is that the derivation of the left and right
edge coordinates can require considerable computation. In
the general case, a horizontal line may intersect a polygon
boundary at more than two points. In addition, the
logical computation that is required to format multiple
words from pixel coordinates can impose a severe penalty
in terms of hardware cost or time. For horizontal scan-
line in-fill, the number of lines written to the framestore
varies with the orientation of the polygon. For example
a rectangle 100 pixels by 2 pixels can be filled by 2 lines
of 100 pixels, but the same rectangle rotated through 90
degrees, requires 100 lines of 2 pixels. The overhead of
setting up the graphics processor for each line may
dramatically reduce the performance in the latter case.

Simpler methods have been adopted for more regular
shapes. For example, hardware ’blitters’ are used in
’windows’ applications where the high-speed drawing,
erasing and moving of rectangular windows necessitates
very fast fill methods. This is accomplished with the
provision of hardware to copy large blocks of memory at
maximum memory access rates, in a manner than is
independent of processor operation and caters for
windows that are not aligned on byte or word boundaries.
However, this method of filling is not appropriate where
the boundary between the sky and ground regions
represents a range of roll angles from -180° to +180°.

Objects such as a parallelograms, rhombuses or right-
angled triangles can be filled efficiently using methods
which exploit a knowledge of their geometric form. For
example, a right-angled triangle, orientated along the x-y
axes, can be filled by drawing internal lines parallel to
the longest side. The simplicity of this method derives
from the fact that the computation of the coordinates of
the other two sides is trivial; one end of the fill line is

284



incremented in y for a constant x value, the other for x
along a constant y value.

Further discussion and selection of an appropriate
filling techniques will be deferred pending a detailed
analysis of the format of an attitude indicator in the
following section.

Graphical Properties of an Attitude Indicator

While the shape of the attitude indicator is most likely
to be a circle, square or rounded box, and, as suggested
above, there may be advantages in making it square, the
boundary of the attitude indicator can be arbitrary. The
only restriction is that it must be a convex hull to ensure
that a horizon line will intersect the boundary at a
maximum of two points. Fig. 2 illustrates the position of
the horizon line on an EFIS attitude indicator where © is
the pitch angle and ® is the roll angle. The aircraft is
shown pitched up and rolled to the right. The line OA,
representing the pitch angle, is perpendicular to the
horizon line and of length 1 = a© where a is the scale
factor relating pitch angle to displacement.

Fig. 2.
indicator.

Position of horizon on EFIS attitude

To adjust the horizon as a result of say, an increase in
pitch angle, a new line will have to be drawn below the
existing line and the trapezoid bounded by the old and
new horizon lines filled with the colour representing sky.

Assuming that the old horizon line intersects the
boundary at two points (1,2) and that the new horizon
intersects the boundary at a further two points (3,4), the
number of cases to be considered is given by the number
of distinet orderings of the points (1,2,3,4) around the
boundary. @ The six such combinations (a)-(f) are
illustrated in Fig. 3 where point 1 (M) represents the
right-hand end of the old horizon line, point 2 (@)
represents the left-hand end of the old horizon line, point
3 (O) represents the left-hand end of the new horizon
line, and point 4 (1) represents the right-hand end of the
new horizon line.

It can be seen that the diagrams contain various
regions, some of which must be refilled with either sky or

1243 1342

Fig. 3. Primary cases for the attitude indicator.

ground to effect the movement of the horizon. If O is
used to indicate sky and 1 to indicate ground then

00 represents a region that remains as sky,

01 represents a change from sky to ground,

10 represents a change from ground to sky, and
11 represents a region that remains as ground;

these primary cases are summarised in the following
table.

Description
Increasing ground

Case Code Zones Zone codes
(a) 1234 3 00 01 11

®) 1432 3 00 10 11 Increasing sky
© 1423 4 00 01 10 11 CW rotation
d 1324 4 00 10 01 11 CCW rotation
(e) 1243 3 01 00 10 Roll pitch up
) 1342 3 01 11 10 Roll pitch down

Only regions labelled 01 or 10 need be considered to
adjust the position of the horizon line.

For large pitch angles, either the old horizon line
or the new horizon line (or both) may not intersect the
boundary at all, in which case either the pair of points 1-

285



12[34]

1[3412

(® ()

3 [12]34 1]43[2

@

1][43]12

[12][34]

(€3] M

Fig. 4. Additional cases for the attitude indicator

2 or 3-4 will not exist. These cases (g)-(1) are illustrated
in Fig. 4 and summarised below where brackets are used
to indicate the non-intersecting points.

Case Code Zones Codes Description
) 12[34] 2 01 11 Leaving to pitch down

k) [12][34]
O 14312

01 Off screen pitch up to down
10 Off screen pitch down to up

) 113412 2 00 10 Leaving to pitch up

@ [12]34 2 00 O! Entering from pitch up

)] 11432 2 10 11 Entering from pitch down
1
1

From Figs. 3 and 4 it can be seen that the regions that
require to be filled fall into a small number of distinct
cases. For (2) and (b) the area is bounded by the old and
new horizon lines and two sections of the instrument
boundary. Cases (e) and (f) require two regions to be
filled bounded by a horizon line and the instrument
boundary. Cases (g), (h), (i) and (j) have only one region
of this type. (k) and (1) require the whole area within the
boundary to be filled in. The most complex case is for
(c) and (d) where two wedges must be filled that are
bounded by parts of both horizon lines and one section of
the instrument boundary.

© @

©

Fig. 5.
1324.

Alternative strategies for cases 1423 and

Cases (e) and (f) are deserving of further attention.
For all cases other than these, the region or regions to be
redrawn correspond to the area apparently swept by the
horizon in going from (1,2) to (3,4). For (e) and (f) the
motion of the horizon line would appear to have been a
rotation with point 1 moving to 4, while point 2 moves in
the same sense to 3, whereas, the areas to be filled
correspond to a change in pitch to remove the line from
the instrument and then restoring it with the aircraft
inverted. Clearly the latter strategy is easier and
probably quicker to implement than the rotation of the
horizon on the instrument.

This observation suggests a method of simplifying
cases (c) and (d) where change in roll dominates over
change in pitch. This is illustrated in Fig. 5(a) for the
case 1423. Starting with the horizon line at (1,2)
(Fig.5(b)), the strategy would be to sweep the horizon in
a fan centred on point 1 from 2 to 3 filling with ground
(Fig.5(c)) and then sweep it in a fan centred on 3 from 1
to 4 filling with sky (Fig.5(d)). Although this has the
penalty of having to fill the region 010 (Fig.5(e)) twice,
the simplification of the computation of the in-fill regions
may outweigh the additional time spent filling. The merit
of this approach will become clear when discussion of fill

286



techniques is resumed.

Notice that the colour of any one of these regions is
determined uniquely by the rotational sense of the
intersection points. For example, point 1 moving counter-
clockwise towards 4, or 2 moving clockwise towards 3
will be a boundary of ground, and conversely 1 moving
clockwise towards 4, or 2 moving counter-clockwise
towards 3, will be a boundary of sky.

At this point it is important to establish the appropriate
direction for a point to rotate when defining a region
boundary. There are clearly two paths round the
circumference between any two points: clockwise and
counter-clockwise; the shortest path may not be the
appropriate route. For cases (a), (b), (c) and (d) the path
of point 1 towards point 4 must not include 2, and the
path of 2 to 3 must not include 4. In the case of (¢) and
(f) the path 1 to 2 should not include 3 or 4, and the path
of 3 to 4 must not include 1 or 2.

©

Fig. 6. Graphical objects: (a) a block, (b) a
segment, (c) a wedge.

Thus it can be seen that for all cases except (¢) and
(d), the position of the horizon can be adjusted by filling
just two objects: a 'block’ - bounded by the old and new
horizon line and two sections of the instrument boundary;
and a ’segment’ - bounded by a horizon line and one
section of the instrument boundary (Fig. 6). The fill
colour is either sky or ground dependent on the rotational
sense. The approach can be extended to cases (c) and (d)
if the strategy illustrated in Fig. 5 is employed. This
requires the introduction of a third object, a "wedge’,
bounded by the old and new horizon and just one section
of the boundary (Fig. 6(c)). Once the particular case has
been identified the appropriate fill procedures can be
called to achieve the correct adjustment.

A possible approach to identifying the particular case
is to determine the ordering of the intersecting points
around the instrument boundary and hence recognize
which of the strategies so far discussed is appropriate.

The exceptional cases (g) to (I) will be excluded for the
moment because, as will be shown later, they are
relatively simple to deal with. The ordering may be
achieved as follows. Assume that each of the four
intersection points is distinct and that each is allocated an
index s, to s, which specifies its position on the
circumference. The index could be the distance around
the circumference from some arbitrary origin, or an
integer representing one of N discrete points defining the
boundary. Having adjusted the indices modulo-N, so that
s, is the smallest value, the indices are compared. A
truth table illustrates the six cases (a) to (f) showing the
outcomes of the comparisons of the three indices s,
Notice that there are two combinations of outcomes that
cannot occur. (These are shown on the truth table for
completeness)

5, <83 8;<8, 8, <8,

1234 1 1 1 (a)
1432 0 0 0 ®
1423 1 0 0 (o
1324 O 1 1 @
1243 1 0 1 (e)
1342 0 1 0o

X 1 1 0

X 0 0 1

Thus the appropriate fill strategy may be determined as
a result of at most six comparisons and three additions.

Cases (g) to (1) can be identified as follows. 'On’ is
a Boolean variable that indicates whether the new horizon
intersects the instrument boundary. This would most
likely be a result returned by the routine used to clip the
horizon to the boundary.® ’old_On’ indicates whether
the previous horizon intersected the boundary. ’Pitch’
and ’old_Pitch’ indicate whether the new and old pitch
angles are positive. The additional cases can be
recognised with simple tests on the values of ’On’,
’old_On’, ’Pitch’ and ’old_Pitch’ as indicated in the
following truth table, where *x’ represents a redundant
condition.

On old On Pitch old_Pitch

0 1 0 X g
0 1 1 X (h)
1 0 X 1 @)
1 0 X 0 G)
0 0 0 1 k)
0 0 1 0 ¢))
1 1 X X (atof)

This understanding of the possible cases that can occur
within an attitude indicator is now applied to selecting a
suitable technique for polygon filling.

287



Object Filling

The analysis of the previous section indicates that, for
any combination of changes in pitch and roll angles, the
attitude indicator can be adjusted by filling simple, well-
defined shapes within the boundary. Cases (a) and (b)
require a four-sided object (a ’block’) to be filled,
bounded by the old and new horizon lines and two
sections of the boundary. For cases (), (), (g), (h), (i)
and (j) the object (a ’segment’) is two-sided, bounded by
a horizon line and one section of the boundary. (k) and
(1) require the whole instrument to be refilled and is a
special case of the 'block’. Cases (c) and (d) require two
‘wedges’ to be filled bounded by both horizons and a
section of the boundary.

To ensure minimal graphic access time the objects
should be filled using horizontal lines. The implication of
adhering to this approach would be to severely complicate
the computation of the end points of the fill lines. Some
will be on the instrument boundary, others will be on one
of the horizon lines; the computation will be highly
orientation dependent. Whereas the horizon line is
dynamic, the boundary is static and there is negligible
computation in retrieving the coordinates of a point
moving along the boundary. Clearly an advantageous
simplification of the algorithm results from filling the
objects with vectors drawn between boundary points. If
the boundary is defined by an array of points x,,y, the
index of the array can also be used as an index to all
points defining the boundary. The filling process is now
independent of orientation of the sky and ground regions
relative to the horizontal raster lines of the display CRT.

As described in the previous section, the correct
strategy for adjusting the horizon can be determined using
the indices of the points where the horizon intersects the
boundary. Thus the indexing used to determine the
correct strategy can be also be used to fill the polygons
efficiently with the aid of a look-up table of the boundary
in screen coordinates.

The simplification in the computation associated with
filling when using boundary points can be seen with
reference to Fig. 7(a), where the ’segment’ has to be
filled between the line AB and the boundary. Filling the
segment with horizontal or vertical lines requires the
computation of the intermediate points along the diagonal
line. Some lines terminate on the diagonal while others
terminate on boundary points, adding to the complexity of
the filling algorithm. Alternatively, the segment can be
filled with lines drawn parallel to AB, incrementing the
end points from A and B until they coincide at C. With
the boundary point coordinates in the form of an array it
is a simple matter to increment the end point indices.
There is no calculation involved in this inner loop.

Fig. 7(b) illustrates the case of a *block’, which can
be filled in a similar manner using only lines between
boundary points. Lines are drawn, initially paraliel to

C

©

Fig. 7. Object filling: (a) a segment, (b) a block, (c)
a wedge.

AB, incrementing the end points round the boundary until
A reaches D and B arrives at C. Once one of the
termination points has been reached, in this case D, a fan
of lines is drawn up to the other point, from E to C
centred on D. Fig. 7(c) illustrates the filling of a wedge
with lines drawn from B to C centred on A. Thus the
position of the artificial horizon can be adjusted
efficiently, filling just three objects, using lines drawn
between boundary points.

Up to this point the analysis has not restricted the
boundary to any particular shape, save the requirement
that the horizon intersects the boundary at a maximum of
two points. Although EFIS attitude indicators are
implemented with a range of shapes, the basic shape is
often square and curved boundaries can be overlaid to
obscure a square implementation. This observation
simplifies both the clipping algorithm and the coordinate
indexing scheme.

Evaluation of the Algorithm

The algorithm that resulted from the analysis of the
graphical properties of the attitude indicator was
programmed in the Modula-2 language for a 100 pixel
square, where the edge of the square is equivalent to a
pitch angle of 50 degrees, as illustrated in Fig. 8. The
400 boundary points were indexed from the top left-hand
corner where the coordinates were (-50, 50) relative to
the centre of the instrument. Separate procedures were
written to fill a block, a segment, and a wedge. The

288



(-50,50) 1€0,50) (50,50)
0/400 1 50 100
(-50,0) | 350 ©,0) 150 | (50,0)
300 250 200
(-50,50) B3 (50,-50)
Fig. 8. Coordinate indexing for a square
instrument.

algorithm determined which combination of these needed
to be called for each adjustment of the horizon. The
program was compiled using the Stony Brook QuickMod
compiler version 2.2 and run on a CompuAdd 425 PC
with Intel i486 25 MHz CPU, bus speed 12 MHz and a
CompuAdd VGA graphics card based on the Tseng
Laboratories 4000 graphics processor. All filling was
achieved using the procedure DrawLine available in the
Stony Brook library module Graphics. Fig. 9 indicates
the speed of the graphics processor when using the
DrawLine procedure for lines drawn at increasing angles
to the horizontal. Two cases are shown: Firstly where
the moving end point of the line follows a circle of radius
100 pixels horizontally, and the second case where the
end point moves around a square of side 100 pixels. It
can be seen that for the horizontal line the access time is
approximately 1.25 us per pixel. These results are
provide as a simple bench mark to compare speeds of this
or other algorithms on different machines.

The algorithm was exercised using first a test harness
into which independent values for pitch and roll angles
could be inserted. All modes were checked exhaustively
and no spurious behaviour was observed. A second test
harness simulated the motion of an aircraft which could
be flown using the cursor keys. Again no spurious
behaviour was observed.

The speed of the algorithm was measured by timing
5000 repetitions of particular manoeuvres. The Modula-2
run-time library contained a procedure to return elapsed
time to the nearest 0.05 seconds. Fig. 10 illustrates the
update time for various changes in pitch angle as a
function of constant roll angle. The maxima in the region

of 45 degrees result from the instrument boundary being
square. In practice, the dynamics of the aircraft will
limit the pitch changes to the order of 1 degree per
iteration at S0 Hz, so that a typical update time when
using this algorithm would be approximately 1.5 ms.
Fig. 11 illustrates update times for changes in roll as a
function of initial roll angles. The times are
approximately twice that for pitch updates which is to be
expected from the nature of the algorithm.

Discontinuities are observed within the results for a
given pitch or roll increment. These occur when the
number of fill lines for that increment changes. For
example, for roll angles up to 29 degrees a change in
pitch of 1 degree requires just 2 lines to be drawn.
Whereas when the roll angle is 30 degrees, 3 draw
operations become necessary. Pitch changes of 2 degrees
require 4 lines at 41 degrees of roll angle but only 3
between 42 and 48 degrees. This occurs as a result of
the rounding to the nearest boundary pixel during the
clipping procedure. The points for a given pitch or roll
adjustment are moving between adjacent curves which
correspond to different numbers of line draw operations.

To confirm this explanation the number of lines
drawn in adjusting the horizon was measured for the
same changes in pitch and in roll that had been timed.
The results for changes in pitch are illustrates in Fig. 12.
It can be seen that the changes in the numbers of lines
necessary to make an adjustment correlate exactly with
the discontinuities in the timing measurements.

For a 1-degree change in pitch, 2 fill lines are drawn.
If the horizon has moved at all, within the resolution of
the boundary points, at least 2 lines need to be drawn.
This is because the actual horizon line is superimposed in
a contrasting colour. A minimal adjustment of the
attitude indicator is therefore to delete the old horizon, by
drawing one fill line in either sky or ground, and then
draw the new horizon line, a total of 2 draw-line
operations.

It will be noticed that the measured times are higher
than would be predicted for the square boundary from
Fig. 9. This is to be expected in that the time taken to
adjust the position of the horizon includes the time taken
to execute the algorithm, and so decide the appropriate
fill strategy, in addition to the time taken to fill the
relevant polygons via graphical operations. The times
illustrated in Fig. 9 are purely for graphical access and
the processing associated with Bresenham’s routine within
the Modula-2 draw line procedure. The algorithm
computation time was separated from the time associated
with graphical operations by replacing the draw line
procedure with one that immediately returned to the
calling procedure. For a 1-degree change in pitch at a
roll angle of O degrees the computation time was 0.120
ms out of a total of 0.374 ms or 32% of the total, and
decreased with increasing pitch change. For a change in
roll of 1 degree, the computation occupied 0.132 ms out

289



of 0.516 ms, or 26% of the total, again decreasing with
increasing roll increments. This confirms the efficiency
of the algorithm.

Conclusions

A novel algorithm has been presented for filling the sky
and ground regions associated with updating the position
of the artificial horizon on an EFIS attitude indicator,
based on a detailed analysis of the various combinations
of pitch and roll changes that can occur. Just three types
of graphical object are necessary to update the display.
The algorithm is relatively simple because the process of
identifying the particular case and the strategy for filling
the appropriate objects are both independent of the
orientation of the objects on the CRT. It has been
demonstrated that the algorithm is robust in that,
following data loss, for example, it is capable of adjusting
the horizon to its correct position within one iteration no
matter how large the change in pitch or roll. The
algorithm is both simple to implement and efficient to
compute. Its simplicity enables an attitude indicator to be
drawn on a raster-driven video display unit without
special purpose graphical in-fill processor cards. The
algorithm has been implemented in a real-time flight
simulator and evaluated with satisfactory results. The
measured performance suggests that the algorithm is
applicable both to electronic flight instrumentation systems
and real-time flight simulation.

References

[11  Konicke, M. L., 747-400 Flight Displays
Development. AIAA Report 88-4439, (1988).

2] Bresenham, J. E., Algorithms for the Computer
Control of a Digital Plotter. IBM System Journal,
4, 1 (1965).

31 Pavlidis, T., Filling Algorithms for Raster
Graphics. Computer Graphics, 12, Aug, 161
(1978).

[4]1 Foley, J. D. et al., Computer Graphics
Principles and Practice. 2nd Edition, Addison-
Wesley (1990).

{51 Newman, W. M. and Sproull, R. F., Principles of
Interactive Computer Graphics. 2nd Edition,
McGraw Hill (1981).

290



0.5
R
0.4, End Point following £ 509900 Cod ettt
i Square of Side 100 Pixels &éﬁ‘ <ooo000""
]
x 009%°
| N
203 X B0 0% End Point following
e ,&*‘oﬁ . o 90 Circle of Radius 100 Pixels
K] K o
.g X >?<°°°o
= wix 0
o 500 o
F0.2 i
& Mﬁ%‘
#&°
0.1
0 a s i i i i i i
0 10 20 30 40 50 60 70 80 90

Angle to Horizontal - degrees
Fig. 9. Speed of VGA graphic processor with Modula-2 Drawline procedure.

3 X X U oW g;
: u WATANETS:
1 » /”J JL"”T WMAW%"

7

AL T i

s

0
40 50 60 70 80 90

Roll Angle - degtees

Fig. 10. Time taken to adjust the horizon for changes in pitch in the range 1 to 5 degrees as a function
of static roll angle.

O
(@]
N
o
(o8}
o

291



Update Time - ms

e
Change in Roll Angle - degrees

f‘)@
T bl '
f%ﬁ;j}vj eu\mm;v;ﬁ\-/;‘ 2
p— !

SOl
JNNI L e

0 10 20 30 40 50 60 70 80 90
Roll Angle - degrees

Fig. 11. Time taken to adjust the horizon for changes of roll in the range 1 to 5 degrees as a function
of initial roll angle.

10

ML \\,/\ ,

B

—
P—
—_
=

—
—

Number of Lines Drawn
>
==

8

©

3| ¥

g

\ 2| &

R-|

1 [

2 5

¢}

0 10 20 30 40 50 60 70 80 90

Roll Angle - degrees

Fig. 12. The number of lines drawn in adjusting the horizon for changes in pitch as a function of static
roll angle. '

292



