ICAS-94-7.8.4

AIRCRAFT NONLINEAR MODEL IN MULTIVARIABLE POLYNOMIAL FORM FOR STABILITY AND

CONTROL ANALYSIS

Cornel Oprisiu*
Institute of Fluid Mechanics and Flight Dynamics
B-dul Pacii 220, Bucharest, Romania

Abstract

The paper proposes a coherent methodology for the analysis of the aircraft dynamic
behavior in complex maneuvers. The motion of the aircraft is described by a set of nonlinear
differential equations. Apart from the previous models, the present one has only polynomial
nonlinearities (by the use of quaternions as rotation parameters and of the polynomial
approximation for the forces and moments acting on aircraft). On the base on this model, the
aircraft maneuvers, with constant controls, are analyzed. For the stationary motion an analytical
solution is found using classical series and perturbation procedures. In the process of developing
the stationary solution a method, which allows the finding of all solutions of an algebraic
nonlinear system of equations is adapted. The stability of the stationary solution is analyzed
within the limits of Leapunov method. The eigenvalues of a linear system of differential
equations with periodic coefficients that result in this stage are evaluated by asymptotic
expansion up to the point that a clear statement on the stability can be made. Finally a method
for testing the belonging of the initial conditions to the domain of attraction of the stationary

solutions is described
introduction

Aircraft dynamic behavior was of a prime
interest from the beginning of aviation. In the past the
possibilities to analyze an aircraft and its motions
were reduced due to the lack of experimental data
and mathematical methods disposable for analyses.
The accumulation of pertinent experimental data has
permitted a complex modeling of aircraft motions but
they flacked analysis methods. The complex
maneuvers proved from the beginning the highly
nonlinear aspect of aircraft motions. The first analysis
considered that a highly nonlinear maneuver is
nothing but a perturbed motion of a finear one. A first
investigation in the line of a mathematically sound
analysis of a maneuvering aircraft was performed
in(3) by Hacker and Oprisiu. Lately a lot of papers
concerning this problem were performed(7‘9). One of
the difficulties that have resulted was the working with
the nonlinear aspects of the mathematical of the
aircraft motion (singularities arising from attitude
angles representation, trigonometric nonlinearities,
etc.). The subsequent paper intends to elude these
problems submitting a mathematical mode! of the
aircraft motions that considers some new results from
the qualitative theory of differential equations and
facilities of symbolic processors.
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The mathematical model of the aircraft motion

The motion of an aircraft is described in the most
general form by a system of differential equations.
On the basis of the Newton's laws of dynamics and

with a minimum of simplifying hypothesis(1):
-the aircraft is moving in an inertial frame of

reference fixed on a plane earth
-the atmosphere is at rest relative to the earth
-the aircraft is a rigid body with no rotating
parts

the mathematical model of a maneuvering aircraft is
the following ( the motion around its center of mass ):
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where:

\'} - is the velocity of aircraft

u, v, - are the components of V

p,qr - are the components of the rotation
velocity

Ao Y2 3a - are the components of aerodynamic
forces and thrust

LMN - are the components of
aerodynamic moments and of the
thrust

A B, C - are the moments of inertia

arcund the principal axis of inertia of
the aircraft

As it can be easily seen the equations (1) have
a polynomial form with constant coefficients if the
forces and moments have one. The aerodynamic
forces and moments, at least in the form used in flight
mechanics, can be very well approximated in
polynomial form by Cebishev polynomials, spline
functions, etc. The components of the weight may be
introduced in a polynomial form if we chose a special
parametrisation of the rotation group.

To complete the description of the
maneuvering aircraft we have to add the so-called
cinematic equations of motion. These equations have a
form that depends of the parametrisation of the rotation
group.

The most common rotation group used is that
of Eulerian angles. This rotation group has the
advantage of having a very clear physical
interpretation that is amenable to engineering insight.
The disadvantages of this rotation group are:

- the existence of singularities in certain

orientation

- the nonlinearities are trigonometric in nature

To avoid the existence of singular points and to
deal only with polynomial forms we will introduce a
rotation group with 4 dimension the so called
"quaternion method” (first used by Lord Hamiito.n.(z)).

To facilitate the understanding of the physical
meaning of this rotating group we will remind the Euler
theorem that states the following:

Two reference systems with common origin
( Sg and S ) may be superposed by a singfe rotation
around a unique given axis.

The physical interpretation of the quaternions
consists in the fact that they represent the direction
cosines of the axis (o, {3, v ) and the rotation angle
around this axis{®).

To simplify the calculations the rotation group
we use a slightly modified form of these parameters:

It is easily found that one of the parameters is

redundant ( E* 4+ +CC2+m2+C%+¢%=1 ).
Details of this derivation of the rotation group may be
found in reference (3).

The cinematic equations based on the
quaternion method are;

g ot agE

n 11 0 p ¢ ’

B L i 3)

¢ 2ja -p 0 [

lel -+ 9 Q% X

In this formalism of the rotation group the

component of gravity in force equations becomes:

Xy =2gm(EC - nx)

Y, =2gm(ng + &) (4)
Jo=mg(-*-n*+ " +x”)

Having in mind that the dependence of the
aerodynamic forces and moments is approximated in a

polynomial form the mathematical model of a
maneuvering aircraft may be written:

X =P(x,u) (5)
where:

xT=(u,v,w,p,a,1&nE %)

u'= (8, d¢, &r)

(6)

P(x, u) is.a vector whose components

are polynomials with the structure:
pm‘ﬁ K

=1
— ' P1y P2 Prog (Prag (P12g P13
P, = Z CX3"X5% . Xy Uy U, Uy
j=1

(p,=1k;p, = 1K, ....pg3 = 1K,35)
(7
This model is used in this form to simulate the
motion of an aircraft according to a given law of the
*
controls U =u(t).
Another use of this sysiem is for stabilily
calculations, especially when the controls are constant.
To perform that task we need {o:
-find the stationary solution corresponding to
%*

that control U

-deveiop the variation (perturbed) system
attached to (5)

-analyze the stability

This is a formidabie task and has a iot of
difficuities especially when the aerodynamics forces
and moments are noniinear. Apart from the very
special cases, the fulfiliment of the analysis requires a
large set of simplifying hypothesis and thus reduces the
reliability of predictions.

In order to have some previously available
result to compare we will make some simplifications
(these are not required by the method ).

The most studied nonlinear model of the
motion of an aircraft is that proposed by Rhoads and
Schuler in reference (4) and analyzed in different
modes by references (5.-9) and others.
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The hypotheses taking into account are:

- U
and the first equation is neglected ;

-u -is great against Vv and W and thus:

-uz=Vg.azw/Vg B=v/Vg  (8)

- the aerodynamic for ces and moments

have the following polynomial approximation:

Ya = yﬁp*y’ppﬂ_y’r' _'_Ypocpa+y’8r T
Z,=Z,00+2Z,g+2.0, 9)
L=4B+Lip+iQrir+ g Bo+d fatd 8, +4,8
m, =M, +MpP+mg+mr+mc+mgd,

r

N, =NeB+NP+NG+Nr+n,Po+n, 8, +n,3,

it is noted:
x =X, ImV, Y,=%ImV, z =3 /mV,,
L=2L 1A, m,=M,/B, n, =#,/C,
i, =(C-B)IA, i,=(A-C)/B, i,=(B-A)IC,
e=g/V, (10)

The original model (1) and (3) will become,
after some algebra:

B=yB+Y p+(y, ~Pr+ (Yoo + TPt
+y65 +2e(n +Ex)

a :zctoc+(1+zﬁ)q—p{3+zg56e

+e(-8* -n* + 5% + %)
P=4Brip+ia+ird ol pa
+4 o —iqr+4 6, +4 8,

g=(m,+m,z Ja+mp+ (my+my +m,z.)q
+mr—ipr—sm, (- —T]2+§2+X2)+m5956

¢~ Xoy—ag+m) (12)

2
1
f=—(pC +qy - r£)

2
. 1

€= —2?(-pn+Q<i+rx)
X=%(-—pi~qn—ri)

We note that the systems (12) have the same

structure as (5) that is x=P{x,u). For reason of
further development we note that there is a small

parameter € who separates two groups of equations .
This is emphasized by writing equations (12) in the
following form;

-is partially controlled, that is constant,

Yi=aY+Y'NY +eZ'MZ+Cu  (i=15)
z,=Y'QZ (i=14) (13)
where:
Y"=(B,a,pq,r)
) (14)

The signification of the other notation is given
in the Appendix .

Response of the aircraft to a constant control

The response of the aircraft to a control u*(t) is the
iniegrai of the system (13). If this controf is constant
u (t) = ug then the stationary soiution may be found

in a closed form.
The system of equations (13) is formed by
two subsystems closed by a small parameter:

Y = Po(Y,u)+ &P, (2)

Z=P,(Y,Z) (15)
This structure of the system (13) suggests a
solution of the following form:

Y =Y, +eY, +&2Y, + &Y+ . +e"Y, +..
Z=Zy+eZ,+e°Z, +e°Zy+..+e"Z +... (16)

According to these soiutions the system (14)
splits into a set of subsystems, grouped upon the
power of the smali parametiere

Thus for £=0:
Vo =aYy+YoNY, +Cu (i=15) (17.9)
2o =YJQZ, (i=14)

- for the first approximation €;
Vi =aY, +2Y/NY, +ZMZ, (17.2)
251 = YJQ’Z1 + Y:Q’izo

-for the second approximation
Vo=aY, +2Y NY, + YNY, +2ZIMZ,
2,=Y,Q2Z,+Y]QZ,+Y;QZ, (173)

and so on.

Thus the integration of the system (13) has
been replaced with the solving of the equations (17).
Under this form the task is greatly simplified because;

-apart from (17.1) all the equations form

linear non homogenous systems;

-the homogenous parts have constant

coefficients and are identical for all the

systems;

-the non homogenous parts are time functions

obtained recurrently.
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As an observation, we underiine that the
system (17.1) has been the common used model for
the study of maneuvering aircraft with constant
controis(®9). In our procedure this system is a first
step into the process of finding the solutions and not a
consequence of neglecting gravitational terms.

The first group of equations {(17.1) is split at
its turn in subsystems that can be solved separately.

The stationary solutions presume that Y, and Z,

are null and we may find them by solving the
algebraic equations:

a;Y, + YoTNiYo +Cu=0 (i=15)
Y(;‘-QjZO = 0 (j = 114)

The solving of system (18) was tried in a lot
of papers(5-~9) and has been demonstrated that there

are g variable number of solutions ( like all nonifinear
algebraic systems) as a function of the value of the

(18)

constant control U,. A general method for solving

system (18) is given in the Appendix. This method
provides the finding of all the solutions of (18). It was
also observed the existence of all phenomena of the
nonlinear dynamic systems: bifurcation, jumps, etc.

We will note this solution Y.
With these results the system (18) becomes:

2o = Yo QZ,  (i=14)  (19)

and because Y, is constant, (19) is a system of
linear equations with constant coefficients:

Z,=QZ, (20)
where;
0 Tos —‘q()s pOs;
1 "'ros 0 pes Q.Ds ~
Q=— (21)
2 qos “pOS 0 ros
~Pos ~—Tos  —dgs 0
Matrix Q has double pure imaginary

eigenvalues A, = /(P2 + 2, +12) = +iv and

the solution of (19) is periodic Z,_(ot);

where:
%O rOSnO - qu‘;O + FJOS'XO
20
o —Tos&0 + Posls + dosXo cos(ot
Zulot)=| 20 0O (o)
CD 9osS0 —PosNy + TosXo Sln((ﬁt)_
20
o —Poc8o = AosMo — focbo
' 20
Consequently the solution of (17.1) is
Y=Y = constant
Z=Z, =2y cos(ot)+Zy,sin(ot) (23)

Taking into account (23) and the system (17),
after some algebraic manipulation the stationary
solution of the system (13) becomes:

e { i ]
Y, = Yo + 284 Yo + 2 Yigain COS(2J0t) + Y sin(2joot)] ; (24)
=1 { =1

Z, =2, + Sﬁz‘{zm + i[zmu cos{(2j - Hot]+ 2, ,, sin[(2j- 1)mt]]}
par

i=1

Figures 1 and 2 shows the results of the
numerical integration of the system (13) with a
Runge-Kutta method in comparison with the results
obtained with formulae (24) (the solid line is the
numerical integration and the dotted lines are the first

respectively the second approximation in €

The stability of the stationary solutions

The analysis of the stabiiity of a given motion,
on the line of Leapunov methods requires the
equations of the perfurbed motion around that
stationary solution,

Observing that the real solution of system
(13) is:

Yyi= Y+ AY;

z,=2z2,+ Az, (25)
and taking into account the stationary solutions (24)
the equations of the perturbed motion attached to (13)
may be written (after some algebra) as:

Ay; = aAY + 2Y,NAY + AYNAy +e(2Y,NAY
+2Z MAZ) +e*(2Y,NAY + 2ZMAZ)+...
Az, = Y,QAZ +Z,QAY + AYQAZ +(Y,QAZ
+Z,QAZ) +e(Y,QAZ + Z,QAY ..
(26)
To develop a stabiiity analysis with the
Leapunov's first method we need the linear
approximation of (26) which is:
Ay, = (@, + 2YN)AY + 2¢(Y, +&Y, +e%Y,+...
NAY +26(Z, + €2, +€°Z,+... MAZ
+ . YQAZ +e(Z,+eZ, +€°Z,+..)QAY

(27)
or in a condensed form:.
AX = P(t,g)AX | (28)
where
AXT =(AYT,AZ") = (AB, Ao, AP, AG, Ar, AE,
An, AG, Ax)
and:
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yB (1'7‘ Ypm)ps Yp + (‘H— ypa,)as 0 ¥ ~1 28%5 28';5 28-'.& 2&25
—, z, B, 1+z, 0 £,  4den, O 0
45 +zbaas 4ars 'H{uoaﬁs +4 S ’lp "'lpaas ’lq —i1rs 4 _i1qs +4% 0 0 Y 0
-mp, M, +mgz, m, =il —mB, m+m +mz,. m-ip; -4mE 4mn 0 O
n, ML,Ps My =il + N0 1, —igPy n 0 0 U
P(te)={0 0 % & n o L & Bl
2 2 2 2 2 2
0 0 & % & L .
2 2 2 2 2 2
0 0 n & Ys aQ Py &
2 2 2 2 2 2
0 0 & 3 & S O
2 2 2 2 2 2
or, taking into account the form of X_from stability properties (that is no unitary eigenvalues).
24 In our example for the first approximation
P(t,e) = P, (t) + Y eP(t) = P, + P,, cos(wt) 3
(t,e) = Py(t) o (1) =Py + P, \@l) Co(t) = Py(H)C, (1) (34)

=0 je=2i1

+Py (sin(ot) + ) & [ '+ Z(P  2j-10 Cos(joat)J (30)

i=1
Note that matrix P(t,s) is periodic with a

period T=27t/®. The analysis of the system g_’S) is
completed upon the same method described in(®)
The fundamental matrix of the system (28) is

searched for in the form C(t,e) with C,(0,)=1. This

matrix (having a smali parameter ) may be
expanded in a series:

Clte) = Cy(t)+ S ws'ci(t)

with : C(t)= IandC(O) 0 (i=1, ).
Solving (28) with the fundamental matrix

C(t,€) and delimiting the terms after the powers of €
it is obtained the following system:

Co(t) =Py (1)C4(H)
C(t) = P, (1)C (1) + P (1)Co (1) (32)
C, (1) = Py (1)C, (1) + P,(1)C, (1) + P, (1)Co (1)

(31)

The stability of the solution of the system (28)
is appreciated in accordance with the eigenvalues of

the matrix C(T g):
C(T,e)|= (33)

Changing C(T,e) with the approximations
given by (32) a series of evaluation of the
eigenvalues is obtained. The calculus is continued up
1o the point where we have a clear conclusion of the

det|Al-

Note that Po(t) may be written in a block of
matrix manner:

| Ay O
Py(t) = N

AN

(35)

with A4 1 and A29 constant matrix and Ao time

dependent matrix. The solution of (34) is:
f eht 0 |

t
C [ Azth ‘A22‘A21(T)9A11Td-c e hxt (36)

and its eigenvalues at the time t=T are given by:
detjl; — e =

det}M e”=T| = 0 (37)
Since A22 has pure imaginary eigenvalues

the solution of the first approximation is inconclusive.
We will continue with the second

approximation €.

C,(t) = Po(1)C (1) + &P (1)C (1) (38)

In this case the calculations are not so simply

like for £=0 but after some tedious operation
(analytical and finally numerical one) we obtain some
eigenvalues outside the unitary circle. Now we can
conclude that the motion of an aircraft maneuvering
with constant controls is always unstable (though its
instability is mild and applies especially o attitudes).

Though the result is generally known the
importance of the methods lays in the possibility to
elude the large amount of numerical calculation
required by the stability analysis of an aircraft. Also
the method permits the underlining of the contribution
of the different aerodynamic and mass characteristics
of the aircraft to the stability parameters.
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Another advantage of the method consists in
the possibility of having a methodical way to the
design of the stability augmentation systems

Domain of attraction of the stationary stable solutions

it was demonstrated in previous works(5--9)
thai the analysis of nonlinear models of the motion
resulis in multipie stable solutions with obvious
consequences (bifurcation, jumps, etc.)

Except from Hacker(®), nobody emphasized
the importance of the estimation of the domain of
attraction. There is also no general method for a
valuable estimation. The present model of aircraft
motion that includes only polynomial forms permits
the application of some recent results in the domain
of differential equations(1°s13)

The analysis is based on the following
theorem demonstrated in(12)

If an analytic function ' R"—R" has the
properties:
-#(0)=0;

- the real paris of the eigenvalues of the

of.
matrix —(——‘—(O)
laxj
then the domain of aftraction of the nulf solution of the
sysfem :

X = f(x) (39)
is the same with the domain in which the function V(x)

is analytic. The function V(x) is the solution of the
equations:

(gradV(x)|f(x)) = ~Jx”

V(0)=0 (40)

The solution of the equations (40) is
denominated the optimal Leapunov function of the
system (39)

In(13) the recurrence formulae for the series

I

o,
development of V were found if the matrix {-* {O)jis

are negative;

diagonal. There is also demonstrated that if the matrix
is not diagonal there is a transformation s=g(x) with

o

which the matrix ,T (0)|S is diagonal. Therefore the
X,

problem of finding V becomes the problem of finding
W=VS in the same conditions as in (13). Finally a

relationship between the coefficients of W and V was
established.

On the basis of these results the belonging to
an initial condition of the flight to the domain of
attraction of a stationary solution (corresponding to a
constant control) is investigated upon the foliowing
procedure:

1) the stationary solution X (f is the number
of the solutions) of the system (5) is found with the
method described in the Appendix;

2) the equations of the perturbed motion
around this solution are developed:

AX = R(Ax,u)

where: X;=Xg+AX;;
3) the stability of the solution Xsj is analyzed

(by finding the eigenvalues (A; A4q) of the matrix

R
—a—x—;(o)

(41)

b

4) if the solution X is stable (and in the
general case there are more than one stable

solutions) a transformation nonsingular matrix S

which makes igg-(())i diagonal is searched for by
X

solving:
4] R .
5) the function:
m=x “‘m N . .
W=VS= Z( B,,..Z1z5...zk)
m=2 j=1
is determined by solving the equations:
i=10 @W =10 j=10
Z g = ——Z (Z Sq 5 (43)
i=1 az i=1 =1
W(0)=0
where:
z=S"Ax
3:1
g }\,Z + Ldbhlz !mzi!z zhc
j_
) =10 10 g=10
i _ r
bj1jg..~j10 - z; Sy 2_:4 s]P Z aO,O-1+G§,Gé'1,cé 2,..(5;9qu
r= = 9=i
if ,ip=2 (44)
=10 j=100=10

1112 Jio

Z S" Z Zao Arol ol o 1°<Sjksql * sjisqk /

F=1 =1 g=j
if =1 and j=1

C1 =g
O, = e s
0 if j=q
S;; the elements of the matrix S
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S the elements of the matrix S
The recurrence formulae for the terms B is:

1 k=10

- 2
Bir—-i'm - 2 ;skjio

ig

if !j!z 2andj, =2

B, .= 77— 285y if =2 and
h-h }\‘p_*_?\‘q P ]p k]q Hi
Ip=1,=1 (45)
— i
Bhiz»im =TS ZZ(}' _l + ﬂb' '10Bjrh--ii*iﬁ"uin"n
i
=1
6)the belonging of an initial point
Xg = (Ug, Vg: Wo, Por Go: T E01 Tl Gor Xo)  to the

domain of attraction to the stationary solution

X: = (us: Ve W P, qs? rs’ E-'S’ Ne: CS’ Xs)

is confirmed if the relation:

Sl

i=1 Hnrlﬁ 42}8]1"4’10(22)}1---(Z?Q)jw!
lfFm

is fulfilled.

Note that:(z7,25... 25

(48)

AR o B ¥ S
10) =S {Ug, Vo %o)
This method was tested for the aircraft from#.
For the calculation was proposed only the system with

=0 approximation (equations 17.1) because the
compiete model has no asymptotically stabie
stationary solutions

it was found that such initial points as
(1,0,000) ;, (01,000 ; (00100 ;
(0,0,0,1,0) and (0,0,0,0,1) belong to the domain
of attraction of the principal tree of stable stationary
solutions (that which begin in origin). It is very
interesting that the initial conditions far from the
stationary stable sofution belong to their domain of
attraction. Also this result gives a good mark to the
method because another method!( permits to test
only initial conditions very closed to the stationary
solutions.

Conclusion

The model of the motion of a maneuvering aircraft
proposed here contains only nonlinearities in
polynomial form. This aiiows an analyticai estimation
of the response of the aircraft to a constant control
and a very good approximation of the domain of
attraction of the stable stationary soiutions. The
method was tested for a very weli known model of

aircraftt®) and the resutts are in good agreement with
those aiso known.
Though the first steps are cumbersome (the

are a lot nf algebraic calculations) the uses of
symbolic processors make the task easy.

Some points must be checked in the future to
have a pertinent response of the compatibility of the
model with the real aircraft:

-the accuracy  of  the polynomial
representation of the forces and moments acting on
the aircraft;

-the real existence of some stationary
solutions that result in the process of solving the
nonlinear algebraic equations;

There will be also of interest a method that
can visualize the borders of the domain of attraction
or o make them intuitive (a domain in a 10 dimension
space is difficult to understand).

Appendix

The signification of some vector and matrix notation

The signification of the nolations used in the
paper is the following:
T A\Y ) AY
a, = (yﬁrO Yp507 r _1)

al = (02,02, +10)
a§ ={4.0,4,4,,4)
a; =(0,m, +m,z,,m,,m +m, +m,z, m.)
a; = (n,,0,n,,n,,N,)
0 0 0 00
0 0 Yo *1 0 0
N,=0 y,+1 0 00
0 0 0 0 0
0 0 0 0 0
0 0 -100
0 0 0 0O
N,=1 0 0 00
0 0 0 00
0 0 0 0O
0 4 0 0 O
L, O 4, 0 4,
N,={0 £, 0 0 0
0O 0 0 0 -
0 4 0 - O

2921



0 0 -m, 0 O
0 0 0 0 0
N,=fm, 0 0 0 -
0 0 0 0 0
0 0 <, 0 0
00 0 0 0
00 0 0 0
Ng=l0 0 n, 0 0
0On, O -, O
00 -, 0 0
0 0 0 {1 k1 0 0 0
w00 10 MZ:{O 1.0 0
0100 0 0 1 0
100 0 0 o o 1
—meOO}
M, =@ ; M, = gr rg ni g!;M5=®
o 0 0 m,
00 0 0 0 000
00 0 0 0 000
Q,:%oo 0 1Q2:%0 010
00 -1 0 0 00 1
01 0 0 100 0
00 00 0 0 00
0 0 00 0 0 00
Qsz-%o —1OOQ4=%—1O 0 0
1000 0 -1 0 0
0 0 0 1 0 0 -10

C1 = (00, ySr) Cz =(0, Zﬁe’o) C3 = (153701 lSr)
C,=0mg0) C,=(n,0n,)

The roots of polynomial equations

The method of solving a system of equations

P(x)=0 (47)
where P(x) consists only of polynomials is based on
the theorem from(14):

If the system of equations P(X)=0 has only
polynomial components:

P4(x1.,x2,..Xn)=0

P2(x4,%2,..Xn)=0

Pn(x1,x2,...Xp)=0
then there always exists a set of polynomials Q(x)
whose components are:

Q1(x1,x2,..Xn)=0

Qo(x2,X3,...Xn)=0

Q3(x3,x4,...X1)=0 (49)
Qn(Xn)zo
and the solutions of P(x)=0 are identical with those
of Q(x)=0.

The procedure for that iransformation is
something similar to the method of Gauss for linear
equations and is described in(15),

In the form (49 ) the system is easily solved
by classical methods. The transformation from

P(x)=0 to Q(x)=0 is cumbersome but with the
symbolic processors is quite rapid.

References

1 Etkin, B., Dynamics of Atmospheric Flight, John
Wiley & Son, New York, London, Sydney, Toronto,
1972

IS 2™

2 \Whittaker, E. T., Analytical  Dynamics  of
Particles and Rigid Bodies, Cambridge University

Bress (Re%rint) , 1965 . .
< Grubin, C., ~ "Derivation of the Quaternion

Scheme Via Euler Axis and Angles", Journal of
Rockets and Spacecraft, November, 1970, pp. 1261

4Rhoads, D. W. and Schuler, J. M.,  "A

Theoretical and Experimental Study of Airplane
Dynamics in Large-Disturbance Maneuvers”, Journal
of Aeronautical Science, vol. 24, July 1957, pp. 507-

26

gHacker, T. and Oprisiu, C., "A Discussion of the
Roll Coupling Problem”, Progress in Aerospace
Science, vol. 15, Pergamon Press, Oxford, 1974

8 Hacker, T., T"Attitude Instability in Steady Rolling
and Roll Resonance”, Journal of Aircraft, vol. 14, no.

:}, January, 1977 EP 23-31 o
Schy, A.'A. and Hannah, M. E., "Prediction of

jump Phenomena in Roll Coupling Maneuvers of
Aircraft”, vol. 14, 1977, pp. 375-382
8 Hacker, T., "Constant Control Rolling Maneuver”,
Journal of Guidance and Control, vol. 1, no. 5, Sept.-
Oct., 1978, pp. 313-318
9 Mehra, R. K., Kessel, W. C. and Carroll, J. V.,
"Global Stability And Control Analysis of Aircraft at
High Angles of AttacK", Report ONR-CR215-248-1,
June, 1977

Aminov, A. B. and Sirazetdinov, T. K. "Uslovia
znakoopredelenosti tcetnih form i ustoicivosti v telom
nelineinih  system, Prikladnaia matematica i

2922



mehanica, tom 48, no. 3, 1984, pp. 338-347, (in
Russian)

Aminov, A. B. and Sirazetdinov, T. K. "Functii
Leapunova dlia issledovania ustoicivosti v tzelom
nelineinih  system”, Prikladnaia matematica i
mehanica, tom 49, no. 6, 1985, pp. 883-892, (in
Russian)
12galint, S, “Considerations concerning the
maneuvering of some physical system”, Analele
Universitatii Timisoara, Seria matematica, Tom XXlii,
1985
13 o "Aplicatii ale teoriei calitative a ecuatiiior
diferentiale si a metodelor de predictie operatoriale in
studiul comportarii miscarii avionului, Raport ICSiTav
no. 1414, 1987

Benallon, A, and Mellichamp, D. A, "On the
number of solution of mullivariable polynomial
systems", |IEEE Transaction on automatic control,
no: 2, 1983
SMoses, J., "Solution of systems of polynomial
equations by elimination”, Communication of ACM,
vol. 9, no: 8, 1966

2923



