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Abstract
The study highlights the benefits of the
implementations of artificial neural networks in
aeroservoelastic problem. The neural networks
are investigated as an alternative approach to
Sflutter suppression system. Their use in both
modelling the system identification and
controller is studied for feasibility and to
identify advantages and disadvantages. The
connectionist  neural  networks — approach
implemented in an indirect adaptive control is
demonstrated. The results from simulation were
discussed, and the performance of indirect

adaptive  control  using neural  networks
critically evaluated.
INTRODUCTION

With the progress of aircraft design
optimization which results in the increase in
speed and flexibility of modern aircraft, flutter
has become a key feature in aircraft design.
Many organizations as well as researchers have
devoted their effort to develop flutter
suppression system to increase flight safety.
Experts from the area of aeroelasticity and
control have cooperated to develop a new
discipline known as aeroservoelasticity to tackle
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the implementation of control law to actively
control aeroelastic instabilities within safety
boundaries.

The contribution of the experts cover

unsteady  aerodynamic  formulation  and
methods of solving flutter equations. In the
realm of aeroservoelasticity, the major

contribution has been the formulation of
aeroelastic systems by finite-order constant-
coefficient ordinary  differential  equation
enabling control law to be easily applied. Since
modern control theory provides a well
developed design methodology for such system,
a wide range of modern control methodologies
has been succesfully applied on flutter
suppression systems.

Many control synthesis were used by
experts all over the world to develop active
flutter suppression systems either on theoretical
or experimental basis. Among pionering work
devoted in this area one can mention the work
of Edwards et al [7l and Newsom [23], who
based their work on optimal control theory.
Karpel's work in [13] especially presents the use
of pole assignment technique. The optimization
technique which simultaneously alleviates gust
was used in that study. Considerable amount of
work has also been carried out in the
application of Linear Quadratic Gaussian
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method. Several papers of this kind are
contributed by Mahesh et al [18] and
Mukhopadhyay et al [21 which included
reduced order model design. Another approach
was made by Garrard et al using robust Kalman
Filter in 1% Nissim in (23] [24] and [25] gave
another contribution by introducing
aerodynamic energy method as an alternative of
classical control theory application. The work
based on this approach were [26] which studied
the active external store flutter suppression in
the YF-17 flutter model and [27]. Irving Abel in
[3] reviewed the results of classical control
theory and those of aerodynamic energy
concept. A recent paper by Lu and Huang [17]
suggests a new technique using active acoustic
excitation of thin airfoil.

An interesting contribution was made by
Harris et al [11] who presents adaptive flutter
suppression system which automatically adjusts
systems parameters based on changes in flight
condition and store configuration. With specific
respect to control technique, a considerable
attempt has been made to develop an intelegent
controller which can adapt to its changing
environment.

In pace with the unfolding of the control
technique, the recent decades have witnessed a
great deal of time and effort spent in developing
a new branch of computing and mathematics,
the so-called artificial neural networks. This
new approach is basically inspired by the
physical working principles of the human
central neural systems and operate in a very
different manner to conventional engineering
tools. Its implementation has been investigated
in diverse areas including, but not limited to,
flight control systems, instrument landing
systems, large flexible space structure control
systems, signal processing and pattern
recognition.  Several considerations below
motivate the use of artificial neural networks in
the area of aeroservoelasticity.

e In real operation, several parameters
may be uncertain and not of constant
value. This necessitates a learning-type
controller.

o Components failure which may happen
in aeroservoelastic systems establishes
the requirement of an adaptive-type
controller.

THE BASIC CONCEPT OF ARTIFICIAL
NEURAL NETWORK (ANN)

THE ARCHITECTURE OF ANN

The basic feature of artificial neural networks
approach in solving problems is that one need
not  have  well-defined process  for
algorithmically transforming an input to an
output. What one need for most neural
networks is a set of representative examples of
the desired transformation. The trained artificial
neural networks then reproduce the desired
outputs when presented to the example input.
The power of an artificial neural networks
approach lies not necessarily in the elegance of
the particular solution, but rather in the
generality of the networks to find its own
solution to particular problems , given only
examples of the desired behaviour [7].

The diagram in Fig. 1 displays a typical
neural networks. The network architecture is
defined by the basic elements and the way in
which they are interconnected. The basic
processing element of the connectionist (ANN)
architecture is often called a neuron, but other
names such as unit (28], node [16] or perceptron
(201 are also used. The neurons are connected by
weights, also referred to as connections, or
synapses, which conveys the information.
Neurons are also often collected into group
called layers within which the neurons have a
similar function or structure. Depending on
their function in the net, one can distinguish
three types of layers. The layers whose
activations are problem input to the net are
called input layers, the layers whose output
represent the output of the net output layers.
The remaining layers are called hidden layers,
because they are invisible from outside.

In general, there can be any number of
layers, and neurons in any layer can be
connected to neurons in any other layers. Some
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neurons have no inputs from other neurons, and
known as bias or threshold units. The memory
content or signal strength of neuron is referred
to as activation level. Usually, the activation
levels of the input and output units are scaled
such that the activation levels are appropriate to
the neuron functions and the observable values
are given a physical meaning.

THE ANN MODEL

Let us review a single neuron from the
networks structure which is depicted in Fig. 2.
An individual neuron has many inputs
depending on the number of connections. Each
connection to the neuron has a weight
associated with it. After the total neuron input
signal is calculated, that is given the sum of the
product of inputs and weights :

)

n
Xii = Z W iixkd j-1,k
k=1

it 1s converted into an activation value through
a functional relationship. The power of ANN lie
within this transfer function.

Y & f(xj,i) (2)
The sigmoidal function is the most commonly
used in neural networks since it accomodates
unlimited degree of non-linearity. This function
is differentiable, step-like and positive (bounded
by (0,1)) function. In addition to sigmoidal
function, hyperbolic tangent, threshold and
ramp functions are occasionally used.

The output of the neuron is obtained
from the activation value also through
functional relationship. Identity function is
usually used in this step. In general, the
selection of the function used in neural
networks depend on the type of patterns (input-
output value pair). At present, the selection of
an activation function is more an art than
science and subject to much research. The
important point to remember is that any
nonlinear function will provide the networks
with the ability of representing any nonlinear
mappings.

LEARNING METHODS

Various learning rules in neural networks
training has been the subject of investigation of
many studies. In the following paragraphs we
will review briefly supervised learning (role-
model following) known as backpropagation,
which is probably one of the most widely used
learning methods in training neural networks.
The equations used follows those given by
Werbos in [30]

For the shake of clarity, layered
networks shown in Fig. 1 will be taken as an
example. In basic backpropagation, how the
output of a neural network depend on its inputs
and weights is defined using the following
algorithm :

x, =X, ,1<i<m 3)
i-1

net, = > W.x, ,m<i<N+n (4
j=1

X, = s(net,) ,m<i<N+n (5
Y, = X,.5 ,1<i<n (6)

where m is the number of input neurons in the
networks, n the number of output neurons and
N any integer larger than m. The value N+n
determines the number of neurons in the
network.

The main idea of backpropagation is
somewhat similar to that of the famous least-
squares method in which one minimizes square
error shown below :

T T =n 1 n ,
E=2 E(0=2.2 -(Y()-Y(1)" (7
t=1 t=1 i=l
The way by which the error is minimized is the
essence of the backpropagation method. The
process begins with computing partial
derivatives of the error with respect to the
output :
OF =Y, (t)-Y,(t) ,1<i<n
oY, (t)

(®)
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Using the definitions of ordered derivatives (30,
one can write :

6+E aE N+n 6+E
= -+ Z X
X,(t) IX,(t) S aX, (1) o)
oX. (t
,(H) JN+n>ix>1
oX, (1)
where
OE _[ 0 1<i<m (10)
axl(t) A@E N+n2zi2m+1
6Y‘_N(t)
and
X
(V) =s'(net;) x w, ,with s'()=§s—(—)— (11)

X, (t) 20

Now the ordered derivatives for the weights can
be calculated as :

0'E OE

= "(net, ) x X (t 12
X (0 ax o S e x X (12
Finally the weights are updated using :
new w; = w, —& X ,J<i<N+ng
ow (13)

I1<j<N+n

where € 1s defined as the learning rate which is

some small constant chosen on adhoc basis.

AEROSERVOELASTIC SYSTEM
The aeroelastic system depicted in Fig.
3, showing definitions of coordinates and
system properties, is taken as the plant under
study. The parameters of the flutter model are
that given by ref. [13]. The oscillation of typical
section in three degree of freedom: heaving

motion (bending), pitching motion (torsion) and
control surface (aileron) deflection, represent
the wing flexibility.

The motion of the plant
described by the following equation :

can be

[M]{ii}+[D]{q}+[K]{q}=%pU’[A]{q} (14)

where [M], [D], [K] and [A] is the matrix of
mass, damping, stiffness and unsteady
aerodynamic operator, respectively. {q} is the
generalized coordinate vector which represents
vibration modes. Equation (14) can be rewritten

in Laplace domain by substituting {q} = {G}e"
where s = o+ion. Through the use of Roger's
approximation the unsteady aerodynamic forces
can be expressed in the form of rational function
of finite-order polynomial so that the equation
of motion of the plant can be written in the
state-space form. Fig. 4 and Fig.5 depicts the
flutter characteristics diagrams of the system
under study. The diagrams show that the flutter
which consists of two coupled modes (bending
and pitching)  prevails at the speed of

U/bw, =3.02.

The control equations are then obtained
by adding single-input multi-output equation,
which reads

{x}=[A]{x}+{B}u
{y}=1Cl{x}+{D}u
where {x} and [A] is state vector and dynamic
matrix, respectively, u is the control variable
and {y} is the measurement vector. {B}, [C]
and {D} is input, calibration and input-output

relation matrix, respectively.
The parameters of Equation (15) are

{x"}={h/b,a,B,h/b,a,B,B,,B,,B,,B,}
u = B_. For simplicity [C] is taken to be identity

and {D} zero in this present work. The design
target is for constant coefficient control law,

u=[Gl{y} (16)
which suppresses flutter throughout the desired

flight envelopeie. U/bo = 0-3.5.

(15)

and
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NEURAL ADAPTIVE CONTROL

The application of neural networks for
adaptive-type controllers have been studied by
several authors (Narendra[21], Garcia-Padilla &
Morant-Anglada [8], Wharington [30], Rickard
and Bartholomew [28], Krisnakumar [14]) and
has shown to be reliable thus far. Its use in
control area is justified by the following aspect :
the need of controlling systems which are
difficult to model, design requirements which
must be met by this type of systems and finally,
to achieve the objective of control with less
precise knowledge of the plant and its
environment. The application of artificial neural
networks for control will allow us to obtain
benefits such as:  undertaking  faster
computations since this will be carried out in
parallel; tolerance to failure, and moreover
artificial neural networks present a natural
robustness to calculate the parameters without
previous modelling due to its generalization
properties [8].

ADAPTIVE NEURO-CONTROL CONCEPTS
The implementation of neural networks in
control problems can be divided into two
general categories : direct and indirect control.
Under the first category one can distinguish two
general approaches. These are copying an
existing controller and reinforcement learning.
The second category also consists of two
fundamental approaches, namely inverse
control and supervised control using error
propagation through a model. The discussion
that follows will be restricted to the supervised
control since it is chosen as the control
technique in this work.

Supervised neuro-control is similar to
indirect control used in adaptive one; a linear
system model is identified and using this model
the control is adapted. Similarly, in supervised
neuro-control, the first system is available for
the sole purpose of training a neuro-controller.
Neuro-model which is often called neural
network model of the plant is used to generate
partial derivatives of the error between the
identified model and the desired (reference

model) outputs with respect to the control
inputs. The neuro-controller can then be
directly updated using back-propagation of
error through the neural network model. While
updating the neuro-controller, the neural
networks model weights are held constant.
Again, the role of neuro-model is to relate the
output error to the controller error. It should be
emphasized , though, that the error definition
for the model and the controller are different as
shown in Fig. 6. The error in case of the
controller is the error between the actual
system output and the desired output generated
by the desired model.

INDIRECT  ADAPTIVE CONTROL  FOR
FLUTTER SUPPRESSION
The previously mentioned indirect

adaptive control scheme is implemented as a
tool for flutter suppression system. For the sake
of clarity, time delays and other possible
sources of non-linearities such as back-lash in
the aileron hinge is not taken into account in
this present work. The supervised control using
error propagation through a model is
demonstrated. First, the aeroelastic plant is
copied using artificial neural networks and
supervised  learning  techniques.  Neural
networks controller is then designed using the
supervised control technique and a fixed neural
network model. It should be noted here that the
controller acts as a regulator functioning as
flutter suppression means. In this case, there is
no model to be tracked. Instead, the output of
the plant (of the neural networks model) is
compared with a certain set point which is zero
position. The scheme of aeroservoelastic plant
using neuro-controller is depicted in Fig. 7.

The logic of the indirect adaptive
control system is as follows,
1. The neural networks model (NNM) is first

trained to imitate the dynamic of the system

2. Apply a control command to the plant and
NNM
Calculate the error between plant output
and setting point

W2
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4. Inversely propagate the error through the
networks model to find the control
command which minimizes the error

5. Train the neural network controller (NNC)
with the target of control command found in
the previous step

6. Execute control command resulted from
trained NNC

RESULTS AND DISCUSSION

The actual system was simulated for one
second to generate patterns data (input and
output value pair) which was used to train the
neural networks model. Two architectures of
neural networks model are studied. The first
networks model is one with interconnections
between neurons in adjacent networks (fully-
connected layered networks). The second
architecture is partly connected networks, i.e.
the first model in which some interconnections
are truncated. Fig. 8 shows the performance of
the first networks model and Fig. 9 the second
model. The figures display that the second
architecture outperforms the first one. The
results indicate that tracking performance can
be improved by reducing interconnections
between neurons to some extent.

With the second architecture as the
identification systems, the indirect adaptive
control for flutter suppression system was

U/bo, = 3.5 (16% above the
flutter speed). The results are shown in Fig. 10
and Fig.11. The results show that the neural
control system can suppress the violent
bending-torsion flutter at the targeted velocity
above the flutter speed. However, small low
frequency oscillations still remains. The study to
improve the suppression quality is the subject of
the current work.

The results displays the promising
benefits of implementing indirect adaptive
control technique as it involves a learning-type
controller and identification system. This type
of controller will be especially advantageous in
real operation where most of the parameters are
not of constant value.

performed at

CONCLUSIONS AND FURTHER WORKS

The implementation of neural networks
in aeroservoelasticity has been shown to be
possible. The work on this particular area using
new emerging connectionist approach should be
considered as an early step towards a real
implementation. It should be noted that the
theoretical background regarding  control
system involving neural networks is still
preliminary in nature. Besides, there are few
other design tools for the system employing
neural networks. Therefore, many studies,
particularly with respect to the closed loop
stability of the dynamic system are still to be
conducted before starting the experimental step.

In order to arrive at a realistic
implementation of the neuro-controller, the
trade-off between practical performance and
control has to be carried out first. This means
that the next problem of neuro-control
application for flutter suppression to be
adressed is how to find the best possible
performance within the physical limits of the
actuators.
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Structure
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Figure 2: General Neuron Model
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Figure 3: Aeroelastic Model under Study
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