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Abstract

A methodology for nonlinear flight control law de-
velopment is proposed. The control law is based on
point-wise minimization of the predicted errors be-
tween the desired and actual responses of the vehicle.
The control command is conveniently obtained froma
fixed-point equation. Control constraints are handled
without difficulty. Simulation results are provided for
control of a fighter aircraft with nonlinear model.

Introduction

Traditionally, flight control systems are designed
by using linear control theory. A linearized model is
used to represent the dynamic behavior of the air-
craft near a reference (trim) condition. The control
system gains are determined based on that model.
Gain scheduling, which sometimes is rather cumber-
some and tends to increase the complexity of the con-
trol system, is typically employed to count for the
change of the dynamics of the aircraft at different
flight conditions. Although the success of the tradi-
tional approach has been tremendous, with the ad-
vance of avionics, flight-by-wire control technology
and capability of onboard computers, nonlinear flight
control research has increasingly received great atten-
tion. Today’s high-performance aircraft often oper-
ates in regimes where nonlinearities are predominant
because of high angle of attack and large angular
rates. Successful nonlinear control technology has the
potential of offering a relatively simple and effective
solution to flight control in the entire flight envelope.
A commonly cited approach in the literature for non-
linear flight control law design is dynamic inversion.
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In this approach, the nonlinearities are canceled by
static feedback and the dynamics are replaced by de-
sired linear dynamics[1}-[5]. Actual implementation
of this technique in flight control system has been
reported in [6]. More recently, another continuous
predictive control technique has also been proposed
[7)-[8]- This paper expands further on the predictive
control concept. In particular, a better way of han-
dling the control constraints is developed.

This paper is organized as follows: the next sec-
tion describes a functional expansion for predicting
the local response of a dynamic system; then a point-
wise optimal control law subject to the constraints of
bounded controls is derived. The control law is ap-
plied to a nonlinear model of a fighter aircraft. Sim-
ulation results are provided. The final section sum-
marizes the work.

Control Law Development

Let us consider the nonlinear equations of motion
of an aircraft:

fi(=) (1)

f2(z) + Ba(z)u 2

where z; € R™ and z, € R*?, n = n; + ny and
z = (z 2I)T is the state vector which describes
the translational as well as the rotational motion.
fi: R® — R™ are continuously differentiable non-
linear functions, representing the kinematic relation-
ships; f2: R®™ — R™ and By : R" — R"X™ are at
least piecewise continuously differentiable. Equations
(2) are the dynamic equations. The control vector u
consists of the control surface deflections and propul-
sion control, and u(t) € U = {u(t) € R™| L; <
u;(t) < U;}, where the bounds L; and U; are speci-
fied. We assume m < n. For aircraft, the second or-
der derivative of each component of x; contains com-
ponents of u explicitly, and the first order derivative
of each component of z, depends on components of
u explicitly.
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Suppose that the desired response of the aircraft is
specified by z*(t) € R*, 0 <t < t;. To ensure z*(t)
is achievable by the aircraft, we further assume that
there exist an r*(t) € U such that *(¢) and r*(t) sat-
isfy the system equations (1)-(2), although no explicit
knowledge of r*(t) will be needed. If at an arbitrary
instant ¢t € [0,%s], z(t) is known, then the current
control u(t) determines the system response in the
immediate future. Specifically, consider the response
z(t + h), where h > 0 is a small time increment. We
may predict z;(t + h) by a second-order Taylor series
expansion at ¢, and z2(t + &) by a first-order expan-
sion:

:cl(t + h) ~ zl(t) + hfl(:c(t))

PO AED) + Fa®) (=)
+Fua(e(®) Ba(2()u(t) ©

2o(t + h) & z2(t) + hlf2(2(t)) + Ba(2(1))u(®)] (4)
where F11 = 6f1 (:c(t))/c‘):cl and F12 = 6f1 (Jt(t))/a:cz

(the derivative of a scalar function with respect to
z is defined as a row vector). Also, partition z*(t)
accordingly into (237 (t) 37 (t))7, and expand z}(t+
h) and z3(t + h) in similar ways:

. h? .
Z(t+h) ~ () +hii(0)+ 55 (5)
oyt +h) ~ zi(t)+ hil (6)

The error at ¢ + h can then be approximated by

eit+h) = =z (t+h)—zi(t+h)
~ el(t) + he;(t) + 0.5h2[F11(x)f1 ((C)
+  Fia(z)f2(2) + Fia(2) Ba(z)u
- #] (M
eat+h) = zo(t+h)—za3(t+h)
~ ext) + h(fa(z) + Ba(z)u — 23) (8)

where the dependence of z(¢), z*(t) and u(t) on t in
the right hand sides of the Egs. (7) and (8) has be
suppressed for simplicity. To determine the control
u(t), let us consider the minimization of the following
performance index:

J= 2Tt + ) Quer(t+ h) + %eg'(t + h)Qaea(t + h)

9
where @1, Q2 are positive semi-definite matrices wgt})x
appropriate dimensions. Taking into account the
bounds on the controls and replacing e;(t + h) and
e2(t + h) by Egs. (7) and (8), we have a constrained
parameter optimization problem defined by

1
2

1
in — héy(t
Join, 5lei(t) + hés(t)

0.5h2[F11($)f1($) + Flz(.’c)fz(z)
Fi3(z)Bs(z)u — £11}7 Qi {er(?)

hé; (t) + 0.5h2[F11($)f1 (Z)

Fi2(z) f2(2) + Fia(z) Ba(z)u — &7]}

Slea(t) + h(f2(2) + Ba(e)u

—  &5)])TQzlea(t) + h(f2(2)
+ By(z)u - &3)] (10)

This is a so-called quadratic programming problem.
Various sophisticated algorithms exist which can be
used to find the solution of problem (10). Most of
them involve finding an associated m-dimensional La-
grange multiplier vector arising from the necessary
conditions of optimality for such problems(10]. How-
ever, for onboard application, it is highly desirable
that the implementation of the algorithm be the sim-
plest. Motivated by the work in Ref. [9], we give
a simple and efficient algorithm for solving problem
(10). Let us first define a vector functions : R™ — U
with its ith component defined as a saturation func-
tion of the ith component of its argument

mn J =
u(t)eU

+ o+ + 4+

U, @«2U;
si(g) =2 ¢ Li<a<U (11)
Ly, ¢<L

for any ¢ € R™. Next, denote
0.25h2(F1232)TQ1F1232 + thg’Qsz (12)
0.5h%(F12B,)T Q1 {0.54%[&] — Fi1(2)f1(=)

Fia(z) f2(2) — ex(t) + héx(2)]}
+ hBTQ; {h[a} — fao(z)] — e2(t)}

Then we have the following result.

P

z =

(13)

Theorem:

For the given Q; > 0, Q2 > 0, suppose that the
mxm matrix P defined in Eq. (12) is positive definite
at z(t). The unique optimal control u*(t) to problem
(10) for any h > 0 satisfies the fixed-point equation

u = s[fz — (P — I)y] (14)

where I is an m x m identity matrix, and 8 > 0 is
calculated from the elements of the P matrix

B= {Zzpfj}—llz

(15)
i=1j=1
Moreover, the mapping
p(u) = s[Bz — (BP — I)y] (16)
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is a global contraction mapping in R™. Therefore the
fixed-point iteration sequence {u*} generated from

u"‘“ = P(Uk): k= 0; 1;2; eeey Vuo € R™ (17)

converges to the optimal control u*(t).

The proof of the Theorem is based on the necessary
and sufficient conditions for problem (10) [10] and the
unique structure of the control constraint set U. The
detailed proof will be reported in another forthcoming
paper.

Remarks:

1. Since the instant ¢ is arbitrary, Eq. (14) provides
a continuous nonlinear feedback control that is
optimal in the sense of Eq. (10). This is particu-
larly meaningful when some of the control com-
ponents are saturated. In contrast, simple sat-
urations were used in Ref. [7], which in general
is not optimal; the dynamic inversion approach
will not be valid at all when control saturation
is encountered.

2. When u*(t) is in the interior of U, a closed-form
solution can be obtained [7]. But since the fixed-
point iteration (17) converges rapidly in both
saturated and unsaturated cases, u*(¢) can sim-
ply be obtained from (17) in any case.

3. The parameter h serves as a controller param-
eter, and it need not be as small as the “inte-
gration step size”. For more discussion on the
roll of h as a measure of the controller gain and
time-constant of the closed-loop system, we refer
the reader to Ref. [7].

Flight Control of a Fighter Aircraft

Aircraft Model
The model of the aircraft is taken from Ref. [11].
The equations of motions are given as

= gt Leosy— B - Lo g
a = q+ 7 o8 mVCL —psine (18)
7 = —gsiny— Loyt

V = —gsiny - Cp + —cosa (19)
. 1

§ = ~I—[I,,,,Tz +¢S(¢Cm + d.CL + dpCp)20)
v

b = ¢ (21)

y = Vsiny (22)

where

di(a) = I cosa+ I sina (23)

dp(a) = ILsina+1I,cosa (24)

Yy = 0—a (25)

The state variables are angle of attack a, airspeed
V, pitch rate g, pitch angle 8, and altitude y. Control
variables are u; = 85, the stabilator deflection, and
ug = 13, the throttle. 8, is restricted by the limits
~24° < 6, < 105° and 7, by 0 < 74 < 1.0. The
maximum thrust in the x-direction is modelled as a

. function of Mach number M:

Tae(M) = 106,752
+ 24,464sin[2.12(M - 0.7)] (26)
To(M,7h) = Tmaz(M) -1 (N) (27)

The aerodynamic coefficients Cr,Cp and C,, are
provided in subsonic regimes as analytical nonlinear
functions of the state variables and linear functions of
the control variables [11]. Therefore the state equa-
tions take the form of system (1)-(2). According to
our notation, z; = (8, ¥)T, z2 = (a, V, ¢)T. The
other physical constants are

I, = 205,127 kg — m? I, =0.0711m

m = 15,097 kg I =-0.09m

W =mg = 147,9506 N I, =0.0711m

S = 37.16 m?, c=351lm

Maneuver I: Changing Trim Conditions

Suppose that the aircraft is initially flying along
the constant-speed level trajectory at yo = 4,800 m
with M = 0.4. The trim conditions are

Yo = 4,800 m, My = 04, O == 5.1860, do = 0

(28)
Now the flight conditions are to be changed to an-
other set of trim conditions

¥y =500m, M*=07, 0*=a"=129°, ¢"=0

(29)
The control law (14) is used for computation of u;
and uy. The parameter h is set at a constant value
of 1.0 (sec). The weighting matrices @; and @ are
diagonal matrices with all elements on the main di-
agonal being positive. Fixed-point iteration (17) is
implemented to solve for the controls. With the pre-
viously obtained value as the initial iteration point,
convergence with an accuracy of 103 was achieved
just in one iteration every time when the controls
were calculated. Figures 1-3 show the variations of
y(t), 8(t), a(t), and V(t). Figures 4-5 give the histo-
ries of the two controls. Notice the initial saturation
of the throttle.
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Maneuver II: Pitch Orientation Control

The proposed control law is flexible in that differ-
ent control objectives may be accomplished by set-
ting the controller parameters accordingly. For in-
stance, in the pitch orientation control, the aircraft
is commanded to achieve certain pitch rate while the
airspeed is maintained constant. A traditional ap-
proach is to design the inner loop of the autopilot
for the pitch-rate control, and the outer loop for the
Mach-hold[12]. In the current approach, one only
needs to set @ = 0, the two weightings correspond-
ing to ¢ and V in @5 to be positive, and others zero
in Q2. Then from the derivation, one can easily see
that only V and ¢ will be controlled to track their
desired values. Suppose that the aircraft is initially
in trim conditions

Yo = 5,000 m, Mo = 04, 00 = ap = 5.4240, qdo = 0
(30)

The pitch-rate command is

" 5 (deg/sec),
7= { -5 gde%sec;, (31)

and V* = 131.9 m/sec (M = 0.4). The response of
the pitch rate ¢(t) is depicted in Fig. 6, the variation
of V(t) is shown in Fig. 7, and the corresponding
variations of 6(t) and a(t) are in Fig. 8. It is seen
that the velocity varies less than one m/sec while ¢ is
changing to the desired level, despite the throttle sat-
uration observed in Fig. 9. The stabilator deflection
history is given in Fig. 10.

0<t<5 (sec)
5 <t <10 (sec)

Maneuver III: Pitch Angle Control

In this maneuver a desired pitch attitude is to be
achieved while maintaining the speed. Again, sup-

pose that the initial conditions are the same as in
Eq. (30). Let

6" =30°, V* = 131.9 m/sec (32)

As in Maneuver 11, set positive weightings corre-
sponding to @ and V, zero weightings for the others.
Figure 11 shows the responses of 6(t) and «(t). The
speed response V() is plotted in Fig. 12. Again,
very little variation in the speed occurred while the
pitch attitude reached the desired value. The altitude
history is in Fig. 13. The corresponding stabilatcr
deflection and throttle histories are shown in Figs.
14-15, respectively.

Conclusion

A methodology for nonlinear flight control law de-
sign is presented. The control is based on point-wise

minimization of the predicted errors between the de-
sired and actual responses of the vehicle. The control
command is conveniently solved from a fixed-point
equation. Control constraints are handled without
difficulty. In the case of control saturation, the con-
trol law still has a clear physical meaning: it is still
the optimal control within the control set, optimal in
the sense of the point-wise minimization. Simulation
of several maneuvers for a nonlinear fighter aircraft is
provided. The control law demonstrates satisfactory
performance in the tests.
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Figure 4: Maneuver I: stabilator deflection history

1.20
throttie
0.80
040 5. - 1oy - i3
t(sec)
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Figure 6: Maneuver II: pitch rate history
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Figure 7: Maneuver II: speed history
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Figure 8: Maneuver II: § and a histories
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Figure 9: Maneuver II: throttle history
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Figure 10: Maneuver II: stabilator deflection
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Figure 12: Maneuver III: speed history

5600.
y (m)
5200. {
1800. 0. B0 v 16.0
T(sec)

Figure 13: Maneuver III: altitude history
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Figure 14: Maneuver III: stabilator deflection
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Figure 15: Maneuver III: throttle history
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