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ABSTRACT

A new gecometry nonlinear optimal
feedback (race method, which bascd
upon the optimal nonlincar feedback
regulation theory, is presented in the
papcr. The method utilizes the coneept
of mfinite hicrarchy optmal control
necessary condition (also the sulficient
condition to has boeen

SOme  extent

proved in this paper) and vector ficlds

on manifold to simplificdthe solution of

the control law. It is shown that the
optimal fcedback law satisfics a system
of first order, quasi—lincar, partial
defferential equations. Higher precision
is obtained in helicopter positioning
control. The method cun climinate the
adjoint vector from a set of conditions.
So it does not need 1o solve the Riccati

equation, which complicated the solu-

tion processing. It will save a lot of

compuler time and obtain higher preci-
ston at the same ume. It also will be
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able to deal with the control varible in
restrains. Grenerally speaking, the local
sofution of the nonlinecar functional
analysis can be extended to the globle
solution when applying to convex func-
tion. The significent of the paper’s
method is to looking for a globle solu-
tion in convex {unction. The detail and
the results are presented in the paper,
The tracing, under
acrodynamics rcaction alone and the

optimal

steady power engine of a coaxil helicop-
ter, 1s considered. Higher precision po-
sitioning control is obtained by the
feedback law control.

I.Introduction

Many progress have been made by

geometry nonlincar control in some
ficlds. There have been more and more
the examples in engineering. The reason

1s both the fundation theory forword and



many nonlinear control problem need (o

solve. Reference [1-3] attempted the

vehical control by geometry method. Sat-
results  have  been
[4]

optimal regulator. Tt does not need to

isfied reported.

Relerence presented o nonlinear
solve the Riccati equation, which com-
plex and lower the solution precision.
The concept of infinit hicrachy converses
the problem into first order, quasi—lincar
partal dilferential equation. The optimal
control will be obtained by simplicity an-
alytical  general  algorithm of  partal
dilferential cquation.

Since the tracing singnals are of time
varying that the solution of the optimal
tracing will be complicated. In fact, the
regulator is the traced signal in a fhixed
point. The paper’s method remains the
advantages of optimal regulator without
solving the Riccatt cquation, at the same
time considering the time varing charac-
eristic of the problem and the restrains
of the control varibles.

For discribing the applied proces-
ston, numerical example of a helicopter
positioning control appended to the pa-
per. Since the acrodynamic ficlds of the
coaxil helicopter is very complex, so it is
a typical multi—axis control problem. The
requirement  for robust and tracing
sentivity is higher than others. As a test
for wactng controller, sauslying resulls
has been obtained by the paper’s method.

2. General Model

Definiting [ollowing Bolza  system
optimal modcl:

b(u) = x Fxn) = 0.
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c(u) < 0.

,
D(x) + [F° ()t

O

J = (H

where x € R, u € R™ F = {F',F*..,
F"}. Expending 1 dimension x"to the state
vector, then the Bolza form converse Lo a
Mayer one. Definites:

Fo= x x"h x0) = 0,
Fo= {F. .. F"

The Hamiltonian as following:

" ‘k
H = Y pF
k=0

. 0 T
where p is the covector, p == 1. Then it is:

H = < p,F > (3)

3. Infinit hicrachy optimal principle

3.1 Necessary condition of the oplimal
control

Considering optimal control prob-
lem, the Hamiltonian as (2), According to
principle, the necessary

the maximum

condition is:

oH
ALS
du

= (. Ot

or it writien as
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hierachy

Necessary  condition  of  Infinit

Appling the necessary condition of
the optimal control in last section to the
tme varying Hamiltonian. Notes that the
optimal orbits is the curve along the man-
tfold, then its necessary condition is:

dH

—_— = .

dt

That is to say, the Hamiltonian

along the opumal control orbits is con-

stant at any tme. Notes that the

Hamilton condition is:

ot
ap

.

_oH

Ox

i

p

And defining a new vector ficld operator:

it can be induced:

dH ~
= < il AF 1>
= (.
[ = l, JH
d" H,
di
< pof Al AF, 10>
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Where [.,.] is the general comutator,
[..[.,.)..] indicates the multi operating of
the comutator.

If the restrain condition satified that
Kuhn = Tucker sufficient condition

VI Z/‘Li\'f«:i 4 Zu,-Vb,

= 0.
fticl =
2,z 0 i= 1.9
Vc.': Y < 0 (., = 0)
Velv = 0. (G, > 0)
AbY = 0.

If any nonzero vector Y salisfies:
YTALY > 0.

Then the above condilion is also suffi-

cient.

4.Infinite hicrachy optimal tracing con-
trol law:

For the limitation of the paper lenth,
here we simplity presents an optimal trac-
ing control law, only square case has
been considered, (that is the number of
state equal to (he number of control). See
[5)in detail.

A guidance of the frontal discussion
is, with the expression of the manifold,



vecetor held and the comutator, a simple
expression of optimal hicrachy control
can be induced. To the 0 and first order
veetor Nelds,

l‘[” = < p, F“ > = ()
({Hll ' -~
— = < AF 1>
7 polAFE, ]
= ().
we have
~ ] ~ | - [
F, . F [ AF ]
4 13 H3
Y S R
= (),
{o= 1,...,m

The model as (1), and the corre-
sponding Hamiltonian as (3), the time
varying traced signal is z € R", then the
geomelry infimt optimal tracing control
faw 18 the  solution  of  following
guasi—linear partal differential equation

with the given initial condition

0 . e 0. Au
[ Fy —F L (I®F F ) Y —
{u i 1 [ ()l
~ ~
ot ., ouo
o F T G }
X z
R A T
= } } (O FF
us i [ ux
LT N
G F ot )
1 i N
L=10 L0 T
FF ( FF G !
I N Hy ui
7,0
FOE)
I RY
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n
where, x € R,

= F(x,u)

“t-
!

Object function is the error of design
tracing signal and the real signal, real one
is the negetive feedback. F =
Fn}’ F()
Keronreker product.

defined as in (1). (& s

5.Example

The model of the coaxil helicopter as
following

5.1 Dynamical cquation

/ F
(/( = 4 KR o
dt m
—gsinl
% F
v Te oy owe — UR
di n
— gsinpcosl
% /
‘“! et FoUO VP
(1 i
geospeosl)
) .
R B .1°,
N (/l 2 ¥
T A VR R
vt & :
I (AR Y2?
(e *
5.2 Motion ¢quation



{¢
‘5-3 = P 4 Qsinptanl
dt
+ Rcosptan(
W oeos Rsi
= Jeosp - SUp
iy
(:17!1 = (Qsing -+ Rcosp)secl)

The above equations can be repre-
sented by:

X = f(x) + g(xu
yo= l(x)

5.3 Hovering position optimal wacing
control law

Since it is the first order vector field
on the manifold, so the only first
|hicrz»\chy is considered. For the difficultes
ol determining the Cauchy condition, the
designing utilize the hierachy optimal re-
sults as the traced signal, so

dy

-1 s .
Y S TOWIE0

= N(x)) 4)

Where R is the control varibles weighting
nuitrix, Q is the state varible’s.

Itas obviously that there is a similar
relation between lincar and  nonlinear
optimal control. That Is the
correlationship between the two control
systems.

According to the decoupling with
stabilization algorithm [5], the system
control is following the hicrachy optimal
results,  the  expected  state can be

obtained. The stabilization term as fol-
lowing:

u = —ZKym — Liv
-~ Viwg/2}

where, v is the solution of (4), W 1s the
Lyapunov function of the system, & W is
the gradient of the system Lyapunov
function.

The results of simulation i the ap-
pendix.

6.Conclusion

1). General engineering  algorithim re-
quires simplity, clear and acceurucy. The
optimal hicrachy method sauslicd the
above condition. Tt is a proposal practical
method to the complex synthesis control.
2). For the nonsquare case, the necessary
condition leads to higher order partial
differential equation.

3). The interaction aerodynamic force on
coaxtl helicopter 18 very complex, the
hierachy control can overcome the diffi-
culty effectively. Higher control precision
is oblained.

4). Since the method just begining, a lot
of discussion and analysis are required

before practice.

Appendix

The begining value in positioning
{light arce : (the earth coordinate) x = 5m,
y = 2m, z = —995m, velocities and angu-



lar velocities are 0. Expected coordinate
are x =y = z = Om, welocities and angu-

lar velocities are 0.
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