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Abstract

Aircraft operation is a stoc—
hastic process that can be divi-
ded intoc well-defined, discrete
states of operation. This process
can be represented with a graph
model, and approximated with a
continuous-time, discrete state
space Markov process. Our present
paper deals with Markov-, or Se-
mi-Markov models of aircraft ope-
ration process and describes the
possibility of their use for one
specific purpose - for wartime
aircraft operation.

Introduction

Stochastic processes whose
development in the future is in-
fluenced by their development in
the past only through their deve-
lopment in the present, that is
stochastic processes without af-
ter—effect§$ are called Markov-
-processes. The history of stu-
dying such processes started with
the activity of Andrei Andreie-
vitch Markov (18856-19220 the Rus-—
sian mathematician.

Wartime aircraft operation -
as usually operation itself - is
a stochastic process based upon
the aircraft, their maintenance,
their preparation for combat mis-—-
sion, and also based upon the
personnel carrying out aircraft
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repair, and upon the regulations.

This process, which is in
fact the complex of events that
happen to the aircraft, or to one
of its systems, or its equipment
Cthat is to the object of opera-
tiond from its manufacturing to
its discarding, is a random in
time and frequency succession of
states of operation.

As leaving a certain state of
operation does not depend on pre-
vious states, or their successi-
on, that is the process has no
after-effects, operation can be
considered as a mathematically
continuous time, discrete state
space Markov-process. Such stoec-
hastic process can be approxima-
ted with a Markov-—chain.

Decisions concerning an ope-
ration system, and its control-
-efficiency respectively, can be
made on the basis of certain cha-
racteristic features. In our case
such characteristic feature can
be the number of combat-ready
aircraft of a flying unit. During
the study of the operation pro-
cess such characteristic features
can be established through the
system approach, by means of the
continuous-time, discrete-state
space Markov-, and Semi-Markov
models of the operation process.



Markov-Processes
The mathematically described
probability process nCtd is cal~-

led Markov-process if the equati-
on of hypothetical probabilities

P{ﬁCtn+2=Xn+1

=p "Ctn+1°=xn+1'WCtn3=xn} €1d

nCt1)=X1mnCtn)=Xn}=

proves to be true with the pro-
bability 1 for each tz<t2 mm(tn

(8>
real number.

If process nW(td during the
study period can have an X value
at any moment, it is called a
continuous—-time process. If n can
only have some value at certain
moments, the process is called a
discrete-time process. A stochas-
tic process is considered to be
of discrete state space, if the
possible values of variate n con-
stitute a finite set or a count
non—-finite set.

Finite or count non-finite
stochastic processes, that is the
discrete state space ones with no
afteﬁ—?gfects. are called Markov-
—chain. In this case, the value
established in the equation (1)
is called the transition probabi-
lity:

n,n+l _

Pij P{§Ctn+1>=lenCtn>=xi}

cad

The transition probability ex-
presses that nCtn+I) = Xj; which

in our case can be interpreted in
the following way: the object of

operation at tn+f moment can be

found in the j-th state,
sing that nCtnD = Xi'

suppo-

n,n+l

PY

shows that the transition proba-

marking above also
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bility is the function of not
only the i beginning state and of
the j end state, but it is also
the function of tn time. In order

to have a simpler marking we are
going to use the formula as fol-
lows:

P

n,n+l _

. 3D
tJ

P, €ty =P, ;<1

Having N number of states,
Pij transition probabilities are

usually arranged in matrix.

[p,co ]

matrix is called the Markov—mat-
rix of the process, or the tran-
sition probability matrix.

P Ctd =
=NxN

4D

If the one-step transition
probabilities are not time-depen-
dent, we call the Markov-process
stationary. In this case we can
state that

n,n+l _
PL) =P - 4>
or
P =[P.,] &
=NxN S

as it does not depend on the va-
lue of n, and Pij means that the

value of 7n(id is probably tran-
siting from Xi to XJ.during the

ct_;t D> time interval.
n’ n+f

A Markov-process c¢an be cha-
racterized unambiguocusly by supp-
lying the transition probabiliti-
es, and the distributions of lea-—
ving different states. If distri-
bution of leaving different sta-
tes are not of the same character
- at least of them is different
from the others, the stochastic
process is called Semi-Markov
process, as an example will
illustrate it later on in this
paper.



Mathematical Model of
Operational Process

Operational process for each
aircraft can be described with
the so called operational chain,
which is, from mathematical point
of view a Markov-chain C(Fig. 1D.

FIGURE 1

When analysing operational
processes with the system appro-
ach, the actual succession of
single states for each aircraft
is no concern of ours. It is ra-
ther complicated to describe the
whole operational process with an
operational chain. In order to a-
chieve a clearer survey it is ad-
visapble to describe the operatio-
nal process as a directed
graph.

Within the graph of operati-
on states are represented by the
angulare points of the graph, and
transitions from one state to an-
other are represented by the di-
rected edges of the graph (see

B

REPAIR

FIGURE &

Analysing the operatiocnal
chain or the type graph, we assu-
me that states are clearly mar-
ked, and transitions occur during
zero-time. For characterization
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of transitions from one state to
another we use their transition
probability.

The limit of transition pro-
bability Pij below is called

transition probability density,
and marked with ﬁij:

1im Py 080

Bij = ateo " 7

where:

At - the length of the time

interval.

Another
ture is the
that is the

characteristic fea-
relative frequency,
probability of sta-

ying in the i-th state:
niCAt)
P.CALY 2 o, 8d
¢ B nocawd
s=t 7
where:
niCAt) - number of steps into

the i-th state during
At time.

The staying of the object of
operation in the i-th state can
also be characterized by the mean
time of staying in given state,
which is marked with ti'

On the basis of which was sa-
id above, the operational process
consisting of N states (in other
words, which is divided into N
states) can be characterized by
the parameters below:

- number of states;

- vector of mean time periods
spent in different states;
probability vector of sta-
ving in different states;
transition probability
matrix.

g4

>
!

([ v ]
[

Naturally, instead of vector



t, depending on the points of wvi-
ew of the analysis, vector C of
cost of entering given state or
vector M of cost of labour con-

sumption can also be considered.

Knowing the characteristics
above we are able to determine
the change in time of probability
of staying in different states,
and the requirements for operati-
onal cost or for working hours of
operation.

Then we have a system of equ-
ations consisting of as many equ-—
ations, as many states we have
within the operational processfd’

Transition probabilities of
changing states of the continu-
ocus-time process analysed with At
time-shifting Cwhich transforms
it into a discrete-time process)
can be determined with the help
of equation (72 in the following
way:

Pith) = ﬁithD At cad

It is important to mention at
this moment that we are supposed
to choose such intervals during
which the object of operation
will perform only one change of
states with the probability 1.
The variates above can be
arranged into the Markov-matrix
which was introduced earlier.

For the sake of further ana-
lyses it is advisable for us to
consider the case a change of
states where after At time peri-
od the cobject of operation rema-
ins in the same state as prior to
that time interval. So the deter-
mination of variates in the main
diagonal of the matrix is carried
ocut as follows:

N
P, =1 —jZ;PJi Cif %> . C10D

As the total space means that
the object of operation enters

into a new state or it remains in
the beginning state.

Using the Markov-matrix, the
change in time of the probability
of staying in different states
can occur according to the equa-
tion

ACL+ALD = PTCLd ACLd , (11D

where g*
of E.

is the transposed matrix

Modelling Wartime Aircraft
Operation

Setting the graph model

On the basis of data avail-
able for us, we modelled wartime
aircraft operation with a conti-
nuous—-time stochastic process,
which consists of five states. So
the type graph of operation is a
directed graph consisting of five
angular points, which can be seen

in figure 3.

3. FIGURE

The names of the states are:
1 - Sortie
The aircraft are accomplish-
ing assigned mission, they are in
combat—engagement., or approaching
assigned airspace, respectively
they are flying to the airfield
assigned to them.
2 - Type A’ repair,
for repair

The aircraft is damaged to an
extent which allows its repair at

or waiting
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the flying unit. Mean time spent
in this state: 3 hours.

23 - Type ’B’ repair, or waiting
for repair
The aircraft is damaged more
seriocusly, but it still can be

repaired at the unit. Mean time
spent in this state: 8 hours.

4 - Ready for operation
The aircraft is ready for o-
peration. It is either under pre-

-flight routine or is waiting for
the next sortie in combat-ready
state.
% - Non-recoverable loss

The aircraft entering this
stage are damaged to an extent
which does not allow to use them
again during the combat operati-
on. These aircraft form two
groups: to one of them belong the
aircraft which are called non-re-
coverable loss, the other one
consists of the aircraft that
suffered damage of different
degrees and cannot be repaired at
the unit.

The Markov-model

Firstly we assumed that the
time of leaving each state has
exponential distribution, and
then we determided the coeffici-
ent matrix of transition probabi-
lities of changing states Ctable
I.3, and so we got the Markov-mo-
del of operation.

1 2 3 4 5
13 7 % 13
s A L | e
4y Yy Yy Yy
2 ° o -{-— °
2
3 ° o A 0
3
. e o ° )
<«
5 ° o o °
TABLE I.

This model fundamentally cor-
responds to the mathematical mo-—
del of normal "peace time™ opera-
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tion process. It is useful for
the modelling of the so called
service of the continuous air
combat activity. The activity of
allied flying units inspecting
the no-fly zone in South Iraq af-
ter the Gulf War is a good exam-—
ple of this type of combat missi-
on. It is to be noted that in si-
milar cases, when valuating the
prospective factors of loss, be-
sides the effectiveness of ene-
my’s air defense, there should be
considered the political
"background” as well.

The disadvantage of this
Markov-model is that it is not
usable for the analysis with the
system approach of the service
process of combat activity when a
flying unit is accomplishing
mission with all its aircraft at
a time. For instance, such
activities can be series of
air-raids (see Operation Desert
Stormd, air support of ground
forces or air dropping on the
enemy territory. The air
transport and air drop of aid
supplies in the Yugoslavian area
can also be considered such
mission.

The Semi-Markov Model

Because of the limitations of
the Markov-model, for the model -
ling of the service of combat ac-
tivity requiring recurrent sorti-
es we set up the Semi-Markov mo-
del of wartime operation. After
analysing each state and changes
of states we determined the cha-
racter of distributions of time
for leaving each state. On the
basis of the results of the ana-
lysis we determined the elements
of the matrix in table II.

We considered changes of sta-
tes due to faliure, damage or
destory to be of normal distribu-
tion, where:
the prospective time of leaving
is



me
8 »
its variance is:
t
o = L
6
due to so called 3¢ rule’, ac-

cording to which, the values of
the variate of prospective value
m, and of wvariance o of normal
distribution will fall ‘“practi-
cally certainly” in the (m-3¢ ,
m+3) interval (its probability in
fact is 0,9973D.

The first and last leg of the
sortie is actually a flight en
route Capproaching assigned air-
space or airfieldd, that is why
the probability of failure due to
damage is much lower than it is
during the air combat Cthe diffe-
rence between the probabilities
can be of one or more than one
order).

On the basis of the Markov-
-model, of the experience and
specialist literature, we assume
that the times of staying in re-~
pair states are of exponential
distribution.

1 2 3 A s
ToERE_E_ w1
1 k, FCL [ kg Feed Lt » 0 k. FCLD
2,
2 o ° 1-e o
[N
3 o o 1B o
= \.ﬂc - 1
4 o w0 ° ° °
s ° ° o o

We determined the transition
between state 1 Csortied and 4
Cready for operationd in the way
described in table II. as if it
was a step function.In that way I
could model the case when the
ajrcraft fly out for the sortie
at the same time, or more preci-
sely within a relatively short
time, and come back the same way.
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Markings used in the tables
and equations:
kA - factor of sending the air-
craft to type "A' repair;
kB — factor of sending the air-
craft to type B’ repair;
knr - factor of non-recoverable
loss;
kfl ~ full-loss factor:
k = kA + kB + knr : 12>
ta - mean time of type A’
repair;
t3 - mean time of type °'B’
repalr;
tl - mean time of sortie;
tc - cycle time of sortie
Cassuming cyclical
sorties);
b -~ =serial number of the
sortie;
t 2
1
v 18l )
&)
FCtD —_— e ta dr ;
t d2n g 1 €13
n k
A Ty np
Hy= T C ; ci4d
2 2
n k
B Tw 77p
Hg = T H 15D
3 3
n, - number of teams doing type
*A’ repair;
N - number of teams doing type
'B’ repair;
n, ~ factor characterising
working time loss;
np -~ factor representing loss
in personnel;
k =~ the serial number of the
day in question;
C - number of aircraft staying

in i-th state.



Comgarisqn of Models

On the basis of two tables
above, using both models, we de-
termined the change of prebabili-
ties of staying in different sta-—
tes depending on time. These re-—
sults are shown in figure 4 (Mar-
kov-modeld, and figure S (Semi-—
-Markov model). Naturally, start-
ing data in both cases are the
same.
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Using these models different
varieties of damage can be model-
led(!dth the change of loss fac-
tor. For example, if the enemy
expectedly is going to use small
arms - naturally, it is not the
Stinger rocket missile what we
have in mind here -, or we have
strong air superiority, then,
supposingly, after the sorties,

2178

we are going to have an increased
number of aircraft to be sent to
type A’ repair. But if the enemy
has a highly developed air defen-
se system, or we do not have the
necessary air superiority, in
that case the amount of non-reco-
verable loss will increase in
comparison with the former case.

An Example for the Use
of Semi ~Markov Model

In order to demonstrate the
possibilities of use of the Semi-
-Markov model, we made it operate
with different starting data.

As the first step, with the
help of the data taken down by
us, we determined the change in
the number of aircraft during a
16-hour combat activity. The air-
craft carry out four missions du-
ring this period, the first one
between 00.00 -~ 02.00, the second
one between 04.00 - 05.00, the
third one between 07.00 - 08.00,
and the forth one between 10.00 -
11.00 hours. On the base airfield
there are 6 teams working for
type A’ repair, and 4 teams for
type B’ repair. Graphs based on
the list of results can be seen
in figure 6.

TIME [HOUR]

FIGURE &

The diagrams contain the ex-—
pected number of aircraft being
in type A’ repair state or those
of waiting for type A’ repair



CCa).

operation and being ocut for mis-

sion CC4+C1).

and also those of ready for

Our next step was modelling
the fact that enemy has mostly
small arms. So we increased the
factor of sending aircraft into
type A’ repair, while the other
loss factors were reduced. On the
basis of running results we got
figure 7.

Comparing the two graphs we
can state that without any struc-
tural change, by the end of the
period Cwith the same characte-
ristiecsd it is only the propor-
tion of the number of aircraft
waliting for repair of different
levels that has changed. The to-
tal number of sorties has not
changed, neither has the number
of aircraft ready for operation
changed significantly (28 instead
of 283 by the end of the period.

FIGURE 7

According to these results we
changed the number of teams per-—
forming repairs. We increased the
number of teams performing type
*A’ repair from 6 to 8, and redu-
ced those of performing type °'B’
repair from 4 to 3. In our pre-
sent paper, while changing the
number of repair teams we disre-
garded the aspect of how many
persons the teams need in each
specialty. So we do not doubt
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that there might be an error in
the modification modelled by us,
we would only like to underline
that our main objective here is
to demonstrate one possible use
of the model.

In this case the total number
of sorties has increased by 3,
and the number of aircraft ready
for operation by the end of the
period increased by 2 (see Fig.
8). But due to the increased num-—
ber of sorties, unfortunately,
the number of total loss has also
increased by 2. Considering the
results, 1f such loss can be ex—
pected, it seems to be advisable
to modify the structure of tech-
nical personnel in the way des-
cribed above.

TIME (HOUR]

FIGURE 8

Using the models above there
can be studied the effects of
forming repair and preparation
teams in the case of different
damage probabilities, that is, in
the case of different enemy wea-
pon systems or of air superiority
of different level. The results
can be used by the flight comman-
der as information data, when
planning the combat activity of
his unit. The model can also be
used during the preliminary
planning of air operations of
different level for predicting
the volume and distribution in
time of expected technical ser-
vice capacity and material needs.
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